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Welcome!

Introduction to (the theory of) algorithms

▸ How to design algorithms

▸ How to analyze algorithms

Prerequisites: Data Structures and MFCS/Discrete Math

▸ Small amount of review next lecture, but should be comfortable with asymptotic
notation, basic data structures, basic combinatorics and graph theory.

▸ Undergrads from prereqs.

▸ “Informal” prerequisite: mathematical maturity
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About me

▸ 9th time teaching this class (Fall 2014 - Fall 2021).
▸ I’m still learning – let me know if you have suggestions!
▸ Fall 2022: Sabbatical at Google Research-New York
▸ Fall 2023: Parental leave

▸ Research in theoretical CS, particularly algorithms: approximation algorithms, graph
algorithms, distributed algorithms, online algorithms.

▸ Also other parts of math (graph theory) and CS theory (algorithmic game theory,
complexity theory) and theory of networking.

▸ Office hours: Mondays 2pm–3pm (zoom), Wednesdays 2pm–3pm (Malone 217).
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Administrative Stuff

▸ TA: Shruthi Prusty (CS PhD student). Office hours TBD

▸ Head CA: Tian Zhou (senior undergraduate). Office hours TBD

▸ CAs: Many, still finalizing.
▸ Website:

http://www.cs.jhu.edu/~mdinitz/classes/IntroAlgorithms/Fall2024/
▸ Syllabus, schedule, lecture notes, office hours, . . .
▸ Courselore for discussion/announcements
▸ Gradescope for homeworks/exams.

▸ Textbook: CLRS (third or fourth edition)

▸ Class not the same as has been taught the last few years by Gagan Garg!
▸ I tend to go faster, cover more material.
▸ A little less hand-holding, a little more traditional
▸ Grade distribution should be approximately the same.
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Assignments
Homeworks:

▸ Approximately every 1.5 weeks, posted on website (HW1 out, due next Tuesday!)
▸ Must be typeset (LATEX preferred, not required)
▸ Work in groups of ≤ 3 (highly recommended). But individual writeups.

▸ Work together at a whiteboard to solve, then write up yourself.
▸ Write group members at top of homework

▸ 120 late hours (5 late days) total

Exams: Midterm, final.

▸ Midterm: In-class (75 minutes), traditional, closed book
▸ Final: in person, scheduled by registrar. 3 hours, traditional, closed book.

Grading: 50% homework, 15% midterm, 35% final exam,
▸ “Curve”: Historically, average ≈ B+. About 50% A’s, 50% B’s, a few below.

▸ Curve only helps! Someone else doing well does not hurt you.
▸ Be collaborative and helpful (within guidelines).
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Academic Honesty

▸ Cheating makes you a bad person. Don’t cheat.

▸ Cheating includes:
▸ Collaborating with people outside your group of three.
▸ Collaborating with your group on the writeup.
▸ Looking online for the solutions/ideas to the problem or related problems, rather than to

understand concepts from class.
▸ Using ChatGPT or other LLMs.
▸ Using Chegg, CourseHero, your friends, . . . , to find back tests, old homeworks, etc.
▸ Uploading anything to the above sites.
▸ etc.

▸ Just solve the problems with your group and write them up yourself!
▸ Use the internet, classmates, other resources to understand concepts from class, not to help

with assignments.

▸ In previous years, punishments have included zero on assignment, grade penalty, mark on
transcript, etc. ≥ 1 person has had PhD acceptance revoked.
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Course Overview

▸ Introduction to Theory of Algorithms: math not programming.
▸ Two goals: how to design algorithms, and how to analyze algorithms.

▸ Sometimes focus more on one than other, but both important

▸ Algorithm: “recipe” for solving a computational problem.
▸ Computational problem: given input X , want to output f (X). How to do this?

▸ Things to prove about an algorithm:
▸ Correctness: it does solve the problem.
▸ Running time: worst-case, average-case, worst-case expected, amortized, . . .
▸ Space usage
▸ and more!

