
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Semidefinite Programming: Correlation Clustering and Max 2-SAT Date: 4/18/24
Scribe: Michael Dinitz

24.1 Introduction

Today we’re going to see some further uses of semidefinite programming in approximation algo-
rithms. Our rounding algorithms will still be relatively simple, but we’ll design more complex SDP
relaxations, as well as do more complex analyses of the roundings.

24.2 Correlation Clustering

24.2.1 Definitions

We’ve talked about a few different clustering problems in this class, but let’s introduce another
one: Correlation Clustering. Formally, it’s the following.

• Input:

– Graph G = (V,E)

– Weight functions w− : E → R+ and w+ : E → R+

• Feasible: Partition S = S1, S2, . . . , Sn of V . Given S, let δ(S) be the edges between different
parts of the partition, and let E(S) be the edges with both endpoints in same part of partition.

• Objective: max
∑

{i,j}∈E(S)w
+(i, j) +

∑
{i,j}∈δ(S)w

−(i, j)

Intuitively, in this problem every edge has a positive and a negative weight (usually representing
similarity/dissimilarity), and our goal is to cluster the vertices to maximize the positive weight
within the clusters plus the negative weight between the clusters. In other words we try to maximize
similarity in same cluster + dissimilarity in different clusters.

This is a nice formulation of clustering for a few reasons. First, we don’t have to prespecify a
number of clusters – we’re allowed to use as many clusters as we want. Second, by using different
functions for w+ and w−, we can model a lot of different settings and problems.

Note that there’s a very simple 1/2-approximation: if we set S = {V } then the objective value
is
∑

e∈E w+(e), while if we set S = {{i} : i ∈ V } the objective value is
∑

e∈E w−(e). Since
for any S the objective is at most

∑
e∈E w−(e) +

∑
e∈E w+(e), taking the best of the two is a

1/2-approximation.

24.2.2 SDP relaxation

To do better we will write an SDP. Unlike Max-Cut, we’re not going to start with a strict quadratic
program and then relax it, but rather we’ll start with a vector program which we cannot solve, and

1



then relax it to an SDP. Recall that ek is the k’th standard basis vector: the vector with a 1 in the
kth coordinate and a 0 everywhere else. Then the following vector program is an exact formulation
of Correlation Clustering:

max
∑

{i,j}∈E

(
w+(i, j)(vi · vj) + w−(i, j)(1− vi · vj)

)
s.t. vi ∈ {e1, e2, . . . , en} ∀i ∈ V

Theorem 24.2.1 This is an exact formulation of Correlation Clustering

Proof: Consider some clustering S = S1, S2, . . . , Sk. For all i ∈ [k], and for all j ∈ Si, let vj = ei.
In other words, each vertex gets assigned the standard basis vector corresponding to its cluster.
Then this is clearly a feasible set of vectors, and the objective function is∑

{i,j}∈E

(
w+(i, j)(vi · vj) + w−(i, j)(1− vi · vj)

)
=

∑
{i,j}∈E(S)

w+(i, j) +
∑

{i,j}∈δ(S)

w−(i, j).

Thus there is a solution to the vector program of the same value as S.
Similarly, let {vi}i∈V be a solution to the vector program. Let Si = {i ∈ V : vi = ei}, and let
S = S1, S2, . . . , Sn. Then S is a partition of V , and the value is equal to the objective function of
the vector program.

We cannot solve this vector program (the requirement that the vectors are standard basis vector
cannot be expressed as an SDP), but we can relax it to an SDP:

max
∑

{i,j}∈E

(
w+(i, j)(vi · vj) + w−(i, j)(1− vi · vj)

)
s.t. vi · vi = 1 ∀i ∈ V

vi · vj ≥ 0 ∀i, j ∈ V

vi ∈ Rn ∀i ∈ V

Note that this is not an entirely obvious SDP relaxation: it might have been natural for us not
to include the vi · vj ≥ 0 constraints. These are clearly valid constraints (since the standard basis
vectors satisfy them), but we might not have included them on our first attempt. Then we wouldn’t
have been able to round the SDP well (there would have been a large integrality gap), so we would
have been stuck.

We will round this SDP using random hyperplanes, as we did with Max-Cut. But instead of
using a single random hyperplane, we will use two independent random hyperplanes. Slightly more
formally, given a solution to the SDP, we will construct a partition into four parts by choosing

2



random unit vectors r1 and r2 and defining the following sets:

R1 = {i ∈ V : r1 · vi ≥ 0, r2 · vi ≥ 0}
R2 = {i ∈ V : r1 · vi ≥ 0, r2 · vi < 0}
R3 = {i ∈ V : r1 · vi < 0, r2 · vi ≥ 0}
R4 = {i ∈ V : r1 · vi < 0, r2 · vi < 0}.

We let S = {R1, R2, R3, R4}.
Let Xij be a random variable which is 1 if vertices i and j end up in the same cluster. We
saw in the last lecture that the probability that a single random hyperplane separates i and j is
θij
π =

arccos(vi·vj)
π . Hence E[Xij ] = (1 − 1

π arccos(vi · vj))2 = (1 − θij
π )2. Let W be the value of the

objective function for our partition S. Then

W =
∑

{i,j}∈E

(
w+(i, j)Xij + w−(i, j)(1−Xij)

)
,

and so by linearity of expectations

E[W ] =
∑

{i,j}∈E

(
w+(i, j)E[Xij ] + w−(i, j)(1−E[Xij ])

)
=

∑
{i,j}∈E

(
w+(i, j)

(
1− 1

π
θij

)2

+ w−(i, j)

(
1−

(
1− 1

π
θij

)2
))

It turns out due to trig/calculus that (1− θij
π )2 ≥ 3

4 cos(θij) and that 1−(1− θij
π )2 ≥ 3

4(1−cos(θij)),
as long as θij ≤ π/2. But θij ≤ π/2 because vi · vj ≥ 0. Hence we have that

E[W ] ≥
∑

{i,j}∈E

(
w+(i, j)

(
3

4
cos θij

)
+ w−(i, j)

(
3

4
(1− cos θij)

))
=

3

4

∑
{i,j}∈E

(
w+(i, j)(vi · vj) + w−(i, j)(1− vi · vj)

)
=

3

4
·OPTSDP

Thus this is a 3/4-approximation. This algorithm and analysis is due to Swamy [Swa04].

