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6.1 Problem Definition

Today we’ll be studying the following, problem, known as Minimum Degree Spanning Tree
(MDST). Given a graph G = (V,E), we will let dG(u) be the degree of u in G and will let
∆(G) = maxv∈V dG(v).

Input: Connected graph G = (V,E).

Feasible solution: Spanning tree T of G.

Objective: min∆(T ).

It’s not hard to prove that MDST is NP-hard via a reduction from Hamiltonian Path (this might
be useful for your homework!).

6.2 Algorithm: Attempt 1

Recall that the fundamental cycle of a non-tree edge e (with respect to some spanning tree) is
the unique cycle created by adding e to the spanning tree. This allows us to make an obvious
definition of a local move: it will be a pair (e, e′), where e is a non-tree edge and e′ is a tree edge
on the fundamental cycle of e (the cycle created in the tree by adding e). Clearly this maintains
the feasibility of the solution (we went from one spanning tree to a different one). So it suggests
the following local search algorithm:

Algorithm 1 Local Search 1 for Min-Degree Spanning Tree

Input: A graph G = (V,E)
Output: A spanning tree T

Find a spanning tree T of G
while there is a local move which decreases the max degree of the current T do

do the move
end while
Output T

Unfortunately, as shown in Figure 6.2.1, the algorithm may not work well. There is a local optimum
with maximum degree d as shown in the left figure (each non-leaf node in the tree has degree d)
while the OPT is 3 as shown in the right figure.
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Figure 6.2.1: Bad instance for local search algorithm

6.3 Algorithm: Attempt 2

So we have to change our algorithm. Intuitively, one reason we got stuck earlier is that there were
not any moves which improved the global max degree. On the other hand, there were moves that
improved degrees locally. Consider, for example, some node u who is a child of the root in the
previous example. If we add one of the edges between two of its children {v, w}, then we can
remove the edge {u, v}, thus decreasing the degree of u while increasing the degree of a node who
had extremely low degree. So this seems like a “win”. This suggests the following definition of an
improving local move.

Definition 6.3.1 Let u ∈ V . Then (u, {v, w}) is a u-improvement if there is an edge {u, x} on the
fundamental cycle of {v, w} so that we can swap {v, w} for {u, x} to get T ′ so that max{dT ′(v), dT ′(w)} ≤
dT ′(u) = dT (u)− 1

This suggests an obvious algorithm: keep finding u-improvements until there are no such improve-
ments, for all u ∈ V . However, to the best of my knowledge, it’s still an open question whether
this algorithm terminates in polynomial time. So instead, we’ll only try to improve nodes which
are “close” to the maximum degree. This gives the following algorithm:

Algorithm 2 Local Search 2 for Min-Degree Spanning Tree

Input: A graph G = (V,E)
Output: A spanning tree T

Find a spanning tree T of G
while There is u-improvement with dT (u) ≥ ∆(T )− log n for the current T do

do the improvement
end while
Output T

6.3.1 Time Complexity

Theorem 6.3.2 The running time of the algorithm is polynomial.
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Proof: The proof works by analyzing a potential function. Let Φ(v) = 3dT (v), and let Φ(T ) =∑
v∈V Φ(v) =

∑
v∈V 3dT (v).

First note that Φ(T ) ≥
∑

v∈V 3 = 3n, since all nodes have degree at least 1 in T . Similarly,
Φ(T ) ≤ n · 3n since every node has degree at most n. We now show that the potential function
drops notably in each iteration.

Claim 6.3.3 Suppose we make a u-improvement (u, {v, w}) with dT (u) ≥ ∆(T )− log n, obtaining
a new spanning tree T ′. Then Φ(T ′) ≤ (1− 2

9n3 )Φ(T ).

Proof: Suppose dT (u) = i with i ≥ ∆(T )− log n. Then dT ′(u) = i− 1, so the decrease in Φ(u) is
3i − 3i−1 = 2 · 3i−1. The increase of Φ(v) is 3dT ′ (v) − 3dT (v) ≤ 3i−1 − 3i−2 = 2 · 3i−2, and the same
is true for Φ(w).

So the overall decrease in Φ is at least

2 · 3i−1 − 4 · 3i−2 =
2

9
· 3i

≥ 2

9
· 3∆(T )−logn

=
2

9 · 3logn
3∆(T )

≥ 2

9nlog 3
3∆(T )

≥ 2

9n2
· 1
n
Φ(T )

=
2

9n3
Φ(T ).

Note that x (the other endpoint of the edge incident on u that we removed to add {v, w}) might
also have a different degree in T ′ than in T , but in this case its degree will be smaller so this only
helps us.

Suppose we run 9
2n

4 ln 3 iterations. Then Φ(T ) ≤ (1− 2
9n3 )

− 9
2
n4 ln 3 · n3n ≤ n. As Φ(T ) ≥ 3n, this

means that the algorithm must stop in less than 9
2n

4 ln 3 iterations.

