18.1 Introduction

Today we're going to talk about a cut problem known as Multicut which is even more general than Multiway Cut. We very briefly discussed this at the end of last lecture, where I described how to use techniques that we already know to design an $O(\log n)$-approximation. While I did this very quickly, all the details are in the lecture notes from last time. Today we're going to improve this slightly to give an $O(\log k)$-approximation.

18.2 Definition and Relaxation

Definition 18.2.1 In the Multicut problem, we are given a graph $G=(V, E)$ with costs $c: E \rightarrow$ \mathbb{R}^{+}, and k pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ of nodes. A feasible solution is a set $F \subseteq E$ such that s_{i} and t_{i} are not connected in $G \backslash F$ for all $i \in[k]$. The objective is to minimize $\sum_{e \in F} c(e)$.
For the remainder of the day, we're going to prove the following theorem:
Theorem 18.2.2 There is an $O(\log k)$-approximation algorithm for Multicut.
We will use \mathcal{P}_{i} to denote the set of all $s_{i}-t_{i}$ paths. The problem admits the following LP relaxation:

$$
\begin{align*}
\text { minimize: } & \sum_{e \in E} c(e) \cdot x_{e} \\
\text { subject to: } & \sum_{e \in P} x_{e} \geq 1 \quad \forall i \in[k], \forall P \in \mathcal{P}_{i} \tag{18.2.1}\\
& 0 \leq x_{e} \leq 1 \quad \text { for each edge } e \in E \tag{18.2.2}
\end{align*}
$$

(MULTICUT-LP)

Note: As with multiway cut, we can solve this LP in polytime via ellipsoid, using shortest path (for each \mathcal{P}_{i}) to separate. For the remainder, we will use x to refer to the solution of the LP, and set $V^{*}=\sum_{e \in E} c(e) x_{e}$ as the value of the solution.
Definition 18.2.3 Let $d: V \times V \rightarrow \mathbb{R}^{+}$be the shortest path metric using the LP solution \vec{x} for the edge lengths.
Definition 18.2.4 For all $S \subseteq V$, let $\delta(S)=E(S, \bar{S})$ denote all edges that have exactly one endpoint in S.
Definition 18.2.5 For all sets of edges $E^{\prime} \subseteq E$, let $c\left(E^{\prime}\right)=\sum_{e \in E^{\prime}} c(e)$.

18.3 Rounding

To move forward, we're going to take inspiration from a physical metaphor. This of each edge as a "pipe". We're thinking of x_{e} as the length of e, so if we think of $c(e)$ as the "cross-sectional area", then the "volume" of an edge would be $c(e) x_{e}$. This motivates the following definition.

Definition 18.3.1 (Volume)

$$
V\left(s_{i}, r\right)=\frac{V^{*}}{k}+\sum_{\substack{e=\{u, v\} \in E \\ u, v \in B\left(s_{i}, r\right)}} c(e) x_{e}+\sum_{\substack{\left.e=\{u, v\} \in E \\ u \in B s_{i}, r\right) \\ v \notin B\left(s_{i}, r\right)}} c(e)\left(r-d\left(s_{i}, u\right)\right)
$$

The second term above should be thought of as the volume of all edge-pipes fully inside the ball around s_{i}, and the third as (a lower bound for) the volume contained in $B_{G^{\prime}}\left(s_{i}, r\right)$ of edge-pipes leaving the ball. The first term is included to make later calculations easier.
The next lemma is the main technical piece.
Lemma 18.3.2 (Region-Growing Lemma) For all $i \in[k]$, we can find in polytime a value $0 \leq r<$ $\frac{1}{2}$ such that:

$$
c\left(\delta\left(B\left(s_{i}, r\right)\right)\right) \leq 2 \ln (k+1) \cdot V\left(s_{i}, r\right)
$$

Before we prove this lemma, let's show how to approximate Multicut if we assume that it is true.

```
Algorithm 1 Constructing an integer solution
    Init: \(F=\emptyset\)
    for \(i=1\) to \(k\) do
        if \(s_{i}, t_{i}\) connected in \(G\) then
            Let \(r_{i} \in\left[0, \frac{1}{2}\right)\) be the \(r\) value from the region-growing lemma.
            \(F \leftarrow F \cup \delta\left(B\left(s_{i}, r_{i}\right)\right)\)
            Remove \(B\left(s_{i}, r_{i}\right)\) and all incident edges from the graph.
        end if
    end for
    return \(F\)
```

One important note to clarify this, since we're changing the graph throughout this algorithm: distances, balls and volumes are with respect to the current graph, not the original.

