Semidefinite Programming:
Two different intuitions, bath correct:

1) Fundamentally different kind of rekxation: vectors instead of fractions
2) Linear propamming t one nom-linewity

Definition / Theorem: A symmetric matrix $X \in \mathbb{R}^{n \times n}$ is positive semidefinite (PSD) ($X \succeq O)$ it and only if:

1) All eigenvelads of X are ≥ 0
2) $y^{\top} x y \geq 0 \quad \forall y \in \mathbb{R}^{n}$
3) $X=V^{\top} V$ for some $V \in \mathbb{R}^{n \times n}$
4) $\forall i \in[n]$ there is some vector $v_{i} \in \mathbb{R}^{n}$ s.t.

$$
x_{i j}=v_{i} \cdot v_{j}=\left\langle v_{i,} v_{j}\right\rangle
$$

Def: A semidefinite program (SDP) is an $L P$ with the additional constraint that the matrix of variable) is PSD

Ex: Variable $X_{i j} \quad \forall i, j \in[n]$.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} \sum_{i=1}^{n} c_{i j} x_{i j} \\
\text { s.t. } \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j k} x_{i j} \leq b_{k} \quad \forall k \in(m] \\
& x_{i j}=x_{j i} \\
& X=\left(x_{i j}\right) \succeq 0
\end{array} \quad \forall i j j \in(n) 1
$$

"Than": SDPs can be "solved" in polytiane -requieres some "techical nicemens" anditiong -additive erroor ε -time poly(ingat, log $\frac{1}{2}$)
Pt setch:
Ellipsoid aly.
If X nut PSD, $\exists y$ s.f. $y^{\top} X_{y}<0$

$$
\Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} x_{i j}<0
$$

Separating hypreflare: $\sum_{i=1}^{n} \sum_{i=1}^{n} y_{i} y_{j} x_{i j}=0$

Eq-ivalent:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j}\left\langle v_{i}, v_{j}\right\rangle \\
\text { s.t. } & \sum_{i=1}^{n} \sum_{i=1}^{n} a_{i j k}\left\langle v_{i}, v_{j}\right\rangle \leq b_{k} \quad \forall k \in[m] \\
& v: \in \mathbb{R}^{n}
\end{array}
$$

why do fhi:?

$$
\max \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i} x_{j}
$$

r.t. $\sum_{i=1}^{n} \sum_{i=1}^{m} a_{i j k} x_{i} x_{j} \leq b_{k} \quad \forall k \in[m]$

$$
x_{i} \in \mathbb{R} \quad \forall i \in[n]
$$

cant solve: quadratic program!

But can sulve vector (SDP) relaxation!
Relaxationi Given x fecsible for $Q P$, set $v_{i}=(x_{i}, \underbrace{0,0, \ldots, 0}_{n-1})$
LPs: relaxation of ICPs whare integer wes \rightarrow fractioncl vers
SOPs: relaxation of strict quadratic programs, wors \rightarrow vectors strictues) regni'rd! (an't have sone linew costrints, some quadeatic

LP aperonch: - Write ILp

- Relax to LP (fractions)
- Solve, round

SDP approach: - Write (strict) quadratic program

- Relax to SDP (vectors)
- Solve, round

Max-Cut:
Input: $-G=(v, \theta)$
Feasible solution: $S \subseteq V$

$$
-w: E \rightarrow \mathbb{R}^{+}
$$

$$
\text { Objective: } \max _{\bar{s}} w(\delta(s))=\sum_{e \in \delta(())} w(e)
$$

$$
V=[n]
$$

SOP Approach [Gremses-willianion 195]:
First: write strict quadratic program.

$$
\begin{array}{ll}
\max & \frac{1}{2} \sum_{\{i ; j\} \in \epsilon} w(i ; j)\left(1-x_{i} x_{j}\right) \\
\text { s.t. } & x_{i}^{2}=1 \quad \forall i \in V \\
& x_{i} \in \mathbb{R} \quad \forall i \in V
\end{array}
$$

Thin: This $Q P$ is exactly Max-cot
Pt: Let x fesisile $Q P$ solution

$$
\begin{aligned}
& x_{i}{ }^{2}=1 \Rightarrow x_{i} \in\{-1,1\} \quad \forall i \in V \\
& \text { Let } S=\left\{i: x_{i}=1\right\} \Rightarrow x_{i} x_{j}=-1 \quad \text { if }\{i, j) \in \delta(1) \\
& 1 \text { if }\{i, j\} \notin(S)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \sum_{\{i, j\} \in E} w(i, j)\left(1-x_{i} x_{j}\right)= \\
& =\frac{1}{2}\left(\sum_{\{i, j) \in \delta(S)} w\left(i(j)(2)+\sum_{\{i, j) \notin \delta(S)} w(: i, j) \cdot 0\right)\right. \\
& =\sum_{\{i, j) \in \delta(S)} w(i, j)=\omega(\delta(S))
\end{aligned}
$$

Other direction: let $\int \subseteq V$.

