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19.1 Introduction

Today we’re going to talk about something which might be review for many of you, but since
it might be new for some people, and since we’re going to use it extensively for the next week,
it’s worth spending some time on: LP duality. We’ll be spending the next few lectures on using
techniques from duality to design and analyze approximation algorithms, focusing on two related
but different techniques: primal-dual algorithms, and dual fitting. But first, we need to understand
the underlying mathematics about linear programming which gives duality.

19.2 LP Duality: Motivation and Definition

An example LP in canonical form (called the primal):

min 3x1 + x2 + 4x3

(I1) s.t. x1 + 2x2 ≥ 3

(I2) x1 + 2x3 ≥ 2

(I3) 2x1 + 3x2 + x3 ≥ 4

x1, x2, x3 ≥ 0

A possible solution to this LP is x1 = 0, x2 = 3/2, x3 = 1, which gives a cost of 3(0)+(3/2)+4(1) =
11/2. However, how do we know that 11/2 is the best answer? Our strategy is to combine
constraints to get a lower bound on the objective. For instance, since x1, x2, x3 are all nonnegative
and any solution must satisfy constraints (I1), (I2), (I3), we know that any solution must satisfy
any nonnegative combination of constraints (I2) and (I3). For example, taking 1/2 of (I2) and
1/3 of (I3) implies that any solution must satisfy

1/2(I2) + 1/3(I3) ≥ 1/2(2) + (1/3)4

⇔ 1/2(x1 + 2x3) + 1/3(2x1 + 3x2 + x3) ≥ 7/3

⇔ (1/2 + 2/3)x1 + x2 + (1 + 1/3)x3 ≥ 7/3

⇔ 7/6x1 + x2 + 4/3x3 ≥ 7/3

Note that all of the coefficients in this expression are less than the coefficients in the objective
function. Together with nonnegativity, this implies that in any solution, the objective function is
at least 3x1 + x2 + 4x3 ≥ 7/6x1 + x2 + 4/3x3 ≥ 7/3.

We can generalize this to try to find the best such lower bound on the LP. Our goal is to find
multipliers y1, y2, y3 for y1(I1)+y2(I2)+y3(I3) that give the best way of combining the inequalities
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in the primal. In order to get a valid lower bound, the coefficients of x1, x2, x3 in the combined
bound have to all be smaller than their coefficients in the true objective function. So in this case,
we need that y1 + y2 + 2y3 ≤ 3, 2y1 + 3y3 ≤ 1, and 2y2 + y3 ≤ 4. Subject to these constraints, we
want to maximize the lower bound on the primal, i.e. we want to maximize 3y1 + 2y2 + 4y3. This
gives the following dual LP:

max 3y1 + 2y2 + 4y3

s.t. y1 + y2 + 2y3 ≤ 3

2y1 + 3y3 ≤ 1

2y2 + y3 ≤ 4

y1, y2, y3 ≥ 0

The dual is also an LP. We can solve this LP and find that the value is optimized by y1 = 1/2, y2 =
2, y3 = 0, which gives an objective value of 3(1/2) + 2(2) + 4(0) = 11/2. By construction, this dual
objective value is a lower bound on the primal objective value.

19.2.1 Matrix notation

More generally, the primal and dual formulation can be rewritten in matrix notation, for c, x ∈
Rn, b ∈ Rm, A ∈ Rm×n. The following sides are equivalent and give the primal. The general process
is to start with the primal, then make new variables, which becomes the dual.

min cTx min
n∑

j=1

cjxj

s.t. Ax ≥ b s.t.
n∑

j=1

aijxj ≥ bi ∀i ∈ [m]

x ≥ 0 xj ≥ 0 ∀j ∈ [n]

The dual is then formulated as follows, with variables y1, . . . , ym ≥ 0.

max

m∑
j=1

biyi

s.t.

m∑
i=1

aijyi ≤ cj ∀j ∈ [n]

yi ≥ 0 ∀i ∈ [m]
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Or equivalently

max bT y min (−b)T y

s.t. AT y ≤ c s.t. (−A)T y ≥ −c

y ≥ 0 y ≥ 0

Theorem 19.2.1 If LP D is dual of P, then P is dual of D.

