Steiner Forest (Generalized steiner Tree)
Input: $-G=(v, E)$

$$
-c: \in \rightarrow \mathbb{R}^{+}
$$

- k pairs of andes $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)$

Feasible Solution: $F \subseteq E$ sit. Zs; $-t_{\text {; }}$ path in (U, F) for all iefls)
Objective: $\min (F)=\sum_{e \in F}(C e)$

Def: $\mathscr{S}_{i}=\left\{s \leq v:\left|S \cap\left\{s_{i}, t_{i}\right\}\right|=1\right\}$

$$
\delta=\bigcup_{i=1}^{k} S_{i}
$$

LP Relaxation:

$$
\begin{array}{ll}
\min & \sum_{e \in E}(l e) x_{e} \\
\text { s.t. } & \sum_{e \in \delta(s)} x_{e} \geq 1 \quad \forall s \in \mathcal{S} \\
x_{e} \geq 0 & \forall e \in E
\end{array}
$$

Dali:

$$
\begin{array}{ll}
\max \sum_{s \in S} y_{s} \\
\text { s.t. } \sum_{s \in \delta i e \in s(s)} y_{s} \leq c(e) \quad \forall e \in E \\
y_{s} \geq 0 & \forall s \in \&
\end{array}
$$

Algorithm: Primal-Danal, with interesting fectwes:

- Raise multiple dual variables simultaneously
- "Reverse Cleanup" stop

Init: $F_{1}=\varnothing, y=\overrightarrow{0}, j=1$
while F; not feasible \{
-Let $C_{j}=\left\{S \in \mathcal{S}: S\right.$ a connected component of $\left.\left(U, F_{j}\right)\right\}$ "active components"

- Increase all $y_{s}: S \in e_{\text {; }}$ uniformly until \exists some $e_{j} \in \delta(s), S \in C$; where constraint for $e_{;}$becomes tight i

$$
\sum_{s \in \delta: e_{j} \in \delta(s)} y_{s}=c\left(e_{j}\right)
$$

-Let D; be amount raised each y_{s}

$$
\begin{aligned}
& -F_{j+1}=F_{j} \cup\left\{e_{j}\right\} \\
& -j=j+1
\end{aligned}
$$

$\}$

$$
F=F ;
$$

for $(k=;-1$ down to 1)

$$
\text { if }\left(F \backslash\left\{e_{k}\right\}\right. \text { feasible) }
$$

Remove e_{k} from F
return F

Easy Observations:
Leman: y is always dial feasible
PE: Consider some e. Initially $\sum_{\text {settees } \delta(s)} y_{s}=0 \leq c(e)$
Once contriat tight for e, added to F
\Rightarrow inside a connected component, no S sit. $e \in \delta(S)$ ever increased again

Lemma: Alg is polytine
Pf:
$\leq 1 E 1$ iterations, $\leq n$ active components each iteration
$\Rightarrow \leq 1 E 1 n$ nonzero duel wees total
\Rightarrow each iteration takes polytime

Main The: Alg is a 2-approximation
Lemma: For all iterations $j, \sum_{s \in e}|F \cap \delta(s)| \leq 2 \mid e ; 1$

Assume lemma for now. Stat trying to prove the
Claim: $\sum_{s \in d}|\delta(s) \cap F| y_{s} \leq 2 \sum_{s \in \ell} y_{s}$
PE: Induction on iterations of alg (alg invariant) Init: $L H S=R H S=O$

In some iteration j :
LHS increase) by

$$
\begin{aligned}
& \sum_{s \in e ;}|\delta(S) \cap F| \Delta ;=\Delta ; \sum_{s \in e ;}|\delta(S) \cap F| \\
& \leq 2\left|e_{j}\right| \Delta ;(\text { by }(\text { lemma })
\end{aligned}
$$

