
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Strengthening Relaxations: Knapsack-Cover Inequalities Date: 4/13/21
Scribe: Michael Dinitz

22.1 Introduction

Today we’re going to talk about a topic that we kind of alluded to earlier when discussing Multiway
Cut: strengthening relaxations. For Multiway Cut we first designed a 2-approximation, then came
up with a different LP relaxation that allowed us to design a 3/2-approximation. A different but
related idea is the following: suppose we have an LP relaxation that is relatively weak (like our
initial Multiway Cut LP). Is there any way of strengthening the relaxation? Can we add constraints
and/or variables to make the LP better? Note that our initial LP relaxation is presumably designed
to every integral solution is a solution to the problem we care about, so strengthening the LP does
not change the feasible integral solutions. Instead, we want to add constraints to “cut off” the bad
fractional solutions. Said differently: if we’re given an LP which is a poor relaxation (it has large
integrality gap or we don’t know how to round it), we can try to add valid inequalities to make it
a better or easier to handle relaxation.

22.2 Min-Knapsack and the Knapsack Cover Inequalities

We’ll begin, and probably spend most of our time, on a variation of a problem that we all know
and love: Knapsack. However, we’re going to consider a minimization version of Knapsack, rather
than the slightly more well-known maximization version.

22.2.1 Definition and Basic Relaxation

The Min-Knapsack problem is defined as follows.

• Input: A set of I = [n] of items, values v : I → R≥0, sizes s : I → R≥0, demand D ∈ R≥0
(note that we’re not given a knapsack capacity)

• Feasible Solution: X ⊆ I such that v(X) =
∑

i∈X v(i) ≥ D

• Objective: minimize s(X) =
∑

i∈X s(i)

In other words, we want to find the minimum size knapsack necessary to carry items of total value
at least D. Note that without loss of generality, we may assume that v(i) ≤ D for all i ∈ I, since
if v(i) > D we could just set v(i) = D and the set of feasible solutions and their costs would be
unchanged. This will be important later.

It’s not hard to see that the PTAS we designed for Knapsack can be modified to work for Min-
Knapsack. But, for a variety of reasons that we won’t really go into here, it’s also interesting
to study LP relaxations for these problems. If we start by writing an ILP (as usual), we would
probably write the obvious thing:

1



min
∑
i∈I

s(i)xi

s.t.
∑
i∈I

v(i)xi ≥ D

xi ∈ {0, 1} ∀i ∈ I

If we relax this to an LP, we would get

min
∑
i∈I

s(i)xi

s.t.
∑
i∈I

v(i)xi ≥ D

0 ≤ xi ≤ 1 ∀i ∈ I

However, this is an extremely weak relaxation. To see this, consider the following case. I = {1, 2},
with v(1) = D−1 and s(1) = 0, and with v(2) = D and s(2) = 1. Clearly in this instance OPT = 1,
since we are forced to take the second item in order to get value D in total. On the other hand,
we can set x1 = 1 and x2 = 1/D to get a feasible LP solution of cost 1/D. Thus the integrality
gap is at least D, which can be extremely large (exponential in the size of the input). And this is
despite the fact that Min-Knapsack is an “easy” problem, and the fact that the ILP we wrote was
an exact formulation.

So we cannot use this LP to get a reasonable LP rounding or primal-dual algorithm. Can we
“add-on” extra constraints to this LP to get a stronger LP? Note that this question is similar to
but different from what we did earlier for the Multiway Cut problem. For Multiway Cut, we wrote
one LP relaxation and got a 2-approximation, and then wrote an entirely different LP relaxation
to get a 3/2-approximation. Our goal here isn’t to write something that’s completely different, but
rather just to add extra constraints to make this a better LP.

22.2.2 Knapsack-Cover Inequalities

To get some intuition, let’s think about how our first LP was able to “cheat”. At a very high
level, in our bad example, the LP was able to “buy” a partial solution, and then because of this
the remaining demand was so low that it could be satisfied at an extremely low cost. To cover
the remaining demand of 1 after item 1 was bought, the LP only had to buy the second item to a
fraction of 1/D. This is how it “cheated”.