▸ This class: mostly correctness and asymptotic running time, focus on worst-case
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Why analyze? Why worst case?

▸ Obviously want to prove correctness!
▸ Testing good, but want to be 100% sure that the algorithm does what you want it to do!

▸ What is a “real-life” or “average” instance?
▸ Especially if your algorithm is “low-level”, will be used in many different settings.

▸ We will focus on how algorithm “scales”: how running times change as input grows. Hard
to determine experimentally.

▸ Most importantly: want to understand.
▸ Experiments can (maybe) convince you that something is true. But can’t tell you why!

Michael Dinitz Lecture 1: Introduction August 27, 2024 8 / 22



Why analyze? Why worst case?

▸ Obviously want to prove correctness!
▸ Testing good, but want to be 100% sure that the algorithm does what you want it to do!

▸ What is a “real-life” or “average” instance?
▸ Especially if your algorithm is “low-level”, will be used in many different settings.

▸ We will focus on how algorithm “scales”: how running times change as input grows. Hard
to determine experimentally.

▸ Most importantly: want to understand.
▸ Experiments can (maybe) convince you that something is true. But can’t tell you why!

Michael Dinitz Lecture 1: Introduction August 27, 2024 8 / 22



Why analyze? Why worst case?

▸ Obviously want to prove correctness!
▸ Testing good, but want to be 100% sure that the algorithm does what you want it to do!

▸ What is a “real-life” or “average” instance?
▸ Especially if your algorithm is “low-level”, will be used in many different settings.

▸ We will focus on how algorithm “scales”: how running times change as input grows. Hard
to determine experimentally.

▸ Most importantly: want to understand.
▸ Experiments can (maybe) convince you that something is true. But can’t tell you why!

Michael Dinitz Lecture 1: Introduction August 27, 2024 8 / 22



Why analyze? Why worst case?

▸ Obviously want to prove correctness!
▸ Testing good, but want to be 100% sure that the algorithm does what you want it to do!

▸ What is a “real-life” or “average” instance?
▸ Especially if your algorithm is “low-level”, will be used in many different settings.

▸ We will focus on how algorithm “scales”: how running times change as input grows. Hard
to determine experimentally.

▸ Most importantly: want to understand.
▸ Experiments can (maybe) convince you that something is true. But can’t tell you why!

Michael Dinitz Lecture 1: Introduction August 27, 2024 8 / 22



Example 1: Multiplication
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Multiplication I

Often an obvious way to solve a problem just from the definition. But might not be the right
way!

Multiplication: Given two n-bit integers X and Y . Compute XY .

▸ Since n bits, each integer in [0,2n − 1].
How to do this?

Definition of multiplication:

▸ Add X to itself Y times: X +X + ⋅ ⋅ ⋅ +X . Or add Y to itself X times: Y +Y + ⋅ ⋅ ⋅ +Y .

Running time:

▸ Θ(Y ) or Θ(X) (assuming constant-time adds).

▸ Could be Θ(2n). Exponential in size of input (2n).
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Multiplication II

Better idea?

Grade school algorithm!

110110 = 54

x 101001 = 41

----------------

110110

110110

+ 110110

----------------

100010100110 = 2 + 4 + 32 + 128 + 2048 = 2214

Running time:

▸ O(n) column additions, each takes O(n) time Ô⇒ O(n2) time.

▸ Better than obvious algorithm!
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Multiplication III

Can we do even better?

Yes: Karatsuba Multiplication

XY = (2n/2A +B)(2n/2C +D)
= 2nAC + 2n/2AD + 2n/2BC +BD

Four n/2-bit multiplications, three shifts, three O(n)-bit adds.
Running Time: T(n) = 4T(n/2) + cn Ô⇒ T(n) = O(n2)
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Karatsuba Multiplication

Rewrite equation for XY :

XY = 2nAC + 2n/2AD + 2n/2BC +BD

= 2n/2(A +B)(C +D) + (2n − 2n/2)AC + (1 − 2n/2)BD

Three n/2-bit multiplications, O(1) shifts and O(n)-bit adds.
Ô⇒ T(n) = 3T(n/2) + c ′n

Ô⇒ T(n) = O(nlog2 3) ≈ O(n1.585)
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Even Better Multiplication?

