communicate with each other after receiving question - Provers trying to get verifier to accept - Verifier toying to check if pel



What it we want questions, answors to be "short"? Use vandonness!



Lenna: It q a YES instrue (true is an assignment  
setisfying all channel), then provers can get verifier to  
return YES with productivity 1.  
Pt:  
Return appropriate part of satisfying assignment!  
  
Lenna: If q a NO instrue (every assignment satisfies  
at most [-E fraction of classic], then no matter  
what proves do,  
PrE verifier returns YES] 
$$\leq 1 - \frac{8}{3}$$
  
  
PE: Note: Proves are deterministic  
P1: Has some assignment, returns X:= T/E dependix  
on assignment  
 $\Rightarrow$  satisfies  $\leq 1 - \epsilon$  of classic  
 $\Rightarrow$  with prof.  $\geq \epsilon$ , we choose C and satisfied  
P2: returns satisfying assignment for C  
 $\Rightarrow$  disagrees with P1 on at lenst one of the  
three was

 $\underline{Ex}: \quad \underline{z}_{L} = \underline{z}_{R} : \{\bullet, \bullet, \bullet\}$ 



On input 
$$\varphi$$
 with a variables and  $m = \frac{5}{5}\pi$  classes;  
 $L = variables$  (vertex for each variable)  
 $R = classes$  (vertex for each classe)  $x_i - \frac{1}{k_i} v_{ij} v_{x_k}$   
 $E$ : add edge blu every vortex and classe it appears in  
 $\Rightarrow left$  and is have degree 5  
right and is have degree 3  
 $\mathcal{E}_L = \{T, F\}$   $\mathcal{E}_R = \{7 \text{ satisfying antisymmetry}\}$   
 $\Pi(x_iv) = 7 \text{ pros out of } 14$  that are consistent  
Resularity  $\Rightarrow$  choosing random (, random  $x_i \in C$  some as  
 $classing random edge$   
 $\Rightarrow LC so [-]im f$  is a stategy for proves where  
 $P_iC verifier accepts ] = fraction of edges where relation is
 $substitet by F$   
 $= LC objective$$ 

-> NP-hard to approximate LC better than 1-8

Works great! But to mintain connection to L(, med to maintain 1 round I dea : repeat in parallel

hives 
$$L(instance)$$
  
 $L = LnJ^{k}$   $R = LnJ^{k}$   $Z_{L} = (2)^{k}$   $Z_{R} = (7)^{k}$ 

$$\Pi_{(x_{1},\dots,x_{k}),(\zeta_{n},\dots,\zeta_{k})} = \begin{cases} ((\alpha_{1},\dots,\alpha_{k}),(\beta_{1},\dots,\beta_{k})) \in [2]^{k} \times [7]^{k} \\ (\alpha_{i},\beta_{i}) \in \Pi_{(x_{i},\zeta_{i})} \quad for all \quad i \in [k] \end{cases}$$

Trath: No! frovers can convince verifier with prob. > ((- 8/3) k

But parallel almost as good:

Raz's Parallel Repetition Lemma:  
If every assignment satisfies 
$$\leq l-\epsilon$$
 fraction of classes, then  
there is some constant c>0 s.t.  $\forall k$ , no matter what  
provers do in K-parallel repetition,  
 $P_r C V erifier returns YESJ \leq ((-\epsilon)^{ck} - ((-\epsilon)^{c})^{k}$ 

Note: Instead at assuming PENP, assuming  $NP \notin DTIMF(n^{O(k)})$ b/c size at LC instance  $\approx n^{k}$ 

For any constant k, DTIME(no(k)) EP

Quaripolytime: time O(n polylos (n))