How can we add constraints that forbid this? Again, let’s think intuitively. After the LP has
decided to buy item 1 to a value of 1, what’s left is actually another Min-Knapsack problem, with
remaining demand D − (D − 1) = 1 and only one item (the second of the original items). This
item has value of D, but does that really make sense? In general, if we’re given an instance of
Min-Knapsack, then if any item has value larger than D then we can just reduce its value to D,
and nothing changes about the optimal solution. So we want to somehow add constraints which

2



say something like “if after buying some items you’re left with an instance with remaining demand
D′, then pretend like every remaining item has value at most D′”

Now let’s do this formally. Let A ⊆ I. If we think of buying A, then the remaining demand would
be D − v(A), and for every i 6∈ A we would set its “new” value to be min(v(i), D − v(A)). Let’s
just write all of those constraints!

min
∑
i∈I

s(i)xi

s.t.
∑
i∈I\A

min(v(i), D − v(A))xi ≥ D − v(A) ∀A ⊆ I

xi ≥ 0 ∀i ∈ I

Note that we have the constraint from the original LP explicitly (since when A = ∅ we get back
exactly the constraint from the original LP), but we also have a bunch of new constraints. Since
this isn’t as obvious as it usually is, let’s prove that this is a valid relaxation.

Lemma 22.2.1 Any integral solution to this LP gives a feasible solution to Min-Knapsack with
the same cost.

Proof: This was true of the original LP relaxation, and any integral solution to our new LP is
also an integral solution to our old LP, so it is also true of this LP.

Lemma 22.2.2 Let X be a feasible solution to Min-Knapsack. Let xi = 1 if i ∈ X and xi = 0
otherwise. Then x is a feasible solution to the new LP with cost s(X).

Proof: The cost part is easy: ∑
i∈I

s(i)xi =
∑
i∈X

s(i) = s(X)

as claimed. Now we need to prove that x is feasible. Consider the constraint for some A ⊆ I. Since
X is feasible, we know that

∑
i∈X v(i) ≥ D, and thus

∑
i∈X\A v(i) +

∑
i∈X∩A v(i) ≥ D. Rewriting

this slightly, we get that
∑

i∈X\A v(i) ≥ D − v(A ∩X), and thus∑
i∈X\A

v(i) ≥ D − v(A).

But now, as discussed earlier, this means that∑
i∈X\A

min(v(i), D − v(A)) ≥ D − v(A).

Now by the definition of x, this implies that∑
i∈I\A

min(v(i), D − v(A))xi =
∑

i∈X\A

min(v(i), D − v(A)) ≥ D − v(A).

3



Thus the constraint for A is satisfied. Since we did this for an arbitrary A, this implies that all of
the constraints of the LP are satisfied, and thus x is feasible.

Before we show how to use this new LP in an algorithm, let’s do a sanity check and show that this
at least solves the integrality gap instance we developed for the first LP. Consider the set A = {1}.
Then the constraint for this set is just x2 ≥ 1, since I \ A = {2} and D − v(A) = 1. So in this
new LP, our original motivating instance is solved exactly: the LP is forced to buy the second item
integrally, just like in an integral solution!

These new inequalities are known as the Knapsack-Cover inequalities, and were introduced by Carr,
Fleischer, Leung, and Phillips [CFLP00]. The basic idea, of thinking about what happens if we have
a partial solution and reducing values/sizes/demands etc. accordingly, has now been used in a bunch
of more complicated problems, where the associated inequalities are still also called knapsack-cover
inequalities. For example, a few years ago I used them in an approximation algorithm for a network
design problem known as the f -Fault Tolerant 2-Spanner problem [DK11].

22.2.3 Primal-Dual Algorithm

Originally, this new LP was used to give a 2-approximation via LP rounding [CFLP00]. In order to
stay consistent with the book, and since it gives a better running time anyway, we’re going to use the
new LP to give a 2-approximation via a primal-dual algorithm due to Carnes and Shmoys [CS15].

