
 

LPs for Approximation Algorithms

To prove x approx often done
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Linear programming automatically generate a LB which

can be modified algorithmically

Example Weighted Vertex Cover
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Let be an ILP solution
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In Ilp exactly the same NP hard

why did we do this

Linear program

same thing no integrality constraints variable take

values in IR really Q

Polytine solvable

Relax ILP to an LP
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1 Write exact ILP formulation



2 Relax to LP so 0ft CLP EOPTCILP

3 Solve LP relaxation optimally get solution x

4 Round x to integer values to get an

ILP solution

try to lose small x in rounding
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x'u 1 if I I z

0 otherwise

The x is a feasible ILP solution
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Integrality

Key idea of approach

1 LPE OPT

2 ALG α Lp
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Hopeless if LP CLOPT

0 is the best approximation we can

hope for from this approach
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The Integrality gap Z Z
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The Linear Programming can be solved in time

polylam Δ

Intuition think geometrically

LP constraints polytope in IR with

Objective direction to optimize

t.NET

Simplex local search on vertices of polytope

head in practice not polynomial time in

worst case



Interior Point methods

complicated algorithms that walk inside polytope

head in practice polytine in worst case

Ellipsoid polytime in theory bad in practice



key fact just need to be able to separate

Given X

if in polytope return yes

if x not in polytope find separating hyperplane

violated constraint

can solve LPs with exponential constraints if

can separate

EI spanning tree polytope
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Separation given x is there a violated constraint
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