Steiner Tree:

- Input: - Graph $h=(v, E)$
- (.it) $\quad\left(: E \rightarrow \mathbb{R}^{+}\right.$

- Terminals $T \leq V$
- Feasible solutions: $F \leq E$ st. F connected, spans all terminals
- Objective min $\sum_{e \in F}\left(C_{e}\right)=\min _{F}(F)$

MST: Stoker free with $T=V$
guatzat, lathi ST with $T \geq\{s, t)$

- terminals
- Steiner nodes (n-4-tominn/s)

Def: $d: V_{x} V \rightarrow \mathbb{R}_{\geq 0}$ is a metric space on V if:

$$
\begin{aligned}
& -d(u, v)=0 \quad \text { iff } \quad u=v \\
& -d(u, v)=d(v, u) \quad \forall u, v \in V \\
& -d(u, v) \leq d(u, w)+d(w, v) \quad \forall u, v, w \in V \quad \text { (triangle inequality) }
\end{aligned}
$$

Metric Steiner Tree: (special case of $S T$ on a a mantric space)

- Input: V, metric $c: V_{x} V \rightarrow \mathbb{R}_{20}$ on V, tarmimens $T \leqslant V$
-Feasible: $F \leq V_{x} V$ sit. F connected, spans all terminals
-Objective: min $\sum_{e \in F}(l e)$

Thu: If there is an α-approx for Metric ST, then there i) an x-approx for Steiner Tree

Deft: The metric completion c of $(G=(v, E), c)$ is the metric on V where $i(n, v)$ is the cost of the shortest path between u and v under edge lengths c

Lemma: Let H be a solution (a steins True) for Steiner True problem on ingot (G, c, T). Then H solution to Metric $S T$ problem on inst (V, c, T) with $c^{\prime}(H) \leq c(H)$

Pf: H feasible for metric:

$$
\begin{aligned}
& c^{\prime}(n, v) \leq c(n, u) \text { by def of } c^{\prime} \quad \forall \text { \{n,ule } E \\
& \Rightarrow i(H)=\sum_{e \in H} c^{\prime}(e) \leq \sum_{e \in H} c(e)=c(H)
\end{aligned}
$$

Lemma: Let H^{\prime} be a solution to Metric Stesar Tree on (V, i, T). Then there is some solution H tSteiner True e on (G, C, T) with $c(H) \leq c^{\prime}\left(H^{\circ}\right)$, and given H^{\prime} we con find H in polytime.

PF: Replace each $\{n, v\} \in H^{\prime}$ by shortest nav path in a

$$
\Rightarrow 1, b 9 n, 4 \hat{H}+t a, c(\hat{H}) \leq c^{\prime}\left(H^{\prime}\right)
$$

Let H arbitrary spanning true of \hat{H}

$$
\Rightarrow c(H) \leq c(\hat{H}) \leq c^{\prime}\left(H^{\prime}\right)
$$

Pf of redaction tim:
Let A a-egrux for metric ST. Given input (G, c, T), $r \operatorname{con} \mathcal{A}$ on (V, i, T) to get H^{\prime}, use previous lemma to get H.
Let $O P T_{\text {metric }}$ he opt s.l-tich for $\left(u, c^{\prime}\right) T$)
OPT be opt solution for (G, c, T)

$$
\begin{array}{rlr}
c(H) & \leq i\left(H^{\prime}\right) \quad \text { (leman) } \\
& \leq \alpha \cdot i\left(O P T_{\text {metric })} \quad \text { (det of } A\right) \\
& \leq \alpha \cdot i(O P T) \quad \text { (det of OPT }) \\
& \leq \alpha \cdot i(O P T) \quad \text { (first lenma) }
\end{array}
$$

So jut nued to derign gaed aly for netric case

Alh:

- Return $F=$ MST on temmanals

Clain: F is ualid solution
1f: T rival: conectud and speas T

D.E: G is Eulerion if there is a closed tor that nkes cury edge exatly once

Thim: G is Enlerian itt conacted, all degrees even (even hulds for multiga, hes).