19.2.2 Weak Duality

Weak duality says that the value of the dual is a lower bound on the value of the primal LP.

Theorem 19.2.2 For any feasible primal dual solution pair (x, y), bT y ≤ cTx (i.e., OPT(dual)≤
OPT(primal)).

Proof:
n∑

j=1

cjxj ≥
n∑

j=1

( m∑
i=1

aijyi
)
xj =

m∑
i=1

( n∑
j=1

aijxj
)
yi ≥

m∑
i=1

biyi.

19.2.3 Strong Duality

Strong duality says that if both primal and dual LPs are feasible, then they have the same optimal
value. We’re not going to actually prove this today, and often weak duality will be enough for us,
but it’s a very useful fact to keep in mind.

Theorem 19.2.3 If x∗ optimal for primal, y∗ optimal for dual, then bT y = cTx (i.e., y∗ gives the
best possible lower bound).

Note: If the primal is infeasible, the dual is unbounded.

Theorem 19.2.4 Let (x, y) be feasible (primal, dual) solution pair, then x, y are both optimal iff

• For all j ∈ [n]: either
∑m

i=1 aijyi = cj or xj = 0 (or both)

• For all i ∈ [m]: either
∑n

j=1 aijxj = bi or yi = 0 (or both)

These are called the complementary slackness conditions.

Proof of Theorem 19.2.4: Assume the complementary slackness conditions hold. Then the
inequalities in the proof of Theorem 19.2.2 are equalities, which implies that

∑n
j=1 cjxj =

∑m
i=1 biyi.

Since weak duality says that
∑n

j=1 cjx
′
j ≥

∑m
i=1 biy

′
i for any feasible x′ and y′, (x, y) must be optimal.

Assume (x, y) are optimal solutions. Then strong duality implies that bT y = cTx. This implies
that the inequalities in the proof of Theorem 19.2.2 hold with equality, which in turn implies that
the complementary slackness conditions hold.
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19.3 Example algorithms with LP duality

Let’s interpret some of the things that we already know through the lens of duality (next lecture
we’ll actually see some new things)

19.3.1 Max-flow, min-cut

Let Ps,t be all s− t paths. Let xP represent the flow along path P ∈ Ps,t.

The LP for max-flow is

max
∑

P∈Ps,t

xP

s.t.
∑

P∈Ps,t:e∈P
xP ≤ c(e) ∀e ∈ E

xP ≥ 0 ∀P ∈ Ps,t

The dual of this LP is

min
∑
e∈E

c(e)ye

s.t.
∑
e∈P

ye ≥ 1 ∀P ∈ Ps,t

ye ≥ 0 ∀e ∈ E

This is clearly the min s− t cut LP! As we saw in a previous class, this LP can be rounded to an
integral solution without any loss in the objective function. Hence strong duality, combined with
this rounding, gives a proof that the maximum s− t flow equals the min s− t cut.

19.3.2 Max-multicommodity flow, Multicut

Input: G = (V,E), capacities c : e → R, k source-sink pairs (s1, t1), . . . , (sk, tk).

Feasible: Some assignment of flow from each si to the corresponding ti such that the total flow
on edge e is less than equal to c(e) for all e ∈ E.

Objective: maximize the total flow

An LP formulation of the max-multicommodity flow problem is the following.

max

k∑
i=1

∑
P∈Psi,ti

xP

s.t.

k∑
i=1

∑
P∈Psi,ti :e∈P

xP ≤ c(e) ∀e ∈ E

xP ≥ 0 ∀i ∈ [k], ∀P ∈ Psi,ti
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Dual:

min
∑
e∈E

c(e)ye

s.t.
∑
e∈P

ye ≥ 1 ∀i ∈ [k],∀P ∈ Psi,ti

ye ≥ 0 ∀e ∈ E

Note that the dual is exactly the multicut LP! Let F ∗ equal the max-multicommodity flow, and let
Ĉ equal the actual min-multicut and C∗ be the min fractional multicut.

