
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Semidefinite Programming and Max Cut Date: 4/16/24
Scribe: Michael Dinitz

23.1 Introduction

Today we’re going to introduce a generalization of linear programming which has turned out to
be shockingly useful for approximation algorithms: semidefinite programming. There are a few
different intuitions about this, but at a high level, think about all the power that we’ve gotten out of
using LP relaxations. One thing we cannot express, though, are products: quadratic programming
is NP-hard, so we can’t have products of variables. Semidefinite programming is going to let us
have some kind of product, but not a regular product – it will actually be the vector inner product.
This extra power is extremely useful for certain problems.

23.2 Semidefinite Programming: Definitions

Let’s recall some basic linear algebra.

Definition 23.2.1 A symmetric matrix X ∈ Rn×n is positive semidefinite (PSD) if and only if
yY Xy ≥ 0 for all y ∈ Rn.

This is only one possible definition: it turns out that there are many equivalent definitions.

Theorem 23.2.2 The following are all equivalent statements:

1. X is PSD

2. yTXy ≥ 0 for all y ∈ Rn

3. X = V TV for some V ∈ Rn×n

4. For all i ∈ [n] there exists a vector vi ∈ Rn such that Xij = vi · vj

One quick piece of notation: we’re going to use X ⪰ 0 to denote that X is PSD.

Definition 23.2.3 A semidefinite program (SDP) is an LP with the additional constraint that the
matrix of variables is PSD.

Note that usually we think of the variables of an LP as a vector, but here we’re going to think of
them as a matrix. So, for example, if we have variables xij for i, j ∈ [n] (maybe corresponding to
edges?), we could write something like

1



maximize:
n∑

i=1

n∑
j=1

cijxij

subject to:

n∑
i=1

n∑
j=1

aijkxij ≤ bk ∀k ∈ [m]

xij = xji ∀i, j ∈ [n]

X = (xij) ⪰ 0

Theorem 23.2.4 Under some technical “niceness” conditions, SDPs can be solved to additive
error ϵ in time polynomial in the size of the input and log(1/ϵ).

We’re not going to do into details of this algorithm (it’s even more complicated than solving
LPs), but the basic approach is straightforward. We’re going to use the Ellipsoid algorithm (as
we did with LPs), since the feasible solution set is convex (a polytope intersected with a cone).
For a separation oracle, we can check each linear constraint efficiently (we’re not talking about
exponential size LPs here – everything is polynomial). For the PSD constraint, we compute the
smallest eigenvector λ of X with associated eigenvector y. If λ ≥ 0 then X is PSD by definition.
Otherwise, yTXy = yT · (λy) = λ(yT y) < 0, so yTXy ≥ 0 is a violated constraint (and is in fact a
separating hyperplane).

For the rest of the course we’re basically going to ignore the niceness conditions (since they’re
basically always satisfied) and ϵ (since we’re doing approximation algorithms anyway). So think of
Theorem 23.2.4 as “we can solve SDPs”.

Of course, now you might ask the question: why on earth would I want to think of my variables as
a matrix and require that it be PSD? The answer lies in one of the equivalent definitions of being
PSD: vector programming! By Theorem 23.2.2, the above SDP is equivalent to finding vectors
v1, v2, · · · , vn ∈ Rn to solve the following mathematical program:

maximize:

n∑
i=1

n∑
j=1

cij(vi · vj)

subject to:
n∑

i=1

n∑
j=1

aijk(vi · vj) ≤ bk ∀k ∈ [m]

vi ∈ Rn ∀i ∈ [n]

OK, but why would we want to do this kind of vector programming? Because this is a relaxation
of (strict) quadratic programming! Consider the following strict quadratic program.

2



maximize:
n∑

i=1

n∑
j=1

cijxixj

subject to:

n∑
i=1

n∑
j=1

aijkxixj ≤ bk ∀k ∈ [m]

xi ∈ R ∀i ∈ [n]

Any solution to this is also a solution to the vector program, since we can always extend each
xi into an n-dimensional vector by padding it with n − 1 0’s. So the vector program / SDP is a
polynomial-time solvable relaxation of the (strict) quadratic program!

Another way of thinking of this is the following: LPs are a relaxation of ILPs where where we relax
integral variables to fractional variables (allowing us to solve in polytime). SDPs are a relaxation
of strict quadratic programs where we relax one-dimensional variables to n-dimensional vector
variables, which allows us to solve it in polytime!

So in some sense the “right” way to think about SDPs is that the variables are n-dimensional
vectors and we are allowed to write constraints that are linear in the dot products. Note that we
are not allowed to write constraints about the vectors themselves, just about their dot products
(since under the hood the “actual” variables are the dot products).

23.3 Max Cut

Let’s see a relatively straightforward example, which is also the first and most famous application
of SDPs to approximation algorithms: the Goemans-Williamson algorithm for Max-Cut [GW95].
Recall the Max-Cut problem:

• Input: graph G = (V,E), weights w : E → R+

• Feasible solution: S ⊆ V

• Objective: maximize
∑

e∈δ(S)w(e).

There’s an obvious 1/2-approximation: just include each v ∈ V in S with probability 1/2. Then
the probability each edge is cut is 1/2, so it’s a 1/2-approximation.

Let’s see what we can get by going through an SDP. If we were going through an LP, the first step
would be to write an ILP and then relax it to an LP. But now we don’t necessarily want to write
an ILP; instead, we want to write a strict quadratic program. If you think about it for a bit, the
following quadratic program is relatively natural. (In order to use classical notation, we’ll assume
that V = [n]).

