
601.435/635 Approximation Algorithms Lecturer: Michael Dinitz
Topic: Intro to LPs for Approximation Algorithms Date: 2/20/24
Scribe: Michael Dinitz

9.1 Introduction

Suppose we are trying to approximate a minimization problem (everything will hold for maximiza-
tion problems too, but with the inequalities reversed). A general way to prove α-approximation is
as following:

1. Prove OPT ≥ LB

2. Prove ALG ≤ α· LB

Then we can conclude ALG ≤ α· OPT. This is how essentially all of our analyses have worked so
far. As we’ve discussed, a tricky step here is figuring out the lower bound LB on OPT, particularly
a lower bound which can then be used to also bound the algorithm. Today we’re going to start
discussing a technique to approximation algorithms based on linear programming, which will make
it far easier for us to find such an LB, and moreover, will give us a few ways of designing algorithms
which directly take that lower bound into account.

9.2 Weighted Vertex Cover

Our running example today will be the Weighted Vertex Cover (WVC) problem. Recall that
weighted vertex cover is defined as follows:

• Input: a graph G = (V,E), and a cost function c : V → R+

• Feasible solution: S ⊆ V such that ∀{u, v} ∈ E, either u ∈ S or v ∈ S

• Objective: min
∑

v∈S c(v), i.e. min c(S)

At the very beginning of the semester we gave a 2-approximation for the unweighted version of
vertex cover. For that analysis, we used the size of a matching as LB: we proved that any vertex
cover has size at least the size of any matching, and our algorithm constructed a vertex cover of
size at most twice some matching. But what can we do in the weighted case? Clearly this approach
fails, or at least needs to be heavily modified. What else an we use as a lower bound on OPT?

9.2.1 Integer Linear Programming

Before we present our approach to WVC, we first need to make a bunch of useful definitions. Recall
the definition of an integer linear program.

• A set {x1, x2, · · · , xn} of variables, each of which must be an integer

1



• m linear inequalities over variables

• Possibly a linear objective function over variables

A feasible solution is an assignment of values to variables that satisfies all of them linear inequalities
and all of the integrality constraints. In the ILP feasibility problem we are given an ILP (without
an objective) and are asked to determine if there is a feasible solution. An optimal solution is a
feasible solution which minimizes/maximizes the objective function over all feasible solutions. In
the ILP optimization problem we are given an ILP with an objective function and are asked to find
an optimal solution or determine that no feasible solution exists.

Clearly by definition, if we can solve the ILP optimization problem then we can solve the ILP
feasibility problem. But it’s worth noting that the converse is also true: if we can solve the
ILP feasibility problem (in polynomial time), then we can solve the ILP optimization problem (in
polynomial time). This is because we can turn the objective function into a constraint, and then do
a binary search to find the optimal value (this is somewhat similar to the idea of “guessing OPT”
from last class).

Why did we introduce all of this? In part because ILPs are a very powerful modeling tool. Let’s
start by writing an ILP formulation of weighted vertex cover:

minimize:
∑
v∈V

c(v) · xv

subject to: xu + xv ≥ 1 for each edge {u, v} ∈ E

xv ∈ {0, 1} for each vertex v ∈ V

This is clearly an ILP (the xv ∈ {0, 1} constraints can be replaced by standard integrality constraints
xv ∈ Z and xv ≥ 0 and xv ≤ 1). It is also a formulation of the WVC problem:

1. Every feasible solution x of the ILP corresponds to a feasible solution of the WVC instance
(with the same cost), and

2. Every feasible solution S of WVC corresponds to a feasible solution of the ILP (with the same
cost).

We can prove this a bit more formally, if we want:

Theorem 9.2.1 This ILP is a formulation of WVC.

Proof: Let x be a feasible solution to the ILP. Let S = {v ∈ V : xv = 1}. Then clearly∑
v∈S c(v) =

∑
v∈V c(v)xv, so S has the same cost as x. And for all {u, v} ∈ E we know that

xv + xu ≥ 1 and thus at least one of u, v is in S, so S is a feasible vertex cover.

