

Det: For spanning true T, non-tree edge e, the Fundamental cycle of e is the unique (ycle in TV {e}

Local nove: prir (e,e'), e#T, e' in Andamental cycle ct e. Add e, renove e' Local Search algorithm : Zait T an arbitrary spanning free while there is a local move which decreases D(T) do it

Local oft: mant degree d= B(Nh) Global oft: mart degree 3

Definet well (by
$$\{v, v\}$$
) is a *m-improvement*
if $\exists \{v, x\}$ on findamental cycle of $\{v, w\}$, and if
we add $\{v, u\}$ and remove $\{v, x\}$ to get T' then
 $max(d_q, (v), d_q, (w)) \leq d_q, (u) = d_q(u) - 1$

Example :

LS Alg 2: while I wimprovement for some node up do it

Problem; running time!

$$\frac{LS \quad Alg \quad j:}{n \text{ hile } f \quad n \text{ improvement where } d_T(n) \geq \Delta(T) - \log n}$$

$$d_{\sigma} \quad if.$$

$$\frac{Thn}{Pt};$$
Each iteration polytime \Rightarrow just need to bind $\#$ iteration

$$\frac{Potential function}{F(v) = 3^{d_T(v)}} = \frac{2}{V \in V} \frac{1}{V \in V} = \frac{2}{V \in V} \frac{3^{d_T(v)}}{V \in V}$$
Easy facts:

$$-\frac{1}{T}(T) \geq 3n$$

$$-\frac{1}{T}(T) \leq n \cdot 3^n$$

$$\frac{(\operatorname{laim}: \operatorname{Suppose} \quad d:d \quad a \quad \operatorname{L-improve-f} \quad on \quad T \quad for \quad get \quad T',$$

$$\operatorname{Lhare} \quad d_T(v) \geq \Lambda(T) - \log n. \quad Then$$

$$\overline{g}(T') \leq \left(1 - \frac{2}{9n^3}\right) \overline{g}(T)$$

$$\geq \frac{2}{q} \cdot \frac{3}{2} \int_{-1}^{0} \int_{-1}^{1} \int_{-1}^{1}$$

Use claim:
$$5^{n}rrsk$$
 runs for $\frac{q}{2}n^{4}\ln^{3}$ iterations
 $\frac{3}{2}n^{2}\ln^{3}$
 $\Rightarrow P(T) = (1 - \frac{2}{qn^{3}})$
 $\therefore h \cdot 3^{n}$
 $= n$
Since $P(T) \ge 3n$, must have alrendy finished $\sqrt{2}$

P F :

From now on
$$i \ge \Delta(T) - los n$$

Def: Let $S_i = \{v \in V : d_T(v) \ge i\}$
Def: Let E_i^T be edges of T insident on at
lengt one node in S_i
 $(lain; |E_i^T| \ge (i-1)|S_i| + l$
 $\underline{Pr}: \sum_{v \in S_i} d_T(v) \ge i|S_i| (dof of S_i)
 $|\{i_{1:v}\} \in E_i^T : u_{i}v \in S_i\}| \le |S_i| - (T = free)$
 $\supseteq |E_i^T| = \sum_{v \in S_i} d_T(v) - |\{i_{1:v}\} \in E_i^T : u_{i}v \in S_i\}|$
 $\ge i|S_i| - (|S_i|-1) = (i-1)|S_i| + l$$

Det: Let E: be edges in G between components of T-E:

$$\underbrace{(\operatorname{Inim}: \exists i \geq \Delta(T) - 1 \cdot s \ n \ s. f. \ |S_{i-1}| \leq 2|S_i|}_{p \in I}$$

$$\underbrace{P \in I}_{sps} \quad false = \Im[S_{i-1}| > 2|S_i| \quad \forall i$$

$$|S_{DCTP}| \geq 1 \quad \Rightarrow |S_{DCTP-1 \cdot s \ n}| > 2^{(ry \ n)} \cdot 1 = n$$

$$\Rightarrow \Longleftrightarrow$$

(an finally apply partition lemma !
Let
$$i^* \ge D(T) - l_{ij}$$
 in $i.d.$ $|S_{i^*-i}| \le 2|S_{i^*}|$
Partition V inder $|E_{i^*}^T| + l$ sets by $T - E_{i^*}^T$
 S_{i^*-i} a vertex corr of $E_{i^*}^G$
 $\Rightarrow \Delta^* \ge \frac{|E_{i^*}^T|}{|S_{i^*-i}|}$
 $\ge \frac{(i^*-l)|S_{i^*}| + l}{2|S_{i^*}|}$
 $\ge \frac{i^*-l}{2}$

-> D(T) = 2 D+ + 1., + 1

A Butteri-D(T) < D*+) - Min-degree Steiner Tree