Theorem 19.3.1 F ∗ ≤ Ĉ ≤ 4(ln(k + 1))F ∗.

Proof: Let (x∗, y∗) be the optimal primal dual pair and ŷ be the optimal multicut. We want to
show that Ĉ is bounded on either side in terms of the optimal primal value F ∗.

From weak duality we get that F ∗ ≤ C∗. Because C∗ is a relaxation of Ĉ, we get that C∗ ≤ Ĉ.
Using the previously established rounding method from class for min-multicut, we know that Ĉ ≤
4(ln(k + 1))C∗. Strong duality then gives us that 4(ln(k + 1))C∗ = 4(ln(k + 1))F ∗.

Therefore the optimal min-multicut solution to the dual is within 4(ln(k+1)) of the optimal solution
of max-multicommodity flow.

This type of result is known as a flow-cut gap. At a high level, the dual of any flow problem is a
(fractional) cut problem. But unlike s − t min cut, that cut problem cannot always be rounded
without loss. So in general there is a gap between the value of the flow and the value of the cut.
We’ve now seen this in two settings: s − t flow/cut, and multicommodity flow / multicut. There
are many others, though, most notably maximum concurrent multicommodity flow and a problem
known as Sparsest Cut. We may see these later in the semester, but you can see the following
section if you’re interested.

19.3.3 Max Concurrent Multicommodty Flow, Sparsest Cut

This one is a bit less trivial, but still not too bad. Recall that in the max concurrent flow problem,
the setup is the same as max multicommodity flow except that for every demand i we are also
given demand d : [k] → R+, and the goal is to find the maximum λ so that we can send λd(i) flow
from si to ti for every i simultaneously. This can be phrased as the following LP:

max λ

s.t.

k∑
i=1

∑
p∈Psi,ti :e∈p

xp ≤ c(e) ∀e ∈ E

λd(i)−
∑

p∈Psi,ti

xp ≤ 0 ∀i ∈ [k]

xp ≥ 0 ∀i ∈ [k], ∀p ∈ Psi,ti
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When we take the dual of this, we get:

min
∑
e∈E

c(e)ye

s.t.
k∑

i=1

d(i)zi ≥ 1∑
e∈p

ye − zi ≥ 0 ∀i ∈ [k], p ∈ Pst,ti

ye ≥ 0 ∀e ∈ E

zi ≥ 0 ∀i ∈ [k]

This seems like a weird-looking cut problem, but let’s think about it for a minute. First, consider
some solution and let L =

∑k
i=1 d(i)zi (so L ≥ 1). If L > 1, then we can rescale everything by

setting y′e = ye/L and z′i = zi/L and we still get a feasible solution, and one which has smaller cost.
Thus L = 1 in any optimal solution. This means that we can actually rescale to get the following,
which doesn’t look like an LP since it has quotients of variables, but because of the above argument
is equivalent to our LP:

min

∑
e∈E c(e)ye∑k
i=1 d(i)zi

s.t.
∑
e∈p

ye − zi ≥ 0 ∀i ∈ [k], p ∈ Pst,ti

ye ≥ 0 ∀e ∈ E

zi ≥ 0 ∀i ∈ [k]

This is a fractional cut problem, since we have a constraint that the length of every si − ti path is
at least something (zi in this case, rather than 1 as usual). If we think about this integrally what
do we get? Then zi = 1 would say that we have to cut commodity i, while if zi = 0 then we don’t
have to cut the commodity. And the ye’s (as usual) say whether we include an edge in the cut. So
this becomes the problem of finding a cut A ⊆ E such which minimizes not the cost of A, but the
quantity

c(A)∑
i∈[k]:si,ti not connected in G\A d(i)

This is known as the sparsest cut problem, or sometimes the nonuniform sparsest cut problem. We
didn’t talk about this problem, but it’s quite important. There’s a known algorithm to round this
LP to achieve an O(log k)-approximation, which proves that the flow-cut gap is at most O(log k).
However, if we don’t care about the flow-cut gap but rather care just about sparsest cut, there’s a
O(

√
log n)-approximation which does not go through the LP.
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