Conversely, let S be a feasible vertex cover. Then for all v ∈ V , let xv = 1 if v ∈ S, and let xv = 0
if v ̸∈ S. Then

∑
v∈V c(v)xv =

∑
v∈S c(v), so S has the same cost as x. And for all {u, v} ∈ E we

know that at least one of u, v ∈ S, and thus xu + xv ≥ 1. Thus x is a feasible ILP solution.

Note that this implies that OPT(ILP) = OPT(WVC). This already implies that ILP is NP-hard
(we just reduced WVC to it).

2



9.2.2 LP Relaxation

Since ILP is also NP-hard, what was the point of reducing to it, i.e., writing an ILP formulation?
We’re going to “relax” the ILP to an LP, which we can then solve in polynomial time. We can do
this by just removing the integrality constraints, so that variables can take on values in R, giving
us a linear program.

minimize:
∑
v∈V

c(v) · xv

subject to: xu + xv ≥ 1 for each edge {u, v} ∈ E

0 ≤ xv ≤ 1 for each vertex v ∈ V

A seminal result of Khachiyan is that linear programs (ILPs without integrality constraints) can
be solved in polynomial time. We’ll talk more later about solving LPs efficiently, but mostly we’ll
use the ability to solve LPs as a black box.

Now we can make some obvious but very important points. Let x∗LP denote the optimal LP solution,
and let x∗ILP denote the optimal ILP solution. Then clearly x∗ILP is also feasible for the LP, so we
get that

OPT (LP ) = c(x∗LP ) ≤ c(x∗ILP ) = OPT (ILP ) = OPT (WV C).

So OPT (LP ) is a lower bound on OPT (WV C), so if we can find a vertex cover of cost at most
α · OPT (LP ) (or equivalently an ILP solution of cost at most α · OPT (LP )), we will have an
α-approximation!

9.2.3 LP Rounding

This suggests an obvious approach: solving the LP and then “rounding” the real numbers we get
back to be integers, giving us a feasible ILP solution. This type of “LP rounding” algorithm works
in general as follows:

1. Write ILP

2. Relax to LP (i.e., remove the integrality constraints)

3. Solve LP, getting solution x∗

4. “Round” x∗ to integer values to get a solution to ILP

Key ideas of rounding:

1. LP ≤ OPT, since it is a relaxation. Slightly more formally, any integral solution is obviously
a solution to the LP, and hence the optimal LP value is at most the optimal ILP value, which
equals OPT.

3



2. We design our rounding in order to guarantee that the integral solution we get back is at
most α· LP.

Putting these together, we get that ALG ≤ α OPT. And instead of having to find some mysterious
lower bound LB to compare the algorithm to, we can compare the output of the algorithm to the
fractional LP solution, and only analyze how much our rounding increased the cost.

9.2.4 LP Rounding for WVC

As always, we first solve the LP to get an optimal fractional solution x∗. We can do this in
polynomial time since the LP has size polynomial in the size of the instance. We then round x∗ to
an integral solution x′ as follows: for each v ∈ V , we set x′v = 1 if x∗v ≥ 1

2 , and set x′v = 0 otherwise.

Theorem 9.2.2 x′ is a feasible solution to ILP.

Proof: For any {u, v} ∈ E, we have x∗u + x∗v ≥ 1, which implies that max(x∗u, x
∗
v) ≥ 1

2 . So either
x′u = 1 or x′v = 1. Thus x′u + x′v ≥ 1.

Theorem 9.2.3 c(x′) ≤ 2c(x∗).

Proof: c(x′) =
∑

v∈V c(v) · x′v =
∑

{v∈V :x∗
v≥1/2} c(v) ≤

∑
v∈V c(v) · 2x∗v = 2c(x∗).

Corollary 9.2.4 This rounding is a 2-approximation algorithm.

9.3 Integrality Gaps

In order for LP rounding algorithms to work, we need that LP ≤ OPT and that ALG ≤ α · LP .
Since ALG ≥ OPT , in order for this approach to work we need the LP to be not too much better
than OPT. In other words: what’s the best approximation ratio we can expect if we use the LP as
the lower bound?