Theorem 18.3.3 The output F from Algorithm 1 is feasible.
Proof: The only way this might not be feasible is if some $s_{i}-t_{i}$ pair are both in $B\left(s_{j}, r\right)$ for some j. But this cannot happen since $r<1 / 2$ and $d\left(s_{i}, t_{i}\right) \geq 1$ throughout the algorithm.
Theorem 18.3.4 $c(F) \leq 4 \ln (k+1) V^{*} \leq 4 \ln (k+1) \cdot O P T$.
Proof: Let's do some definitions.

- Let B_{i} be $B\left(s_{i}, r_{i}\right)$ in iteration i (if we did not create such a ball in iteration i because s_{i} and t_{i} were already separated, let $B_{i}=\emptyset$). Note that since the algorithm changes the
graph throughout the algorithm, this might not have been $B\left(s_{i}, r_{i}\right)$ at the beginning of the algorithm.
- Similarly, let $F_{i}=\delta\left(B\left(s_{i}, r_{i}\right)\right)$ be the edges removed by the algorithm in iteration i. Then clearly $F=\cup_{i=1}^{k} F_{i}$, and $F_{i} \cap F_{j}=\emptyset$ for all $i \neq j$.
- Let $V_{i}=\sum_{e=\{u, v\}: u, v \in B_{i}} c(e) x_{e}+\sum_{e \in F_{i}} c(e) x_{e}$ be the total volume of edges removed in iteration i. Note that $V_{i} \geq V\left(s_{i}, r_{i}\right)-\frac{V^{*}}{k}$, since V_{i} contains the full volume of edges in F_{i} while $V\left(s_{i}, r_{i}\right)$ contains only part of their volume (but with an additional V^{*} / k).
Moreover, every edge contributes to V_{i} for at most one value of i, since the first time at least one of the endpoints is in B_{i}, the edge is removed from the graph. Thus $\sum_{i=1}^{k} V_{i} \leq V^{*}$

Now note that every edge in F is in exactly one F_{i} by our definition of the F_{i} 's, and moreover the value r_{i} was chosen from the region growing lemma. Thus we get that

$$
\begin{aligned}
c(F) & =\sum_{i=1}^{k} c\left(F_{i}\right) \leq(2 \ln (k+1)) \sum_{i=1}^{k} V\left(s_{i}, r_{i}\right) \\
& \leq(2 \ln (k+1)) \sum_{k=1}^{k}\left(V_{i}+\frac{V^{*}}{k}\right) \\
& \leq 4 \ln (k+1) \cdot V^{*},
\end{aligned}
$$

as claimed.
So now it only remains to prove the Region Growing Lemma (Lemma 18.3.2). For the rest of today, let $c(r)=c\left(\delta\left(B\left(s_{i}, r\right)\right)\right.$ and let $V(r)=V\left(s_{i}, r\right)$.
Proof of Lemma 18.3.2; We're eventually going to get a deterministic algorithm, but let's start with a randomized algorithm: choose r uniformly at random from $[0,1 / 2)$. We want to show that if we do this, then $E\left[\frac{c(r)}{V(r)}\right] \leq 2 \ln (k+1)$.
Order $B\left(s_{i}, \frac{1}{2}\right)$ as $\left\{v_{1}, \ldots, v_{m}\right\}$, where $r_{j}=d\left(s_{i}, v_{j}\right)$, and $0 \leq r_{1} \leq r_{2} \leq \cdots \leq r_{m}<\frac{1}{2}$. We also define $r_{0}=0$ for later calculations.
Surprisingly, we're going to do a bunch of calculus to prove this. I'm going to abuse calculus a bit here - see the book for the more formally correct way of doing this. Consider the function $V(r)$, which (just to recall) is

$$
V(r)=\frac{V^{*}}{k}+\sum_{\substack{e=\{u, v\} \in E \\ u, v \in B\left(s_{i}, r\right)}} c(e) x_{e}+\sum_{\substack{e=\{u, v\} \in E) \\ u \in B\left(s_{i}, r\right) \\ v \notin B\left(s_{i}, r\right)}} c(e)\left(r-d\left(s_{i}, u\right)\right) .
$$

