Knapsack:
Input: - Items [n]

$$
\begin{aligned}
& \text { - profits } \quad \rho:[n] \rightarrow \mathbb{N} \\
& - \text { lines } \quad s:[n] \rightarrow \mathbb{N}
\end{aligned}
$$

$$
\text { -integer } k \in \mathbb{N}
$$

Feasible solution: $I \subseteq[n]$ st. $s(I)=\sum_{i \in I} s(i) \leq k$

$$
\begin{aligned}
& \text { Objective: } \quad \operatorname{mx} p(I)=\sum_{i \in I} \rho(i) \\
& w L O G: s_{i}(i) \leq k \quad \forall i
\end{aligned}
$$

Sort: LOG, aline $\frac{p(i)}{s(i)} \geq \frac{p(i+1)}{s(i+1)} \quad \forall: \in(n-1)$

Greedy:

- Add items until cant anymore

Bad!

$$
\begin{array}{ll}
-s(1)=1 & p(1)=2 \\
-s(2)=k & p(2)=k
\end{array} \quad \Rightarrow \quad \Omega(k) \text {-approx }
$$

Improved greedy:
-Let i he first element we cant add:

$$
\sum_{j=1}^{i} s(j)>k, \quad b-t \sum_{i=1}^{i-1} s(j) \leq k
$$

- Return better of $[i-1],\{i\}$

Than: 2-approximation

PE.
Since greedy, know $\frac{\sum_{j=1}^{i} p(j)}{\sum_{i=1}^{j} s(j)} \geq \frac{O P T}{K} \quad$ (goudy hag better "bang tor the heck"

$$
\begin{aligned}
\Rightarrow O P T & \leq \frac{k}{\sum_{i=1}^{j}(j)} \cdot \sum_{j=1}^{i} p(j) \leq \sum_{j=1}^{i} p(j) \\
& \leq \sum_{j=1}^{i-1} p(j)+p(i) \\
& \leq 2 \max \left(\sum_{j=1}^{i-1} p(j), p(i)\right) \\
& =2 \cdot A L G \\
\Rightarrow A L G & \geq \frac{1}{2} \cdot O P T
\end{aligned}
$$

Dynamic Programming:

$$
M=\max _{i \in\left(-G_{0}\right)} p(i) \quad \Rightarrow O P T \leq n M
$$

Subproblens:

- what size is necessary to achieve some profit?
$\forall i \in(n), 0 \leq v \leq n M$, let $f(i, v)$ he min $\{i z e$ necessary to achieve profit exactly v wing elements in $[i]$

If cold compute this, cold sole knapsectc.'

$$
O P T=\max \sim \text { rat. } f(n, v) \leq k
$$

Recurrence for $f(i, u) i$

$$
f(i, v)= \begin{cases}0 & i=0, v=0 \\ \infty & i=0, v>0 \\ f(i-1, v) & i>0, p(i)>v \\ \min (f(i-1, u), s(i)+f(i-1, v-p(i)) & i>0, p(i) \leq v\end{cases}
$$

Runing time:

$$
\text { tim/tabile entry: } O(1)
$$

trable enfrie): $n \cdot n M=a^{2} M$

Psendopolynomial!
seed this up: "round" the instance to male M small

Let $\varepsilon>0$. Well try for (1- $)$-approximation
Let $\delta=\frac{\varepsilon M}{n}$
Let $\rho^{\prime}(i)=\left\lfloor\frac{p(i)}{\delta}\right\rfloor=\left\lfloor\frac{n}{\varepsilon} \cdot \frac{p(i)}{M}\right\rfloor$
"scales" so max profit $\frac{h}{\varepsilon}$, "roods" down to integer

Alg:

- Run old alg on p^{\prime} profits!

Running time:

$$
O\left(n^{2} \frac{n}{q}\right)=O\left(\frac{n^{3}}{\xi}\right)
$$

Than: (1- $)$-approximation

PE: Let $I \leq(n)$ returned by algorithm, $I^{*} \leq(n)$ optimal solution

Since did not round sizes, I forcible

$$
\rho^{\prime}(:)=\left\lfloor\frac{p\left(l_{i}\right)}{\delta}\right\rfloor
$$

Def of $p^{\prime}(i): \quad-p(i) \geq \delta \cdot p^{\prime}(i)$

$$
-p^{\prime}\left(\left(_{i}\right) \geq \frac{p(i)}{\delta}-1\right.
$$

$$
\begin{array}{rlrl}
A L G & =\sum_{i \in I} p(i) \\
& \geq \delta \sum_{i \in I^{\prime}} \rho^{\prime}(i) \\
& \geq \delta \sum_{i \in I^{+}} \rho^{\prime}(i) & \\
& \geq \delta \sum_{i \in I^{*}}\left(\frac{\rho(i)}{\delta}-1\right) & \\
& =\sum_{i \in I^{+}} \rho(i)-\delta\left|I^{+}\right| & \\
& \geq O P T-\delta n & \left(\left|I^{+1}\right| \leq n\right) \\
& =O P T-i M & \left(\delta=\frac{\varepsilon M}{h}\right) \\
& \geq O P T-q \cdot O P T & (M \leq O P T) \\
& =(1-\varepsilon) \cdot O P T
\end{array}
$$

Fydty Polyumial Time Approxination Scheme (FPTAS): ($1-\varepsilon$)-approtination, ranaing tine poly in $n, \frac{1}{\varepsilon}$

$$
\begin{gathered}
p / y(n) \text { to constant } z^{1 / \varepsilon} 2^{1 / \varepsilon} \\
n^{1}
\end{gathered}
$$

Min-Ma|cespan un Identical Parallel Machinus
Inputi-Tohs J ($|J|=n)$

- Machines M (|M|=k)
- Procesion fimes $\rho: T \rightarrow \mathbb{R}$

Feasible Solution: $\underline{\underline{E}}: S \rightarrow M$
Objective: min malaspan $=\min \max _{m \in M} \sum_{j \in J: I(j)=m} P(j)$
tine