Can we do even better than Karatsuba?

Theorem (Karp)

There is an O(n log2 n)-time algorithm for multiplication.

Uses Fast Fourier Transform (FFT)

Theorem (Harvey and van der Hoeven ’19)

There is an O(n logn)-time algorithm for multiplication.
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Example 2: Matrix Multiplication
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Matrix Multiplication: Definition

Given X ,Y ∈ Rn×n, compute XY ∈ Rn×n

▸ (XY )ij = ∑n
k=1 XikYkj

▸ Don’t worry for now about representing real numbers

▸ Assume multiplication in O(1) time

Algorithm from definition:

▸ For each i , j ∈ {1,2, . . . ,n}, compute (XY )ij using formula.

Running time:

▸ O(n2) entries, each entry takes n multiplications and n − 1 additions Ô⇒ O(n3) time.
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Strassen I

Break X and Y each into four (n/2) × (n/2) matrices:

X =
A B

C D
Y =

E F

G H

So can rewrite XY :

XY =
AE +BG AF +BH

CE +DG CF +DH

Recursive algorithm: compute eight (n/2) × (n/2) matrix multiplies, four additions

Michael Dinitz Lecture 1: Introduction August 27, 2024 17 / 22



Strassen I

Break X and Y each into four (n/2) × (n/2) matrices:

X =
A B

C D
Y =

E F

G H

So can rewrite XY :

XY =
AE +BG AF +BH

CE +DG CF +DH

Recursive algorithm: compute eight (n/2) × (n/2) matrix multiplies, four additions

Michael Dinitz Lecture 1: Introduction August 27, 2024 17 / 22



Strassen I

Break X and Y each into four (n/2) × (n/2) matrices:

X =
A B

C D
Y =

E F

G H

So can rewrite XY :

XY =
AE +BG AF +BH

CE +DG CF +DH

Recursive algorithm: compute eight (n/2) × (n/2) matrix multiplies, four additions

Michael Dinitz Lecture 1: Introduction August 27, 2024 17 / 22



Strassen II

XY =
AE +BG AF +BH

CE +DG CF +DH

Recursive algorithm: compute eight (n/2) × (n/2) matrix multiplies, four additions

Running time: T(n) = 8T(n/2) + cn2 Ô⇒ T(n) = O(n3).

Improve on this?
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Strassen III

XY =
AE +BG AF +BH

CE +DG CF +DH

M1 = (A +D)(E +H) M2 = (C +D)E M3 = A(F −H)
M4 = D(G − E) M5 = (A +B)H M6 = (C −A)(E + F)
M7 = (B −D)(G +H)

XY =
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6
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Strassen IV

M1 = (A +D)(E +H) M2 = (C +D)E M3 = A(F −H)
M4 = D(G − E) M5 = (A +B)H M6 = (C −A)(E + F)
M7 = (B −D)(G +H)

XY =
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

Only seven (n/2) × (n/2) matrix multiplies, O(1) additions

Running time: T(n) = 7T(n/2) + c ′n2 Ô⇒ T(n) = O(nlog2 7) ≈ O(n2.8074).
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Further Progress

▸ Coppersmith and Winograd ’90: O(n2.375477)
▸ Virginia Vassilevska Williams ’13: O(n2.3728642)
▸ François Le Gall ’14: O(n2.3728639)
▸ Josh Alman and Virginia Vassilevska Williams ’21: O(n2.3728596)
▸ Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou ’24:

O(n2.371552).

Is there an algorithm for matrix multiplication in O(n2) time?

If you answer this (with proof!), automatic A+ in course and PhD
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See you Thursday!
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