The dual of the LP has a variable for each A ⊆ I and a constraint for each i ∈ I:

max
∑
A⊆I

(D − v(A))yA

s.t.
∑

A⊆I:i 6∈A
min(v(i), D − v(A))yA ≤ s(i) ∀i ∈ I

yA ≥ 0 ∀A ⊆ I

Now consider the following primal-dual algorithm. Intuitively, we’re always going to increase the
dual variable corresponding to the set that we’ve bought so far.

• Initialize y = ~0 and X = ∅

• While v(X) < D:

– increase yX until the dual constraint for some i ∈ I \X becomes tight; i.e., until there
is some i ∈ I \X such that

∑
A⊆I:i 6∈A min(v(i), D − v(A))yA = s(i)

– Set X ← X ∪ {i}

• Return X

Lemma 22.2.3 ~y is a feasible dual solution throughout the algorithm.

4



Proof: Induction on the iterations of the algorithm. Clearly it is true initially when y = ~0. Now
consider some iteration of the algorithm, and let X be the set at the beginning of the iteration.
Since all tight dual constraints correspond to items that are in X, when we increase yX we do not
violate any dual constraints. So at the end of the iteration it is still true that ~y is a feasible dual
solution.

Theorem 22.2.4 This primal-dual algorithm is a 2-approximation.

Proof: We start as with a standard primal-dual analysis, where we use the fact that the items
we buy correspond to tight dual constraints. Let X be the set returned by the algorithm.

s(X) =
∑
i∈X

s(i) =
∑
i∈X

∑
A⊆I:i 6∈A

min(v(i), D − v(A))yA =
∑
A⊆I

∑
i∈X\A

min(v(i), D − v(A))yA

=
∑
A⊆I

yA
∑

i∈X\A

min(v(i), D − v(A)).

Let ` ∈ X be the last item added by the algorithm. Then clearly v(X \ {`}) < D but v(X) ≥ D.

Now consider some A ⊆ I such that yA 6= 0, i.e., some A ⊆ X which at one point in the algorithm
was X. We want to bound

∑
i∈X\A min(v(i), D − v(A)) (we don’t care about this value for other

sets A since if yA = 0 it won’t contribute to the overall cost anyway). For any i ∈ X \A other than
`, if we added i to A the total value would still be less than D, or else the algorithm would have
stopped after it (eventually) added i, so wouldn’t get around to adding `. Thus for all i ∈ X \ A
with i 6= `, we know that min(v(i), D − v(A)) = v(i). So we can continue the above analysis with
this fact to get

s(X) =
∑
A⊆I

yA
∑

i∈X\A

min(v(i), D − v(A))

=
∑
A⊆I

yA

min(v(`), D − v(A)) +
∑

i∈X\A:i 6=`

v(i)


=

∑
A⊆I

yA (min(v(`), D − v(A)) + v(X \ {`})− v(A))

<
∑
A⊆I

yA((D − v(A)) + D − v(A))

= 2
∑
A⊆I

(D − v(A))yA.

Thus X has cost which is at most twice the value of the feasible dual solution y, so by weak duality
we know that X is a 2-approximation.

References

[CFLP00] Robert D. Carr, Lisa K. Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strength-
ening integrality gaps for capacitated network design and covering problems. In Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

5



’00, pages 106–115, Philadelphia, PA, USA, 2000. Society for Industrial and Applied
Mathematics.

[CS15] Tim Carnes and David B. Shmoys. Primal-dual schema for capacitated covering prob-
lems. Math. Program., 153(2):289–308, 2015.

[DK11] Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: Better and simpler.
In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, PODC ’11, pages 169–178, New York, NY, USA, 2011. ACM.

6


	Introduction
	Min-Knapsack and the Knapsack Cover Inequalities
	Definition and Basic Relaxation
	Knapsack-Cover Inequalities
	Primal-Dual Algorithm


