
Lecture 10: Universal and Perfect Hashing

Michael Dinitz

September 26, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 1 / 16

Introduction

Another approach to dictionaries (insert, lookup, delete): hashing

� Can improve operations to O(1), but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.

� Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 2 / 16

Hashing Basics
� Keys from universe U (think very large)� Set S ⊆ U of keys we actually care about (think relatively small). �S � = N .� Hash table A (array) of size M .� Hash function h ∶ U → [M]� [M] = {1,2, . . . ,M}� Idea: store x in A[h(x)]

One more component: collision resolution

� Today: separate chaining

� A[i] is a linked list containing all x
inserted where h(x) = i .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 3 / 16

Hashing Basics
� Keys from universe U (think very large)� Set S ⊆ U of keys we actually care about (think relatively small). �S � = N .� Hash table A (array) of size M .� Hash function h ∶ U → [M]� [M] = {1,2, . . . ,M}� Idea: store x in A[h(x)]

One more component: collision resolution

� Today: separate chaining

� A[i] is a linked list containing all x
inserted where h(x) = i .

Universal and Perfect Hashing

Hastings
keys from universe U

Set Sea of Keys we care about

ISI N

Hashte A af size M 19h M I

Hashfuncti hi U 1mF
Want to store xeU in AChex

what if hCxJ hCy

Collision resolution separating

f I

i
Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 3 / 16

Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].
Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

� Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
� Small M . Ideally, M = O(N).
� h fast to compute.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 4 / 16

Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].
Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

� Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
� Small M . Ideally, M = O(N).
� h fast to compute.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 4 / 16

Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].
Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

� Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
� Small M . Ideally, M = O(N).
� h fast to compute.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 4 / 16

Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].
Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

� Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).

� Small M . Ideally, M = O(N).
� h fast to compute.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 4 / 16

Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].
Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

� Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
� Small M . Ideally, M = O(N).

� h fast to compute.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 4 / 16

Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].
Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

� Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
� Small M . Ideally, M = O(N).
� h fast to compute.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 4 / 16

Bad News

Theorem

For any hash function h, if �U � ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

� Option 1: don’t worry about it, hope world isn’t adversarial.� Option 2: Randomness! Random function h ∶ U → [M]� For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .� Hopefully good behavior in expectation.� Problem: How can we store/remember/create h?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 5 / 16

Bad News

Theorem

For any hash function h, if �U � ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

� Option 1: don’t worry about it, hope world isn’t adversarial.� Option 2: Randomness! Random function h ∶ U → [M]� For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .� Hopefully good behavior in expectation.� Problem: How can we store/remember/create h?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 5 / 16

Bad News

Theorem

For any hash function h, if �U � ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

� Option 1: don’t worry about it, hope world isn’t adversarial.� Option 2: Randomness! Random function h ∶ U → [M]� For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .� Hopefully good behavior in expectation.� Problem: How can we store/remember/create h?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 5 / 16

Bad News

Theorem

For any hash function h, if �U � ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

� Option 1: don’t worry about it, hope world isn’t adversarial.

� Option 2: Randomness! Random function h ∶ U → [M]� For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .� Hopefully good behavior in expectation.� Problem: How can we store/remember/create h?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 5 / 16

Bad News

Theorem

For any hash function h, if �U � ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

� Option 1: don’t worry about it, hope world isn’t adversarial.� Option 2: Randomness! Random function h ∶ U → [M]� For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .� Hopefully good behavior in expectation.

� Problem: How can we store/remember/create h?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 5 / 16

Bad News

Theorem

For any hash function h, if �U � ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

� Option 1: don’t worry about it, hope world isn’t adversarial.� Option 2: Randomness! Random function h ∶ U → [M]� For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .� Hopefully good behavior in expectation.� Problem: How can we store/remember/create h?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 5 / 16

Universal Hashing

Definition

A probability distribution H over hash functions {h ∶ U → [M]} is universal if
Pr
h∼H[h(x) = h(y)] ≤ 1�M

for all x,y ∈ U with x ≠ y .

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S ⊆ U with �S � = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N�M .

So Lookup(x) and Delete(x) have expected time O(N�M).�⇒ If M = ⌦(N), operations in O(1) time!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 6 / 16

Universal Hashing

Definition

A probability distribution H over hash functions {h ∶ U → [M]} is universal if
Pr
h∼H[h(x) = h(y)] ≤ 1�M

for all x,y ∈ U with x ≠ y .

