More hardnes) of approximation
Last time: New nution of "proof" (probabilictic prot systens)
$\Rightarrow P C P$ theorem
\Rightarrow Hardness of approximation for (SPs in senual,
Max-bsat specitically:

- $\frac{15}{16}$ usius firest $P(P$ than
$-\frac{2}{8}+\varepsilon$ using Hastads 3-bit PCP tha

Today: Another aution of "prect", hardaers of appreximation.
Thm(lonttime): For Max-3SAT, it is NP-hord to destinguish instances in which all c(anses stistiable from ingtanas in which at aont $\frac{19}{16}$ of canses are intistiable
-YES instance: all claceos sutistiankle
-NO instang: $\leq \frac{15}{16}$ fraction of $c k$ kes satistiable

Note: $\frac{15}{16}$ worge than $\frac{7}{8}$, but completeness 1 is nice propoty!

Max-3sAT: Eurey clange has 3 literals

Max-3SAT-S: - Every change hes 3 literals

- Every variable in S (a nix)

Standard transformation from Max-3SAT to Max-3SAT-S -loses a constant in sundaes)

Thai For Max-3SAT-S, it is NP-hard to distiagnish be treen:

- instances) in which all (abies satisfiable (YES instance) -instances in which $\leq 1-$ q fraction of classes are satisfiable (NO instances)
for some constant $\varepsilon>0$

One-round) Tho-Prover proof system for language L

- Tho provers, one verifier. All know input φ
- Verifier asks each prover a question (possibly different) - Provers angel. Computationally unbounded, de terministic - Baled on responses, verifier decides whether to accept (YES) or reject (NO). Must ran in polytione
- Provers can decide on a strategy betarehaid, but can't
communicate with each other after receiving question - Provers trying to get verifier to accept -Verifier trying to check it $p \in L$

Trivial 2 -proves proct system for $3 S A T-S$

- Verifier asks each proser for alligument
- (becks whether each assigunert satisfies all classes, $0 \leq 1-\varepsilon$ fraction of (lase)
\Rightarrow it $\varphi \quad Y \in S$ instance, provers an get worifier to accept with prob. 1 (completeness 1)
it $\varphi N O$ instance, wo matter whet provers do, verifier accents with prob. O (sandier) 0).
what if we mont questions, answers to br "ibert"? use randomness!

Verifier on instance φ :

- Choose clause (uniformly at random
- (hooke one of the throe variable) in (nuitermly at random. Call it x;
- Ask prover 1 for an assignment to x : (T / f)
- Ask prover 2 for a satisfying assignment to C
(7 possibilities)
- PL's answer includes alignment to x : Retrod $Y \in S$ it it matches P1'; assignment to x_{i}.

O thernise return NO.

uniformly at random

$$
\text { Pick } x_{12} \text { n.a.r. from }\left\{x_{1}, x_{1}, x_{12}\right\}
$$

Lemma: If φ a $Y \in S$ instarce (ticee is an crigigment katistying all (lunas), then provers can get verifier to return YES with probalility 1.

Pt:
Return appopriate pert of ratistying assiganeat!

Lenma: If φ a NO instance (eurry assigument satistirs at most $1-\varepsilon$ fraction of cla sa), then no motter what provers do,

$$
P_{1}[\text { veritier refung } Y(\xi)] \leq 1-\varepsilon / 3
$$

PE: Notei prowers are deterministic
P1: $H_{a s}$ sone assigument, returs $X_{i}=T / F$ dope-dies on casigyment
\Rightarrow satisfies $\leq 1-\varepsilon$ of c lan-es
\Rightarrow with proch. \geq, we chooge $($ not intistied
PL: returus sutistying assigument for C
\Rightarrow dinagreeg with P1 on at lent one of the three was
\Rightarrow we choose which wee to ask 11 acer from the 3
\Rightarrow find disagreement with pooch. $\geq \varepsilon / 3$

New computational problem: Find best strategy for provers.

Label Cover:
Input: - Bipartite graph $G=(L, R, E)$

$$
\text { - Alphabet } \Sigma_{L} \quad \text {-Alphabet } \Sigma_{R}
$$

- Relation $\pi_{e} \subseteq \Sigma_{c} \times \Sigma_{R}$ for each ec E

Fecrible: Arsigumat $f: L \rightarrow \mathcal{E}_{L}$ and $f: R \rightarrow \varepsilon_{R}$
objective: max fraction of edges (n, u) rot. $(f(u), f(u)) \in \pi_{u, v}$

Ex: $\quad \varepsilon_{c}=\varepsilon_{R}=\left\{0,{ }^{\circ}, \cdot\right\}$

$$
\begin{aligned}
& \pi_{4,0}=\{(a, 0),(0,0)\} \\
& \pi_{a, m}=\{(0,0),(0,0),(0,0),(0,0)\}
\end{aligned}
$$

Informal claim: this) is the problem ot finding the hest strategy for provers!

