
601.433/633 Introduction to Algorithms Fall 2024
Homework #5 Due: October 15, 2024, 9am

Remember: you may work in groups of up to three people, but must write up your solution
entirely on your own. Collaboration is limited to discussing the problems – you may not look at,
compare, reuse, etc. any text from anyone else in the class. Please include your list of collaborators
on the first page of your submission. You may use the internet to look up formulas, definitions,
etc., but may not simply look up the answers online.

Please include proofs with all of your answers, unless stated otherwise.

1 Submatrices (33 points)

Let A ∈ {0, 1}n×m be a matrix with n rows, m columns, and where every entry is either 0 or 1. We
will let Aij denote the entry in row i and column j, so for example A11 is the top-left entry, An1 is
the bottom-left entry, A1m is the top-right entry, and Anm is the bottom-right entry. Suppose that
we want to find the largest integer k such that A contains a k× k contiguous submatrix consisting
of all 0’s. In other words, we want to find the largest k such there exist values i, j such that Axy = 0
for all i− k < x ≤ i and j − k < y ≤ j.

We will design a dynamic programming algorithm that runs in O(nm) time for this problem.

(a) (17 points) For every i, j ∈ N with 1 ≤ i ≤ n and 1 ≤ j ≤ m, let S(i, j) denote the maximum
value of k such that there is a k × k contiguous submatrix of A consisting of all 0’s whose
bottom-right corner is at (i, j) (row i, column j). Write a recursive formula for S(i, j), and
prove that your formula is correct.

Note: you will need to use this formula in the next part to get an O(nm)-time algorithm, so
make sure that your formula is not too big/slow.

(b) (16 points) Give a dynamic programming algorithm based on your solution to part (a), and
prove that it correctly finds the largest possible value of k and runs in time O(nm).

2 Completing Homeworks (33 points)

Suppose (hypothetically) that you were taking a class, possibly called “Introduction to Algorithms”,
in which the homeworks were extremely difficult. After enough complaining, the professor decided
to make the following changes. There are two homework assignments each week rather than one,
an “easy” assignment and a “hard” assignment. The hard assignment is worth more points, but
it is in fact so difficult that you can only complete it if you’re completely rested and prepared,
meaning that you cannot have done either of the assignments the week before.

More formally, let n be the number of weeks in the class, let hi be the number of points for
the hard assignment in week i, and let ei be the number of points for the easy assignment in week
i. Note that hi does not have to be equal to hj for i ̸= j (although it might be), and similarly
with ei and ej . Assume that you know all of these values in advance. Then the goal is compute
a schedule which in each week tells you whether to do nothing, the easy assignment, or the hard
assignment and maximizes the total number of points, subject to the restriction that if you do a
hard assignment in week i you cannot have done any assignment in week i− 1.

1

(a) (11 points) One obvious approach would be to choose a hard assignment in week i if we get
more points than if we completed the easy assignments for weeks i and i− 1. This would be
the following algorithm:

i = 1
whi le (i < n) {

i f (hi+1 ≥ ei+1 + ei) {
choose no ass ignment in week i ,
choose the hard ass ignment in week i+ 1 ,
i = i+ 2

}
e l s e {

choose the easy ass ignment in week i ,
i = i+ 1

}
}

Give an instance in which this algorithm does not return the optimal solution. Also say what
the optimal solution is (and its value) and what the algorithm finds instead.

(b) (22 points) Give an algorithm with O(n) worst case running time which takes as input the
values e1, . . . , en and h1, . . . , hn and returns the value of the optimal schedule. Prove its
correctness and running time.

3 Mobile Business (34 points)

Let’s say that you have a great idea for a new food truck, and in order to save money you decide
to run it out of your RV so you can live where you work. Each day i there is some demand for your
food in Baltimore and some demand in Washington – let’s say you would make Bi dollars by being
in Baltimore and Wi dollars by being in Washington. However, if you wake up in one city (due to
being there the previous day) and want to serve in the other city, it costs you M dollars to drive
there.

The goal in this problem is to devise a maximum-profit schedule. A schedule is simply an
assignment of locations to days – for each day i, the schedule says whether to serve in Baltimore
or Washington. The profit of a schedule is the total profit you make, minus M times the number
of times you have to move between cities. For the starting case, you can assume that on day 1 you
wake up in Baltimore.

For example, let M = 10 and suppose that B1 = 1, B2 = 3, B3 = 20, B4 = 30 and W1 =
50,W2 = 20,W3 = 2,W4 = 4. Then the profit of the schedule ⟨Washington, Washington, Baltimore,
Baltimore⟩ would be W1 +W2 + B3 + B4 − 2M = 100, where one of the M ’s comes from driving
from Baltimore to Washington on day 1, and the other comes from driving from Washington to
Baltimore on day 3. The profit of the schedule ⟨Washington, Baltimore, Baltimore, Washington⟩
would be W1 +B2 +B3 +W4 − 3M = 50 + 3 + 20 + 4− 30 = 47.

Given the fixed driving cost M and profits B1, . . . Bn and W1, . . . ,Wn, devise an algorithm that
runs in O(n) time and computes the profit of an optimal schedule. As always, prove correctness
and running time.

2