$$
\left.\begin{array}{l}
\text { Set } x_{i}=\left\{\begin{array}{l}
1 \text { if } i \in S \\
-1
\end{array} \text { if } i \notin S\right.
\end{array}\right] \begin{aligned}
& \Rightarrow m(\delta(S))=\frac{1}{2} \sum_{\{i ; j) e f} w(i, j)\left(1-x_{i} x_{j}\right) \quad \text { (same calculation) }
\end{aligned}
$$

Second. (an't solve $Q P$, relax to vectors (SDP)

$$
4
$$

$$
\begin{array}{ll}
\max & \frac{1}{2} \sum_{\{i, j\} \in E} w(i, j)\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
\text { s.t. }\left\langle v_{i}, v_{i}\right\rangle=1 \quad \forall i \in V \equiv v_{i} \text { a unit vector } \\
& v_{i} \in \mathbb{R}^{n} \quad \forall i \in V
\end{array}
$$

Valid relaxation given solution x to $Q P$, set

$$
\begin{aligned}
& v_{i}=(x_{i}, \underbrace{0,0,0, \ldots, 0}_{n-1}) \\
& \Rightarrow O P T \leq O P T(S D P)
\end{aligned}
$$

Three i solve SDP, get vectors V_{i}.
Round each vector to $\{-1,1\}$, try nt to lose toe much in objective

Rounding Algorithms: random hyperplane rounding

- Choose $r \in \mathbb{R}^{n}$ uniformly at random from $\left\{v \in \mathbb{R}^{n}:\|v\|=1\right\}$ (random unit vector)
can do by choosing each coordinate independently from $N(0,1)$, rescaling to make unit
- Let $S=\left\{i \in V:\left\langle u_{i}, r\right\rangle \geqslant 0\right\}$
- Return S

The: Random hyperplane ronading is a

$$
\alpha_{G w}=\inf _{0 \leq \theta \leq \pi} \frac{2}{\pi} \cdot \frac{\theta}{1-\cos \theta}>0.87856 \text {-approximation }
$$

PE: uTS: $\operatorname{Pr}\left[\{(i, j) \in \delta(S)] \geq \alpha_{c_{u}} \cdot \frac{1}{2}\left(1-\left\langle u_{i}, v_{j}\right\rangle\right) \quad \forall\{i, j\} \in\right.$

$$
\begin{aligned}
& \Rightarrow E[w(\delta(\delta))]=E\left[\sum_{\{i, j) \in E} w(i, j) \cdot \mathbb{D}[\{i, j\} \in \delta(\delta)]\right. \\
& =\sum_{\{i, j \in \in \in} w(i, j) \operatorname{Pr}[\{i, i\} \in \delta() \mid\}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \sum_{\{i, j\} \in E} w(i, j) \alpha_{a w} \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \\
& =\alpha_{a w} \cdot O P T(S D P) \\
& \geq \alpha_{a w} \cdot O P T
\end{aligned}
$$

So lock at some $\{i, j\} \in E$
Look at plane P spanned by v_{i}, v_{j}

Whether $\{i, j\} f(S)$ determined by projection of r onto P (still uniferaly distributed):

From perspective of $\{i, j\rangle$: (ho ole ra-dum unit vectorlline through origin in $P,\{i, j\} \in(\mathbb{})$ if v_{i}, v_{j} on different sides of line

$$
\begin{aligned}
& \Rightarrow \operatorname{Pr}[\{i, j\} \in \delta(S)]= \\
& \frac{2 \theta_{i j}}{2 \pi}=\frac{\theta_{i j}}{\pi}
\end{aligned}
$$

B_{y} def of $\alpha_{q w}: \quad \alpha_{a w} \leq \frac{2}{\pi} \cdot \frac{\theta_{i j}}{1-\cos \theta_{i j}}$

$$
\begin{gathered}
\Rightarrow \frac{\theta_{i j}}{\pi} \geq \alpha_{a w} \cdot \frac{1}{2}\left(1-\cos \theta_{i j}\right) \\
\Rightarrow \operatorname{Pr}[\{i, j\} \in \delta(s)) \geq \alpha_{a w} \cdot \frac{1}{2}\left(1-\left(\cdot, \theta_{i j}\right)\right.
\end{gathered}
$$

Recull (lineer algebra or high ichool trigli:

$$
\begin{array}{r}
\langle a, b\rangle=\|a\| \cdot\|b\| \cdot \cos \theta_{a b} \\
\underset{\text { angle } b l w a, b}{ }
\end{array}
$$

$$
\Rightarrow \operatorname{Pr}[\{i, j\} \in \delta())] \geq \alpha_{a_{n}} \cdot \frac{1}{2}\left(1-\left\langle v_{i}, v_{j}\right\rangle\right) \quad\left(\left\|v_{i}\right\|=\left\|u_{j}\right\|=1\right)
$$

Done!

Thm [Hastad 'Ol]: Assuming $P \neq N P$, no α-approximation for Max-Cut with $\alpha>\frac{16}{17} \approx 0.941$

Thm(KKMO '07). Assuming Uaige Games Conjecture, no α-apprex for \max-(nt with $\alpha>\alpha_{\text {aw }}$