On input φ with n variables and $m=\frac{5}{3} n$ clangs:
$L=$ variables (urotex for each variable)
$R=$ (lase) (vertex for each clause)

E: add edge blu every vortex and clare it appears in \Rightarrow left nods have degree 5
right nodes have degree 3

$$
\begin{aligned}
& \Sigma_{c}=\{T / F\} \quad \Sigma_{R}=\{7 \text { satisfying assignments }\} \\
& \Pi_{(a, v)}=7 \text { panes ont ot } 14 \text { that are consistent }
\end{aligned}
$$

Regulwity \Rightarrow choosing random C randoton $x_{i} \in C$ same as choosing radom edge
$\Rightarrow L C$ solution f is a stantegy for provers where Pr[veritier accepts $]=$ fraction of edges whose relation is satisfied by t
$=L C$ objective

The: There is some constant $\varepsilon>0$ s.t. it is NPGard to distinguish between instances ot Label (over where

- All edges can be satisfied
- At most $1-\varepsilon$ fraction of edges can be satisfied
\rightarrow NP-had to approximate LC better than $1-\varepsilon$

Turns ont $L($ much harder.
Back to 2 -prover prect system: how to boost soindarss from $1-\varepsilon / 3$ to something smaller?

CHow to boast probability of catching provers in inconsistency?

Obvious approach repetition
Repent k times \Rightarrow
Pr Lever detect inconsistent $(y) \leq\left(1-\frac{\varepsilon}{3}\right)^{k}$

Works great! But to maintain compaction to $L C$, ned to maintain 1 round

Idea: repent in parallel
verifier:
-choose k random (lase) $C_{1}, C_{2}, \ldots, C_{k}$

- From each class C_{i} choose random uriable X. from C_{i}
- Ask prover 1 for assignment tor every x :
- Ask prover L for satisfying ariganent for easel C;
-Return $Y E S$ if consistent on all K,
No otherwise

Gives $L($ instance:

$$
\begin{aligned}
& L=[n]^{k} \quad R=[m]^{k} \quad \varepsilon_{L}=[2]^{k} \quad \varepsilon_{R}=[7]^{k} \\
& \Pi_{\left(x_{1}, \ldots, x_{k}\right),\left(c_{1}, \ldots, c_{k}\right)}=\left\{\begin{array}{l}
\left(\left(\alpha_{1}, \ldots, \alpha_{k}\right),\left(\beta_{1}, \ldots, \beta_{k}\right)\right) \in[2]^{k} \times[7]^{k}: \\
\left.\left(\alpha_{i}, \beta_{i}\right) \in \Pi_{\left(x_{i}\left(c_{i}\right)\right.} \text { for all } i \in[k]\right\}
\end{array}\right.
\end{aligned}
$$

Q: Is asking questions in parallel sane as repetitively?
Intuition': yes. How can provers cheat by knowing questions in parallel?
Truth: No! Provers can convince verifier with perch. $>\left((-\varepsilon / 3)^{k}\right.$

But parallel almost as geod:

Ran's Parallel Repetition Lemma:
If every assignment satisfies $\leq 1-\varepsilon$ fraction of clares, then there is some constant $c>0$ s.t. $\forall K$, no matter what provers do in k-parallel repetition,

$$
P,\left[\text { Verifier return) YES] } \leq\left((-\varepsilon)^{c k}=\left((1-\varepsilon)^{c}\right)^{k}\right.\right.
$$

Implication to Label Cover:
Thu: There is same $\varepsilon>0$ and c>0 sit. $\forall k \geq 1$, unless) $N P \subseteq D T I M E\left(n^{o(k)}\right)$, there is no polytime algorithm which can distinguish between instances of Label cover where:
-all edges can he satisfied
$-\leq(l-\varepsilon)^{c k}$ fraction of edges can be satisfied

Note: Instead of assuming $P E N P$, assuming $N P \notin \operatorname{DTIMF}\left(a^{o(k)}\right)$ $b l e$ size of $L C$ instance $\approx n^{k}$

For any constant k, DTIME $\left.n^{o(k)}\right) \leq P$

Corollary: For any constant $0<\alpha \leq 1$, unless $P=N P$ there is no polynomial tine α-approximation algorithm e for Label cover

Sos set $k=\theta\left(\log ^{\frac{1-2}{2}} n\right)$
$\Rightarrow L C$ graph has size $=N=n^{k}=n^{\theta\left(\log \frac{-\frac{\pi}{2}}{2} n\right)}$

$$
\begin{aligned}
& \Rightarrow \log N=\theta\left(\log ^{\frac{1-\varepsilon}{2}} n \cdot \log n\right)=\theta\left(\log ^{\frac{1}{2}} n\right) \\
& \Rightarrow \log n=\theta\left(\log ^{2} N\right) \\
& \Rightarrow \text { inappraximability } \approx(1-\varepsilon)^{c k} \\
& =\left((-\varepsilon)^{c \cdot \log \frac{-1}{1} n}\right. \\
& =2^{-c^{\prime} \log ^{\frac{1-2}{2}} n} \\
& =2^{-c^{\prime} \frac{\log ^{\frac{1}{2}} n}{\log n}} \\
& =2^{-c^{\prime} \cdot \frac{\log N}{\log ^{2} N}} \\
& \leq 2^{-\log ^{\operatorname{cog}} N}
\end{aligned}
$$

Quaipolytime: time $O\left(n^{\text {paly l.s(n) }}\right.$)

Thmi For any $\varepsilon>0$, unleis $N P$ has quasipolytine algorithms, thene is no polytine algorithm for Label cover with approxination betfer fhan $2^{-\log ^{1-q} n}$

Gnily Gamen:

ual: If is N/-4ad to diligo.is
I- ε us. ε in йiat दavy Veostant ε