3



maximize:
1

2

∑
{i,j}∈E

w(i, j)(1− xixj)

subject to: x2i = 1 ∀i ∈ [n]

xi ∈ R ∀i ∈ [n]

Theorem 23.3.1 This quadratic program is exactly the Max-Cut problem.

Proof: The constraints imply that xi ∈ {−1, 1} for all i ∈ [n]. So given a solution x, let
S = {i : xi = 1}. Then

1

2

∑
{i,j}∈E

w(i, j)(1− xixj) =
1

2

 ∑
{i,j}∈δ(S)

2w(i, j) +
∑

{i,j}∈E\δ(S)

0w(i, j)

 =
∑

{i,j}∈δ(S)

w(i, j).

Similarly, let S ⊆ V . Let xi = 1 if i ∈ S, and let xi = −1 if i ̸∈ S. Then by the same calculation,∑
{i,j}∈δ(S)

w(i, j) =
1

2

∑
{i,j}∈E

w(i, j)(1− xixj).

Thus there is a solution to the QP of value α if and only if there is a cut of value α.

Of course, we can’t actually solve the QP, and the xi values are technically already allowed to
be fractional. So intead of relaxing integrality constraints, we’ll relax to vectors. This gives the
following SDP:

maximize:
1

2

∑
{i,j}∈E

w(i, j)(1− (vi · vj))

subject to: vi · vi = 1 ∀i ∈ [n]

vi ∈ Rn ∀i ∈ [n]

Since any solution to the actual problem gives a solution to the QP of the same value, and any
solution to the QP gives a solution to the SDP of the same value, we know that this is a valid
relaxation: the optimal SDP value is at least OPT. So our approach will to solve the SDP, and then
“round” the vectors we get back to {−1,+1}. The algorithm we’re going to use for this is called
“random hyperplane rounding”: we’re going to choose a random hyperplane, which will divide the
vectors from the SDP into two sets, and use that as the cut. More formally, we have the following
algorithm.

• Solve the SDP to get vectors vi ∈ Rn for each i ∈ [n].

• Choose a vector r ∈ Rn uniformly at random from {v ∈ Rn : ∥v∥ = 1} (i.e., choose a random
unit vector). Note: we can do this by choosing each coordinate independently from N(0, 1),
and then rescaling to get a unit vector.

4



• Let S = {i ∈ [n] : vi · r ≥ 0}.

• Return S.

Theorem 23.3.2 Random hyperplane rounding is a αGW = inf0≤θ≤π
2
π ·

θ
1−cos θ > 0.87856-approximation.

Proof: We’ll show that

Pr[{i, j} ∈ δ(S)] ≥ αGW · 1
2
(1− vi · vj),

for every {i, j} ∈ E, which then implies the theorem by linearity of expectations and the fact that
the SDP optimum is at least OPT.

So fix some {i, j} ∈ E. Let P be the plane spanned by {vi, vj}, and let θij be the angle between
vi, vj . If we project r onto P and then rescale it to be a unit vector, then this is still uniformly
distributed among the unit vectors in P . So from the perspective of {i, j}, we can think of the
algorithm as randomly choosing a unit vector / line in the plane P , and {i, j} is cut if and only if
vi and vj are on different sides of this line. Thus

Pr[{i, j} ∈ δ(S)] =
2θij
2π

=
θij
π
.

By the definition of αGW , we know that αGW ≤ 2
π · θij

1−cos θij
, and thus

θij
π ≥ αGW · 1−cos θij

2 . Hence

Pr[{i, j} ∈ δ(S)] =
θij
π

≥ αGW · 1− cos θij
2

.

Now recall (from either linear algebra or high school trigonometry) that for any two vectors a, b,
their dot product is a · b = ∥a∥ · ∥b∥ · cos θab, where θab is the angle between the vectors. Since
∥vi∥ = ∥vj∥ = 1, this implies that vi · vj = cos θij . Thus

Pr[{i, j} ∈ δ(S)] ≥ αGW · 1− vi · vj
2

,

which is what we needed to prove. Slightly more formally, we now have

E

 ∑
e∈δ(S)

w(e)

 =
∑

{i,j}∈E

w(i, j)Pr[{i, j} ∈ δ(S)]

≥
∑

{i,j}∈E

w(i, j)αGW · 1− vi · vj
2

= αGW ·OPT(SDP)

≥ αGW ·OPT

as desired.

A natural question is whether this seemingly crazy value is tight. The best known hardness subject
to P ̸= NP, due to Johan H̊astad [H̊as01], still leaves a gap:

5



Theorem 23.3.3 Assuming P ̸= NP, there is no α-approximation for Max-Cut with α > 16/17 ≈
0.941.

Somewhat shockingly, though, under a stronger assumption known as the Unique Games Conjecture
(UGC), the Goemans-Williamson algorithm is actually tight! This is an extremely famous and
important result due to Khot, Kindler, Mossel, and O’Donnell [KKMO07].

Theorem 23.3.4 Assuming the UGC, there is no α-approximation for Max-Cut with α > αGW .

References

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, November 1995.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July
2001.

[KKMO07] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal Inapproximability Results
for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37(1):319–
357, 2007.

6


	Introduction
	Semidefinite Programming: Definitions
	Max Cut