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S ⊆ U with �S � = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N�M .

So Lookup(x) and Delete(x) have expected time O(N�M).�⇒ If M = ⌦(N), operations in O(1) time!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 6 / 16

Universal Hashing

Definition

A probability distribution H over hash functions {h ∶ U → [M]} is universal if
Pr
h∼H[h(x) = h(y)] ≤ 1�M

for all x,y ∈ U with x ≠ y .

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S ⊆ U with �S � = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N�M .

So Lookup(x) and Delete(x) have expected time O(N�M).�⇒ If M = ⌦(N), operations in O(1) time!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 6 / 16

Universal Hashing

Definition

A probability distribution H over hash functions {h ∶ U → [M]} is universal if
Pr
h∼H[h(x) = h(y)] ≤ 1�M

for all x,y ∈ U with x ≠ y .

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S ⊆ U with �S � = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N�M .

So Lookup(x) and Delete(x) have expected time O(N�M).�⇒ If M = ⌦(N), operations in O(1) time!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 6 / 16

Main Proof

Theorem

If H is universal, then for every set S ⊆ U with �S � = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N�M .

Proof.

Let Cxy =
�������
1 if h(x) = h(y)
0 otherwise

�⇒ E[Cxy] = Pr
h∼H[h(x) = h(y)] ≤ 1�M

Number of collisions between x and S is exactly ∑y∈S Cxy

�⇒ E
�������y∈S Cxy

������ = �y∈S E [Cxy] ≤ �
y∈S

1

M
= N�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 7 / 16

Main Proof

Theorem

If H is universal, then for every set S ⊆ U with �S � = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N�M .

Proof.

Let Cxy =
�������
1 if h(x) = h(y)
0 otherwise

�⇒ E[Cxy] = Pr
h∼H[h(x) = h(y)] ≤ 1�M

Number of collisions between x and S is exactly ∑y∈S Cxy

�⇒ E
�������y∈S Cxy

������ = �y∈S E [Cxy] ≤ �
y∈S

1

M
= N�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 7 / 16

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of
expectations.

So universal distributions are great. Can we construct them?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 8 / 16

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of
expectations.

So universal distributions are great. Can we construct them?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 8 / 16

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of
expectations.

So universal distributions are great. Can we construct them?

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 8 / 16

Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions {h1,h2, . . .}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:

� U = {0,1}u (so �U � = 2u)

� M = 2b, so an index to A is an element of {0,1}b
Construction: H = {0,1}b×u , i.e., H is all b × u binary matrices

� Each h ∈ H is a (linear) function from U to [M]:
h(x) = hx ∈ {0,1}b (all operations mod 2)

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 9 / 16

Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions {h1,h2, . . .}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:

� U = {0,1}u (so �U � = 2u)

� M = 2b, so an index to A is an element of {0,1}b

Construction: H = {0,1}b×u , i.e., H is all b × u binary matrices

� Each h ∈ H is a (linear) function from U to [M]:
h(x) = hx ∈ {0,1}b (all operations mod 2)

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 9 / 16

Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions {h1,h2, . . .}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:

� U = {0,1}u (so �U � = 2u)

� M = 2b, so an index to A is an element of {0,1}b
Construction: H = {0,1}b×u , i.e., H is all b × u binary matrices

� Each h ∈ H is a (linear) function from U to [M]:
h(x) = hx ∈ {0,1}b (all operations mod 2)

10.4. UNIVERSAL HASHING 53

We now immediately get the following corollary.

Corollary 10.3 If H is universal then for any sequence of L insert, lookup, and delete operations
in which there are at most M elements in the system at any one time, the expected total cost of the
L operations for a random h � H is only O(L) (viewing the time to compute h as constant).

Proof: For any given operation in the sequence, its expected cost is constant by Theorem 10.2,
so the expected total cost of the L operations is O(L) by linearity of expectation.

Question: can we actually construct a universal H? If not, this this is all pretty vacuous. Luckily,
the answer is yes.

