
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: LP Solutions as Metrics: Multicut Date: 3/28/24
Scribe: Michael Dinitz

18.1 Introduction

Today we’re going to talk about a cut problem known as Multicut which is even more general
than Multiway Cut. We very briefly discussed this at the end of last lecture, where I described
how to use techniques that we already know to design an O(log n)-approximation. While I did this
very quickly, all the details are in the lecture notes from last time. Today we’re going to improve
this slightly to give an O(log k)-approximation.

18.2 Definition and Relaxation

Definition 18.2.1 In the Multicut problem, we are given a graph G = (V,E) with costs c : E →
R+, and k pairs (s1, t1), . . . , (sk, tk) of nodes. A feasible solution is a set F ⊆ E such that si and
ti are not connected in G \ F for all i ∈ [k]. The objective is to minimize

∑
e∈F c(e).

For the remainder of the day, we’re going to prove the following theorem:

Theorem 18.2.2 There is an O(log k)-approximation algorithm for Multicut.

We will use Pi to denote the set of all si-ti paths. The problem admits the following LP relaxation:

minimize:
∑
e∈E

c(e) · xe (MULTICUT-LP)

subject to:
∑
e∈P

xe ≥ 1 ∀ i ∈ [k],∀P ∈ Pi (18.2.1)

0 ≤ xe ≤ 1 for each edge e ∈ E (18.2.2)

Note: As with multiway cut, we can solve this LP in polytime via ellipsoid, using shortest path
(for each Pi) to separate. For the remainder, we will use x to refer to the solution of the LP, and
set V ∗ =

∑
e∈E c(e)xe as the value of the solution.

Definition 18.2.3 Let d : V × V → R+ be the shortest path metric using the LP solution x⃗ for
the edge lengths.

Definition 18.2.4 For all S ⊆ V , let δ(S) = E(S, S̄) denote all edges that have exactly one
endpoint in S.

Definition 18.2.5 For all sets of edges E′ ⊆ E, let c(E′) =
∑

e∈E′ c(e).

1



18.3 Rounding

To move forward, we’re going to take inspiration from a physical metaphor. This of each edge as a
“pipe”. We’re thinking of xe as the length of e, so if we think of c(e) as the “cross-sectional area”,
then the “volume” of an edge would be c(e)xe. This motivates the following definition.

Definition 18.3.1 (Volume)

V (si, r) =
V ∗

k
+

∑
e={u,v}∈E
u,v∈B(si,r)

c(e)xe +
∑

e={u,v}∈E
u∈B(si,r)
v/∈B(si,r)

c(e)(r − d(si, u))

The second term above should be thought of as the volume of all edge-pipes fully inside the ball
around si, and the third as (a lower bound for) the volume contained in BG′(si, r) of edge-pipes
leaving the ball. The first term is included to make later calculations easier.

The next lemma is the main technical piece.

Lemma 18.3.2 (Region-Growing Lemma) For all i ∈ [k], we can find in polytime a value 0 ≤ r <
1
2 such that:

c(δ(B(si, r))) ≤ 2 ln(k + 1) · V (si, r)

Before we prove this lemma, let’s show how to approximate Multicut if we assume that it is true.

Algorithm 1 Constructing an integer solution

Init: F = ∅
for i = 1 to k do
if si, ti connected in G then
Let ri ∈ [0, 12) be the r value from the region-growing lemma.
F ← F ∪ δ(B(si, ri))
Remove B(si, ri) and all incident edges from the graph.

end if
end for
return F

One important note to clarify this, since we’re changing the graph throughout this algorithm:
distances, balls and volumes are with respect to the current graph, not the original.

Theorem 18.3.3 The output F from Algorithm 1 is feasible.

Proof: The only way this might not be feasible is if some si− ti pair are both in B(sj , r) for some
j. But this cannot happen since r < 1/2 and d(si, ti) ≥ 1 throughout the algorithm.

Theorem 18.3.4 c(F ) ≤ 4 ln(k + 1)V ∗ ≤ 4 ln(k + 1) ·OPT .

Proof: Let’s do some definitions.

• Let Bi be B(si, ri) in iteration i (if we did not create such a ball in iteration i because
si and ti were already separated, let Bi = ∅). Note that since the algorithm changes the

2



graph throughout the algorithm, this might not have been B(si, ri) at the beginning of the
algorithm.

• Similarly, let Fi = δ(B(si, ri)) be the edges removed by the algorithm in iteration i. Then
clearly F = ∪ki=1Fi, and Fi ∩ Fj = ∅ for all i ̸= j.