24.3 Max-2SAT

Max-2SAT is the following problem:

• Input:

– n variable x1, . . . , xn

3



– m CNF clauses C1, . . . , Cm, each of which has exactly two literals

• Feasible: assignment of T/F to variables

• Objective: maximize number of satisfied constraints

Unlike 3SAT, 2SAT is not NP-hard: there is an easy polynomial-time algorithm to determine
whether all clauses can be satisfied. Max-2SAT, on the other hand, is NP-hard (or, more formally,
the decision problem of whether more than an α-fraction of clauses can be satisfied is NP-hard for
certain values of α, but not for α = 1).

Writing a strict quadratic program for Max-2SAT is actually a bit tricky. To see this, suppose that
we have a variable yi ∈ {−1, 1} for each input variable, where assigning yi = −1 corresponds to
setting xi to T and assigning yi = 1 corresponds to setting xi to F. Consider a clause of the form
xi ∨ x̄j . Then assigning yi = −1 and yj = 1 corresponds to a satisfying assignment, but assigning
yi = 1 and yj = −1 is not a satisfying assignment. But in a strict quadratic program, where we
can only use terms like yiyj , there is no way of distinguishing between these assignments!

So we can’t just think of yi = 1 as a necessarily true or false. Instead, we’ll add a new “dummy”
variable yT ∈ {−1, 1}, and whatever value yT gets is what we define as T. This means that for
xi ∨ xj and an assignment yT , yi, yj , if the assignment satisfies the clause then

3 + yiyT + yjyT − yiyj
4

= 1

and otherwise it equals 0. If the clause has negated variables (e.g. xi ∨ x̄j), then we just use the
same formula but with negated variables corresponding to negative (integer) variables. So for this
example, we would negate yj to get

3 + yiyT − yjyT + yiyj
4

.

This lets us write the following strict quadratic program:

max
∑

clauses xi∨xj

3 + yiyT + yjyT − yiyj
4

+
∑

clauses xi∨x̄j

3 + yiyT − yjyT + yiyj
4

+
∑

clauses x̄i∨xj

3− yiyT + yjyT + yiyj
4

+
∑

clauses x̄i∨x̄j

3− yiyT − yjyT + yiyj
4

s.t. yi ∈ {−1, 1} ∀i ∈ V

yT ∈ {−1, 1}

When we relax this to an SDP, we get the following:

4



max
∑

clauses xi∨xj

3 + vi · vT + vj · vT − vi · vj
4

+
∑

clauses xi∨x̄j

3 + vi · vT − vj · vT + vi · vj
4

+
∑

clauses x̄i∨xj

3− vi · vT + vj · vT + vi · vj
4

+
∑

clauses x̄i∨x̄j

3− vi · vT − vj · vT + vi · vj
4

s.t. vi · vi = 1 ∀i ∈ V

vi ∈ Rn ∀i ∈ V

vT · vT = 1

vT ∈ Rn

We can round this using random hyperplane rounding (again): we choose a random r, and we set
to true every xi with sign(vi · r) = sign(vT · r) and set to false all xi with sign(vi · r) ̸= sign(vT · r).
And if xi is set to true then we set yi to −1 and if we set xi to false then we set yi to 1.

To analyze this, let’s rewrite the term for each clause. For simplicity, we’ll just consider the first
type of clauses xi ∨ xj (the other cases are similar). Then we can rewrite

3+vi·vT+vj ·vT−vi·vj
4 as

1
4((1 + vi · vT ) + (1+ vj · vT ) + (1− vi · vj)). Then all terms look like (1± v · u) for vectors u and v.

We’ll analyze each of these types separately. Recall that αGW = inf0≤θ≤π
2θ

π(1−cos θ) .

Consider a term 1− vi · vj (where possibly either i or j is T ). Then the contribution to the SDP of
this term is 1− vi · vj = 1− cos θij . On the other hand, the probability that i and j are on different
sides of the hyperplane is θij/π. Hence the expected value of this term in the rounded solution is

E[1− yiyj ] = 2
θij
π ≥ αGW (1− vi · vj).

Similarly, consider a term 1+vi ·vj . Then the contribution to the SDP is 1+vi ·vj = 1+cos θij . In

the rounded solution, the expected value is E[1 + yiyj ] = 2(1 − θij
π ). Hence the ratio between the

integral contribution and the SDP contribution is
2(1−θij/π)
1+cos θij

=
2(π−θij)

π(1+cos θij)
. If we set θ′ = π − θij ,

then by basic trig we get that this is equal to 2θ′

π(1−cos θ′) ≥ αGW (since cos(π − θ) = − cos(θ)).

Since for every term the expected contribution to our integral solution is at least αGW times the
expected contribution to the SDP solution, by linearity of expectations this gives us an αGW -
approximation.

References

[Swa04] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In J. Ian Munro, editor, Proceedings of the Fifteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January
11-14, 2004, pages 526–527. SIAM, 2004.

5


	Introduction
	Correlation Clustering
	Definitions
	SDP relaxation

	Max-2SAT

