
601.433/633 Introduction to Algorithms Fall 2024
Homework #8 Due: November 21, 2024, 9am

Remember: you may work in groups of up to three people, but must write up your solution
entirely on your own. Solutions must by typeset (LATEX preferred but not required). Collaboration
is limited to discussing the problems – you may not look at, compare, reuse, etc. any text from
anyone else in the class. Please include your list of collaborators on the first page of your submission.
You may use the internet to look up formulas, definitions, etc., but may not simply look up the
answers online.

Please include proofs with all of your answers, unless stated otherwise.

1 Removing Train Stations (50 points)

We discussed in class how one of the original motivations for studying max-flow and min-cut comes
from WWII, and in particular the questions of “how much stuff can be moved from s to t along the
rail network” and “what rail lines can we remove in order to destroy the ability to ship anything
from s to t”. Now suppose that instead of being able to remove rail lines, we have the ability to
sabotage rail stations. Can we still find the best way to do this?

More formally, suppose that we are given a directed graph G = (V,E), two vertices s, t ∈ V
with (s, t) ̸∈ E, and a function c : V \ {s, t} → R≥0. As usual, |E| = m and |V | = n. We will call
c(v) the cost of v. A feasible solution is a subset S ⊆ V \ {s, t} so that there is no path from s to
t in G − S (the graph obtained from G by removing all vertices in S and all edges incident on at
least one vertex in S). Your goal is to find the feasible solution S which has minimum cost, i.e.,
which minimizes

∑
v∈S c(v).

Design an algorithm for this problem which runs in O(mn) time. You may assume that m ≥ n
and that there is an algorithm for maximum flow which runs in O(mn) time (as we discussed in
class: Orlin’s algorithm). Prove running time and correctness.

2 Linear Programming (50 points)

Let’s consider linear programming formulations of the minimum spanning tree problem. We now
have an (undirected) graph G = (V,E) and weights w : E → R+. As we discussed in class, one way
of phrasing the minimum spanning tree problem is as finding the minimum cost connected subgraph
which spans all nodes. This interpretation naturally gives rise to a straightforward LP relaxation
which requires every cut to have at least one edge crossing it (fractionally). More formally, suppose
that we have a variable xe for every edge e, and consider the following linear program. For all
S ⊂ V , let E(S, S̄) denote the edges with exactly one endpoint in S and exactly one endpoint not
in S.
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min
∑
e∈E

w(e)xe

subject to
∑

e∈E(S,S̄)

xe ≥ 1 ∀S ⊂ V : S ̸= ∅

xe ≥ 0 ∀e ∈ E

Note that there are an exponential number of constraints, but let’s not worry about that.

(a) (25 points) Prove that the optimal value of this LP is at most the weight of the minimum
spanning tree.

(b) (25 points) Unlike the examples in class, this is not an exact formulation of the MST problem.
Find a graph G = (V,E) and weights w : E → R+ such that the optimal LP value is strictly
less than the weight of the MST (and prove this).
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