Definition 9.3.1 The integrality gap of an LP for a minimization problem Π is

sup
instance I of Π

(
OPT (I)

LP (I)

)
.

The integrality gap of an LP measures the strength of the relaxation. If we prove that ALG ≤
α · OPT by proving that ALG ≤ α · LP (as we have been doing with rounding), then we cannot
give a ratio α that is better than the integrality gap (or else on the instance I which achieves
the integrality gap we would be able to round the LP solution to a value less than OPT, giving a
contradiction).

9.3.1 Integrality Gap for Weighted Vertex Cover

Consider the simple instance of G = Kn (the complete graph) and c(v) = 1 for all v ∈ V .

Theorem 9.3.2 The integrality gap is at least 2
(
1− 1

n

)
.

Proof: OPT = n− 1, since if there are two nodes not in the vertex cover the edge between them
will not be covered. But in the LP, if we set set xv = 1

2 for every v ∈ V we get a valid LP solution
with cost n

2 . Hence IG ≥ n−1
n/2 = 2

(
1− 1

n

)
.

4



This means that we cannot really hope for a better approximation algorithm which uses the LP
solution as a lower bound on OPT. This is a weaker statement than a true hardness result (since it
only implies that no rounding algorithm for this LP can do better, rather than any polynomial time
algorithm), but on the other hand it does not require any complexity assumptions like P ̸= NP .

9.3.2 Integrality Gap for Max Independent Set

Let’s see another quick example of an integrality gap, this time for a maximization problem: Max
Independent Set. Recall that in max independent set we are given a graphG = (V,E) and are trying
to choose an independent set S of maximum size. So we can write the following LP relaxation:

maximize:
∑
v∈V

xv

subject to: xu + xv ≤ 1 for all {u, v} ∈ E

xv ≤ 1 for all v ∈ V

Note that since this is a maximization problem, we think of the integrality gap as LP / OPT rather
than OPT / LP.

Theorem 9.3.3 The integrality gap is at least n
2 .

Proof: Consider the instance to be G = Kn, which is a complete graph. So OPT = 1 since every
pair of vertices are connected. For the LP, set xv = 1

2 for every v ∈ V . Then we get the LP cost to

be n
2 . Hence the integrality gap is at least n/2

1 = n
2 .

9.4 Solving LPs

This is a bit outside the scope of this class, but we will talk a little bit about algorithms for solving
LPs. This section is pretty informal, but everything can be made formal.

9.4.1 Simplex

Note that the feasible region of an LP is a polytope (by definition) and hence is convex (for
every two points in the feasible region, their midpoint is also feasible). The oldest heuristic for
solving LPs is the simplex algorithm. We won’t talk much about this algorithm, but the high-
level view is straightforward. Given a polytope, there is a natural graph associated with it where
the vertices of the graph are the vertices of the polytope (points which are tight for d linearly
independent constraints of the polytope, where d is the dimension) and two vertices are adjacent
if in the polytope they are also adjacent (the line segment between them is tight for d− 1 linearly
independent constraints). This algorithm starts by finding a vertex of the polytope, and then
moving to a neighbor with decreased cost as long as this is possible. By linearity and convexity,
once it gets stuck it has found the optimal solution.

Unfortunately simplex does not run in polynomial time – even with a polynomially-sized LP, the
number of vertices of the polytope can be exponential. Simplex does well in practice, but poorly
in theory.

5



9.4.2 Interior Point Methods

While simplex only moves along the outer faces of the polytope, there are algorithms known as
“interior-point”methods which make moves inside the polytope. There are now known to be
interior-point methods which have polynomial running time, and are also extremely fast in practice.
So in both theory and in practice, we can solve LPs efficiently.

9.4.3 Ellipsoid

We will spend a bit more time talking about an algorithm known as Ellipsoid, which works well
in theory but poorly in practice. Nevertheless, it has some properties which are extremely nice
theoretically, so we will feel free to use it when designing algorithms.