Unfortunately, $V(r)$ is not continuous or differentiable, since there can be discontinuities at the values $\left\{r_{j}\right\}$. But let's pretend like it's differentiable. Note that for $r \in\left(r_{j}, r_{j+1}\right)$, for any j, it is in fact differentiable with derivative $\frac{d}{d r} V(r)=c(r)$. This is because the first and second terms are constant in this range of r, so we just need to care about the third term, which gives exactly $c(r)$.

Now we can use calculus to figure out the "average" value of $\frac{c(r)}{V(r)}$ over $\left[0, \frac{1}{2}\right)$:

$$
\begin{aligned}
\frac{1}{1 / 2} \int_{0}^{1 / 2} \frac{c(r)}{V(r)} d r & =2 \int_{0}^{1 / 2} \frac{1}{V(r)} \cdot \frac{d V(r)}{d r} d r \\
& =2 \int_{0}^{1 / 2} \frac{1}{V(r)} d V(r) \\
& =2\left(\ln \left(V\left(\frac{1}{2}\right)\right)-\ln (V(0))\right) \\
& =2 \ln \left(\frac{V(1 / 2)}{V(0)}\right) \\
& \leq 2 \ln \left(\frac{V^{*} / k+V^{*}}{V^{*} / k}\right)=2 \ln (k+1)
\end{aligned}
$$

It then would follow from the mean value theorem that there exists some $r \in\left[0, \frac{1}{2}\right)$ achieving the average value. For this r we would then have $\frac{c(r)}{V(r)} \leq 2 \ln (k+1)$, so that $c(r) \leq 2 \ln (k+1) V(r)$ as desired.

The analysis above was based on the (false) assumption that $V(r)$ is continuous and differentiable. We will now complete the argument by discarding this assumption. In particular, note that $V(r)$ is piecewise linear and monotone increasing with discontinuities at the r_{j} 's listed above. Then the real average value of $\frac{c(r)}{V(r)}$ over $\left[0, \frac{1}{2}\right.$) is given by (with r_{j}^{-}infinitesimally smaller than r_{j}):

$$
\begin{aligned}
\frac{1}{1 / 2} \sum_{j=0}^{m} \int_{r_{j}}^{r_{j+1}^{-}} \frac{c(r)}{V(r)} d r & =2 \sum_{j=0}^{m} \int_{r_{j}}^{r_{j+1}^{-}} \frac{1}{V(r)} d V(r) \\
& =2 \sum_{j=0}^{m}\left(\ln \left(V\left(r_{j+1}^{-}\right)-\ln \left(V\left(r_{j}\right)\right)\right)\right. \\
(V(r) \text { increasing }) & \leq 2 \sum_{j=0}^{m}\left(\ln \left(V\left(r_{j+1}\right)-\ln \left(V\left(r_{j}\right)\right)\right)\right. \\
(\text { sum telescopes }) & \leq 2\left(\ln \left(V\left(r_{m}\right)\right)-\ln \left(V\left(r_{0}\right)\right)\right) \\
\left(r_{0}=0, r_{m} \leq \frac{1}{2} ;\right. \text { recall 'pretend' section) } & \leq 2 \ln (k+1)
\end{aligned}
$$

Before, we concluded by saying that the MVT allowed us to find an r achieving the average value. Here, because $V(r)$ is increasing and $c(r)$ is constant over each $\left[r_{j}, r_{j+1}\right)$ interval, we can say that the smallest value of $\frac{c(r)}{V(r)}$ will occur at some r_{j}^{-}. By the above, for $r=r_{j}^{-}$we will then have that $c(r) \leq 2 \ln (k+1) V(r)$, as desired. And note that there are only $m \leq n$ different values of r_{j}, so we can just check each one and deterministically find the best.