6.3.2 Approximation Ratio

A Locally Optimal Tree (LOT) is a tree T in which there are no u-improvements for any u with
dT (u) ≥ ∆(T ) − log n. In other words, a LOT is a tree which the local search algorithm might
output. Let T ∗ denote the optimal tree, and ∆∗ its maximum degree.

Theorem 6.3.4 Let T be a LOT. Then ∆(T ) ≤ 2 ·∆∗ + log n.

To prove this, we’re going to need a few definitions and lemmas. First, we’re going to need a way
to lower bound ∆∗, which is the point of the next lemma.

Lemma 6.3.5 Consider partitioning G into pieces V1, V2, . . . , Vk, and let E′ ⊆ E be the edges with
endpoints in different parts of the partition. Let V ′ ⊆ V be a vertex cover for E′ (every edge in E′

has at least one endpoint in V ′). Then ∆∗ ≥ k−1
|V ′| .
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Proof: Let T ∗ denote the optimal tree. Clearly any spanning tree, including T ∗, must have at
least k − 1 edges between the pieces. So there exists some node in V ′ with degree at least k−1

|V ′| in

T ∗, and thus ∆∗ ≥ k−1
|V ′| .

While we want to use this lemma to lower bound ∆∗, we’re going to need to figure out which
partition to use. Let’s give some more definitions and lemmas. Note that throughout this analysis,
we will only care about i ≥ ∆∗ − log n.

Definition 6.3.6 Let Si be the nodes with degree at least i in T .

Claim 6.3.7 There exists an i ≥ ∆(T )− log n such that |Si−1| ≤ 2|Si|.
Proof: Suppose this is false. Then |Si−1| > 2|Si| for all i ≥ ∆(T )− log n. Since |S∆(T )| ≥ 1, this
implies that |S∆(T )−logn| > n, a contradiction.

This is going to be the value of i that we end up using; let i∗ be the value of i from Claim 6.3.7
applied to T . For now, to make notation easier, let’s prove a few facts that hold for all i (not just
i∗), even though in the end we’ll only apply them to i∗.

Definition 6.3.8 Let ET
i be edges of T incident on nodes in Si.

Claim 6.3.9 |ET
i | ≥ (i− 1)|Si|+ 1

Proof: By the definition of Si, we have that∑
u∈Si

dT (u) ≥ i|Si|.

Now the number of edges {u, v} ∈ T with u, v ∈ Si is at most |Si| − 1 because T is a tree. This
implies that

|ET
i | ≥ i|Si| − (|Si| − 1) = (i− 1)|Si|+ 1

as claimed.

Now let EG
i be edges in G between components of T − ET

i .

Claim 6.3.10 Let e = {x, y} ∈ EG
i . Then either x or y in Si−1.

Proof: There are two cases to consider:

Case 1: e ∈ ET
i . Then x or y is in Si ⊆ Si−1.

Case 2: e ̸∈ ET
i . Suppose that neither x nor y is in Si−1. Since e goes between components of

T − ET
i , if we add e to T it closes a cycle which contains some edge {u, v} ∈ ET

i . So either u
or v is in Si – without loss of generality we will assume that u ∈ Si. But then (u, {x, y}) is a
u-improvement, since dT (u) ≥ i and by assumption both x and y have degree in T at most i − 2.
This is a contradiction, since T is a LOT.

Let i∗ be the value from Claim 6.3.7 applied to T . Consider the partition of V defined by the
components of T −ET

i∗ . There are |ET
i∗ | components in the decomposition, and by Claim 6.3.10, the

set of vertices incident on edges that cross this partition is a subset of Si∗−1. Thus we can finally
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apply Lemma 6.3.5 to get:

∆∗ ≥ |ET
i∗ | − 1

|Si∗−1|

≥ (i∗ − 1)|Si∗ |
2|Si∗ |

≥ i∗ − 1

2

≥ ∆(T )− log n

2
.

This implies that ∆(T ) ≤ 2∆∗ + log n.

6.4 Extensions

This algorithm and result is due to Fürer and Raghavachari [FR94]. They actually gave a much
stronger version of this algorithm, which is still based on local search but is much more involved,
which improves over the above result in two ways:

1. Instead of ∆(T ) ≤ 2∆∗ + log n, they get the much stronger bound ∆(T ) ≤ ∆∗ + 1. In other
words, they’re within an additive 1 of the optimum!

2. Their algorithm even works for the min-degree Steiner Tree problem, rather than min-degree
spanning tree.

I’m particularly interested in this problem from a distributed and parallel point of view – if you think
about it briefly, you’ll realize that local search does not interact well with distributed computation,
since we generally assume that we make only a single local move at a time. However, we proved a
few years ago that the minimum-degree spanning tree problem is related to the “network capacity”
of something called the “mobile telephone model” [DHNW19]. So we designed a distributed version
of this local search algorithm, which has a weaker guarantee that ∆(T ) ≤ O(∆∗+log n) [DHIN19].
If you’re interested in trying to improve this (or related problems), come talk to me!
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