As a first step, we will reduce optimization to feasibility. Suppose that we are given an algorithm
which can determine whether a given LP is feasible, i.e. it returns YES if the feasible region is
non-empty and NO otherwise. Now suppose that we are given an LP which we want to solve. For
any value T , we can use our feasibility algorithm to see if there is an LP solution with cost at most
T by adding a single new constraint (the objective is at most T ). So we can do a binary search
over possible values of T to find in polynomial time the smallest T for which the feasibility region
is nonempty. Hence if we have such a feasibility algorithm, we can also solve LPs with objective
functions.

9.4.3.1 The algorithm

The ellipsoid algorithm is an algorithm for testing feasibility. Informally, it is the following.

Algorithm 1 Using Ellipsoid to Check Feasibility Algorithm

Input: Linear constraints
Output: A feasible solution if one exists.

Find an ellipsoid containing the polytope.
Let x⃗ be the the center of the ellipsoid.
k = 0
while x⃗ is not feasible AND k < maxiter do
k = k + 1
Find a constraint violated by x⃗
Draw a parallel hyperplane corresponding to this violated constraint through x⃗. This divides
the ellipsoid into two parts with equal volume, one of which is on the “wrong” side of the
hyperplane and so is entirely infeasible.
Consider the part which is on the correct side of the violated constraint (i.e. the part in which
the polytope must appear if it is nonempty). Find a new ellipsoid containing this part.
Let x⃗ be the center of the new ellipsoid.

end while
return x⃗, which is a feasible solution; or no feasible solution exists.

It is not hard to see that this algorithm is correct, in that if the polytope is nonempty it will
eventually find a feasible point and if the polytope is empty then it will never find a feasible point.

6



The hard part is proving that it takes only polynomial time in the worst case, i.e. that we can set
maxiter to a polynomial value. While it is complicated, the key idea is that due to the geometry
of ellipsoids, in each iteration the volume of the ellipsoid that we are considering decreases by a
constant factor.

9.4.3.2 Separation

The ellipsoid algorithm has an extremely nice property: in order to make it work, all that we need
to be able to do is find a violated constraint given some point x⃗ (or prove that x⃗ is feasible). The
is is called the separation problem. If the LP is small then this is simple – we can just check all of
the constraint. But sometimes our LPs are not small, and ellipsoid still lets us solve them! If there
are an exponential number of constraints, we cannot even write down all of them in polynomial
time so we certainly cannot use simplex or interior-point methods to solve the LP. But if we can
separate, then ellipsoid lets us solve in polynomial time despite not even being able to write down
the LP. Let’s do a somewhat trivial example of this: the spanning tree polytope.

9.4.3.3 Example: Spanning Tree Polytope

Consider the minimum spanning tree problem. Obviously we know multiple simple and fast algo-
rithms. But suppose we want to do this by an LP. While it’s not immediately obvious how to write
such an LP, it turns out that the following formulation is good:

minimize:
∑
e∈E

c(e) · xe (9.4.1)

subject to:
∑

{e∈E(S,S̄)}

xe ≥ 1 for each cut S ⊆ V (9.4.2)

0 ≤ xe ≤ 1 for each e ∈ E (9.4.3)

Note that the tree constraints are hidden in the optimization problem above since we can always
make the objective function smaller by throwing away an edge.

Although it has exponentially many constrains, we can separate in polynomial time. Given x⃗, first
run the min-cut algorithm. If the min cut is larger or equal to 1, than x⃗ is a feasible solution;
otherwise the minimum cut S corresponds to a violated constraint. Hence we can separate, so by
the ellipsoid algorithm we can optimize.

7


	Introduction
	Weighted Vertex Cover
	Integer Linear Programming
	LP Relaxation
	LP Rounding
	LP Rounding for WVC

	Integrality Gaps
	Integrality Gap for Weighted Vertex Cover
	Integrality Gap for Max Independent Set

	Solving LPs
	Simplex
	Interior Point Methods
	Ellipsoid
	The algorithm
	Separation

	Spanning Tree Polytope