Thu: ALC is a $2\left(1-\frac{1}{1 T 1}\right)$-agroxination

PE:
Let Ft^{t} optimal solution.
UTS: $\quad C(F) \leq 2\left(1-\frac{1}{|T|}\right) \cdot c\left(F^{*}\right)$
plan: Find some spanish tree \hat{F} of T sit.

$$
c(\hat{F}) \leq 2\left(\left(-\frac{1}{|T|}\right) \cdot c\left(F^{*}\right)\right.
$$

$\Rightarrow(F) \leq c(\hat{F})$ since F MsT of T

start with F^{*}

Doable every edge: 2 F^{*}
All degrees even: E-lerian!
Tow (munich uses every edge:

$$
c(C)=c\left(L F^{*}\right)=2 c\left(F^{*}\right)
$$

"Shertent" C to only use terminals, see each terminal once: cycle H

Triangle inequality:

$$
c(H) \leq c(C)
$$

Remove heaviest edge of H : path \hat{F}

$$
c(\hat{F}) \leq\left(1-\frac{1}{\mid 71}\right) c(H) \leq 2\left(1-\frac{1}{171}\right) c\left(F^{*}\right)
$$

Metric TSP:
Ingot: Metric lace (V, c)
Feasible: Hamiltonian cycle "H cycle visiting all andes once objective i min $c(H)=\sum_{c \in H} c(e)$

Alg 1 :

- Compute MiT T
- Double T to get $2 T$
- LT E-lerians so E-lerinn for C
-shertat C to get H

Thu: $2\left(1-\frac{1}{n}\right)$-a $\cos ^{\prime 2} x$
PE: Tut like Steiner Tree!
Let H^{*} optimal solution,
F path from vemaning heaviest edge from H^{*}

$$
\begin{aligned}
& \Rightarrow c(H) \leq c(C)=c(L T)=2 c(T) \leq 2 c(F) \\
& \text { shoot } \\
& \leq 2\left(l-\frac{1}{n}\right) c\left(H^{*}\right)
\end{aligned}
$$

Want to do better: (uristotides' Algorithm
Why did we lose 2?

- O.ubling MST
why did we do that?
- Make it E-lerian
cheaper way to make MST E-lerian?
problem: odd degree nodes
Lemmn: Let $h=(v, t)$ be a groph. Then there are an even \#ardes with odd degree.

Pt:

$$
\sum_{v \in v} d(v)=2|E| \quad \text { (even) }
$$

Det: A pertect matching of $S \leq V$ is a natching on $)$ of lize $\frac{\mid S 1}{2}$ (eviry ande in S mateled to other aode in S)

Fact: (an find min-rost pertect matchings in polytime
(hristufides:

- Compente MiT T
- Let D be odd-degree a.des in T
- Comprt min-cost porfect matchisg M of D
- Let C be Eulerian four of $T_{+} M$
-Retwr $H=$ shortcotted C

Claim: E-rything well-defined

Thn: $\frac{3}{2}$ - a $/$ r- $x_{i m n t i o n ~}^{n}$
PE: Let H^{+}optioncl sol-tion

$$
\begin{aligned}
& c(T) \leq c\left(H^{*}\right) \\
& c(H) \leq c(c)=c(T)+c(M) \leq c\left(H^{+}\right)+c(M)
\end{aligned}
$$

So WTS $C(M) \leq \frac{1}{2} c\left(H^{*}\right)$
statant H^{*} to D, get H_{0}

IDI even, so partition into "enos" M_{1} ad "odds" M_{2} -Each a perfect matching of D

$$
\begin{aligned}
& c\left(M_{1}\right)+c\left(M_{2}\right)=c\left(H_{0}\right) \\
& c(M) \leq \min \left(c\left(M_{1}\right), c\left(M_{2}\right)\right) \leq \frac{1}{2} c\left(H_{0}\right) \leq \frac{1}{2} c\left(H^{*}\right)
\end{aligned}
$$