RHS increases by $2 \sum_{s \in e ;} \Delta_{j}=2\left|C_{j}\right| D_{j}$

$$
\begin{aligned}
c(F) & =\sum_{e \in F} c(e) \\
& =\sum_{e \in F} \sum_{s \in \delta d e \in \delta(s)} y_{s} \\
& =\sum_{s \in \delta C \in F i e \in \delta(n)} y_{s} \\
& =\sum_{s \in d}|\delta(s) \cap F| y_{s} \\
& \leq 2 \sum_{s \in \delta} y_{s} \\
& \leq 2 . O P T
\end{aligned}
$$

(Dual castraint tight \forall e bF) (switch order of summation,

$$
(c \ln : m)
$$

(weak duality)
So just need to prove lemma:
Lemma: For all iterations $j, \sum_{s \in e_{j}}|F \cap \delta(s)| \leq 2 \mid e ; 1$ final F

Claim: F; a forest \forall;
Pf: Induction. True initially each iteration add 1 edge between components.

Fix some ; Define new grouch $G_{j}=\left(v_{j}, E_{j}\right)$:
$-V_{j}$: vortex for each connected component of $\left(V, F_{j}\right)$

$$
-E_{j}=\{\{S, T\}:\{\{n, v\} \in F \text { with } n \in S, v \in T\}
$$

Notes:

- Every edge of E; corresponds to exactly one edge in F (or else cycle)
- G_{j} a forest
$-e_{j} \leq V_{j}$ (sone components are active)

So $|F \cap \delta(S)|=$ degree of S in $G ; \quad(S$ component of $\left.\left(u, F_{j}\right)\right)$

$$
\Rightarrow \sum_{s \in e_{j}}|F \cap \delta(s)|=\sum_{S \in e_{j}} \operatorname{deg}_{a_{j}}(S) \leq 2\left|e_{j}\right|
$$

In other words: WTS average degree in $G_{\text {; }}$ of components in e; is ≤ 2

Claim; Let $S \in V_{\text {; }}$ have degree 1 in G_{j}. Then $S \in C_{\text {; }}$

Pf: S Ss $S \notin e ; \Rightarrow S \notin \& \rightarrow S$ does not separate any s:-fi pair

\dot{b}
since e only edge in F leaving S, wo si-ti both outride S connected through
\Rightarrow final reverse cleaning would have remould e
$\partial \leftarrow$, so $\quad S \in e_{;}$
(claim: Let T he a tree. If $S \leq V(T)$ contains all leaves of T, then $\sum_{v \in S} \operatorname{deg}(v) \leq 2|S|$

Pt:

$$
\begin{aligned}
& \sum_{v \in S} \operatorname{deg}(v)=\sum_{v \in V(T)} \operatorname{deg}(v)-\sum_{v \notin S} \operatorname{deg}(v) \\
& \quad=2(|v(T)|-1)-\sum_{v \notin S} \operatorname{deg}(v) \quad(|v(T)|-1 \text { edges in } T) \\
& \leq 2(|v(T)|-1)-2(|v(T)|-|S|) \quad(v \& S \text { has deg } \geq 2) \\
& =2|S|-2 \leq 2 \mid S 1
\end{aligned}
$$

Done!

Extensions / Thoughts:

- Open Quastion: is it parible to do better than 2? - Is SF a, eajy as ST?
- Steiner k-Forest: Given $k<\#$ demands, comeect k of them
- Mach hader! Best approx $O(\sqrt{n})$ (Gapta, Hajiaghayi, Nagarajay, Ravi: '10]

$$
\text { - If } C_{e}()=1 \quad \forall_{c}: O\left(n^{0.44722}\right) \quad\left[D, k_{0}+\text { ser2, Nutan } 14\right]
$$

-Survivable Netmark Design: cannectivities ≥ 1 - 2-apprex [Jain 'Ol]
-f-Edge Fanlt Tolerant S-bgunh : baild a subganh H whore conected congoonets of $H \backslash F$ are same as $G \backslash F \forall F \subseteq \in,|F| \leq f$ -L-arrox [D, Korantens, Kortsaz '22]