Terminology: If H is a uniform distribution over a set of hash functions {h1, h2, . . .}, then that
set is called a universal hash family. We will use “H” for both the set and the probability
distribution. Either way, we think of H as a probabilistic way of constructing a hash function.

10.4.1 Constructing a universal hash family: the matrix method

Let’s say keys are u-bits long. Say the table size M is power of 2, so an index is b-bits long with
M = 2b.

What we will do is pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx, where we do
addition mod 2. These matrices are short and fat. For instance:

=
1 0 0 0 1 1
0 1 1 1 0 1
1 1 1 0 1 0
 0

h x h(x)

Claim 10.4 For x �= y, Prh[h(x) = h(y)] = 1/M = 1/2b.

Proof: First of all, what does it mean to multiply h by x? We can think of it as adding some of
the columns of h (doing vector addition mod 2) where the 1 bits in x indicate which ones to add.
(e.g., we added the 1st and 3rd columns of h above)

Now, take an arbitrary pair of keys x, y such that x �= y. They must di�er someplace, so say they
di�er in the ith coordinate and for concreteness say xi = 0 and yi = 1. Imagine we first choose all
of h but the ith column. Over the remaining choices of ith column, h(x) is fixed. However, each
of the 2b di�erent settings of the ith column gives a di�erent value of h(y) (in particular, every
time we flip a bit in that column, we flip the corresponding bit in h(y)). So there is exactly a 1/2b

chance that h(x) = h(y).

There are other methods to construct universal hash families based on multiplication modulo primes
as well (see Section 10.6.1).

The next question we consider is: if we fix the set S, can we find a hash function h such that all
lookups are constant-time? The answer is yes, and this leads to the topic of perfect hashing.

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 9 / 16

Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1�M for all x ≠ y ∈ {0,1}u .

Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.
Draw all entries of h except for hi . Let h′ = h with hi all 0’s

� h(x) = h′(x) already fixed.

� If h(y) = h(x), then hi must equal h(x) − h′(y)
� Happens with probability exactly 1�2b = 1�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 10 / 16

Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1�M for all x ≠ y ∈ {0,1}u .
Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.
Draw all entries of h except for hi . Let h′ = h with hi all 0’s

� h(x) = h′(x) already fixed.

� If h(y) = h(x), then hi must equal h(x) − h′(y)
� Happens with probability exactly 1�2b = 1�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 10 / 16

Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1�M for all x ≠ y ∈ {0,1}u .
Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.

Draw all entries of h except for hi . Let h′ = h with hi all 0’s

� h(x) = h′(x) already fixed.

� If h(y) = h(x), then hi must equal h(x) − h′(y)
� Happens with probability exactly 1�2b = 1�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 10 / 16

Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1�M for all x ≠ y ∈ {0,1}u .
Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.
Draw all entries of h except for hi . Let h′ = h with hi all 0’s

� h(x) = h′(x) already fixed.

� If h(y) = h(x), then hi must equal h(x) − h′(y)
� Happens with probability exactly 1�2b = 1�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 10 / 16

K

E
i

Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1�M for all x ≠ y ∈ {0,1}u .
Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.
Draw all entries of h except for hi . Let h′ = h with hi all 0’s

� h(x) = h′(x) already fixed.

� If h(y) = h(x), then hi must equal h(x) − h′(y)

� Happens with probability exactly 1�2b = 1�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 10 / 16

Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1�M for all x ≠ y ∈ {0,1}u .
Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.
Draw all entries of h except for hi . Let h′ = h with hi all 0’s

� h(x) = h′(x) already fixed.

� If h(y) = h(x), then hi must equal h(x) − h′(y)
� Happens with probability exactly 1�2b = 1�M

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 10 / 16

Perfect Hashing

Suppose you know S , never changes.
� Build table, then do lookups. Like a real dictionary!

� Care more about time to do lookup than time to build dictionary

Obvious approaches:

� Sorted array: lookups O(logN)
� Balanced search tree: O(logN)

Can we do better with hashing? Yes, through universal hashing!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 11 / 16

Perfect Hashing

Suppose you know S , never changes.
� Build table, then do lookups. Like a real dictionary!