• Let Vi =
∑

e={u,v}:u,v∈Bi
c(e)xe +

∑
e∈Fi

c(e)xe be the total volume of edges removed in iter-

ation i. Note that Vi ≥ V (si, ri)− V ∗

k , since Vi contains the full volume of edges in Fi while
V (si, ri) contains only part of their volume (but with an additional V ∗/k).

Moreover, every edge contributes to Vi for at most one value of i, since the first time at least
one of the endpoints is in Bi, the edge is removed from the graph. Thus

∑k
i=1 Vi ≤ V ∗

Now note that every edge in F is in exactly one Fi by our definition of the Fi’s, and moreover the
value ri was chosen from the region growing lemma. Thus we get that

c(F ) =

k∑
i=1

c(Fi) ≤ (2 ln(k + 1))

k∑
i=1

V (si, ri)

≤ (2 ln(k + 1))
k∑

k=1

(
Vi +

V ∗

k

)
≤ 4 ln(k + 1) · V ∗,

as claimed.

So now it only remains to prove the Region Growing Lemma (Lemma 18.3.2). For the rest of today,
let c(r) = c(δ(B(si, r)) and let V (r) = V (si, r).

Proof of Lemma 18.3.2: We’re eventually going to get a deterministic algorithm, but let’s start
with a randomized algorithm: choose r uniformly at random from [0, 1/2). We want to show that

if we do this, then E
[
c(r)
V (r)

]
≤ 2 ln(k + 1).

Order B(si,
1
2) as {v1, . . . , vm}, where rj = d(si, vj), and 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm < 1

2 . We also
define r0 = 0 for later calculations.

Surprisingly, we’re going to do a bunch of calculus to prove this. I’m going to abuse calculus a bit
here – see the book for the more formally correct way of doing this. Consider the function V (r),
which (just to recall) is

V (r) =
V ∗

k
+

∑
e={u,v}∈E
u,v∈B(si,r)

c(e)xe +
∑

e={u,v}∈E)
u∈B(si,r)
v/∈B(si,r)

c(e)(r − d(si, u)).

Unfortunately, V (r) is not continuous or differentiable, since there can be discontinuities at the
values {rj}. But let’s pretend like it’s differentiable. Note that for r ∈ (rj , rj+1), for any j, it is
in fact differentiable with derivative d

drV (r) = c(r). This is because the first and second terms are
constant in this range of r, so we just need to care about the third term, which gives exactly c(r).

3



Now we can use calculus to figure out the “average” value of c(r)
V (r) over [0, 12):

1

1/2

∫ 1/2

0

c(r)

V (r)
dr = 2

∫ 1/2

0

1

V (r)
· dV (r)

dr
dr

= 2

∫ 1/2

0

1

V (r)
dV (r)

= 2(ln(V (12))− ln(V (0)))

= 2 ln

(
V (1/2)

V (0)

)

≤ 2 ln

(
V ∗/k + V ∗

V ∗/k

)
= 2 ln(k + 1)

It then would follow from the mean value theorem that there exists some r ∈ [0, 12) achieving the

average value. For this r we would then have c(r)
V (r) ≤ 2 ln(k + 1), so that c(r) ≤ 2 ln(k + 1)V (r) as

desired.

The analysis above was based on the (false) assumption that V (r) is continuous and differentiable.
We will now complete the argument by discarding this assumption. In particular, note that V (r)
is piecewise linear and monotone increasing with discontinuities at the rj ’s listed above. Then the

real average value of c(r)
V (r) over [0, 12) is given by (with r−j infinitesimally smaller than rj):

1

1/2

m∑
j=0

∫ r−j+1

rj

c(r)

V (r)
dr = 2

m∑
j=0

∫ r−j+1

rj

1

V (r)
dV (r)

= 2
m∑
j=0

(ln(V (r−j+1)− ln(V (rj)))

(V (r) increasing) ≤ 2
m∑
j=0

(ln(V (rj+1)− ln(V (rj)))

(sum telescopes) ≤ 2(ln(V (rm))− ln(V (r0)))

(r0 = 0, rm ≤ 1
2 ; recall ‘pretend’ section) ≤ 2 ln(k + 1)

Before, we concluded by saying that the MVT allowed us to find an r achieving the average value.
Here, because V (r) is increasing and c(r) is constant over each [rj , rj+1) interval, we can say that

the smallest value of c(r)
V (r) will occur at some r−j . By the above, for r = r−j we will then have that

c(r) ≤ 2 ln(k+1)V (r), as desired. And note that there are only m ≤ n different values of rj , so we
can just check each one and deterministically find the best.

4


	Introduction
	Definition and Relaxation
	Rounding