� Care more about time to do lookup than time to build dictionary

Obvious approaches:

� Sorted array: lookups O(logN)
� Balanced search tree: O(logN)

Can we do better with hashing? Yes, through universal hashing!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 11 / 16

Perfect Hashing

Suppose you know S , never changes.
� Build table, then do lookups. Like a real dictionary!

� Care more about time to do lookup than time to build dictionary

Obvious approaches:

� Sorted array: lookups O(logN)
� Balanced search tree: O(logN)

Can we do better with hashing?

Yes, through universal hashing!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 11 / 16

Perfect Hashing

Suppose you know S , never changes.
� Build table, then do lookups. Like a real dictionary!

� Care more about time to do lookup than time to build dictionary

Obvious approaches:

� Sorted array: lookups O(logN)
� Balanced search tree: O(logN)

Can we do better with hashing? Yes, through universal hashing!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 11 / 16

Method 1
Use table of size M = N2.

Theorem

Let H be universal with M = N2. Then Prh∼H[no collisions in S] ≥ 1�2.
Proof.
Fix x,y ∈ S with x ≠ y .
Prh∼H[h(x) = h(y)] ≤ 1�M = 1�N2 by universality.

Pr
h∼H[∃ collision in S] ≤ �

x,y∈S
x≠y

Pr
h∼H[h(x) = h(y)] ≤ �

x,y∈S
x≠y

1

N2

= �N
2
� 1

N2
= N(N − 1)

2

1

N2
≤ 1

2

So keep sampling h ∼ H until get one with no collisions!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 12 / 16

Method 1
Use table of size M = N2.

Theorem

Let H be universal with M = N2. Then Prh∼H[no collisions in S] ≥ 1�2.
Proof.
Fix x,y ∈ S with x ≠ y .

Prh∼H[h(x) = h(y)] ≤ 1�M = 1�N2 by universality.

Pr
h∼H[∃ collision in S] ≤ �

x,y∈S
x≠y

Pr
h∼H[h(x) = h(y)] ≤ �

x,y∈S
x≠y

1

N2

= �N
2
� 1

N2
= N(N − 1)

2

1

N2
≤ 1

2

So keep sampling h ∼ H until get one with no collisions!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 12 / 16

Method 1
Use table of size M = N2.

Theorem

Let H be universal with M = N2. Then Prh∼H[no collisions in S] ≥ 1�2.
Proof.
Fix x,y ∈ S with x ≠ y .
Prh∼H[h(x) = h(y)] ≤ 1�M = 1�N2 by universality.

Pr
h∼H[∃ collision in S] ≤ �

x,y∈S
x≠y

Pr
h∼H[h(x) = h(y)] ≤ �

x,y∈S
x≠y

1

N2

= �N
2
� 1

N2
= N(N − 1)

2

1

N2
≤ 1

2

So keep sampling h ∼ H until get one with no collisions!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 12 / 16

Method 1
Use table of size M = N2.

Theorem

Let H be universal with M = N2. Then Prh∼H[no collisions in S] ≥ 1�2.
Proof.
Fix x,y ∈ S with x ≠ y .
Prh∼H[h(x) = h(y)] ≤ 1�M = 1�N2 by universality.

Pr
h∼H[∃ collision in S] ≤ �

x,y∈S
x≠y

Pr
h∼H[h(x) = h(y)] ≤ �

x,y∈S
x≠y

1

N2

= �N
2
� 1

N2
= N(N − 1)

2

1

N2
≤ 1

2

So keep sampling h ∼ H until get one with no collisions!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 12 / 16

name

anion ban d

Method 1
Use table of size M = N2.

Theorem

Let H be universal with M = N2. Then Prh∼H[no collisions in S] ≥ 1�2.
Proof.
Fix x,y ∈ S with x ≠ y .
Prh∼H[h(x) = h(y)] ≤ 1�M = 1�N2 by universality.

Pr
h∼H[∃ collision in S] ≤ �

x,y∈S
x≠y

Pr
h∼H[h(x) = h(y)] ≤ �

x,y∈S
x≠y

1

N2

= �N
2
� 1

N2
= N(N − 1)

2

1

N2
≤ 1

2

So keep sampling h ∼ H until get one with no collisions!

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 12 / 16

Method 2

M = N2 is pretty big!

� Only storing N things, and know them ahead of time

� Want space O(N)
� Open question for a long time!

Starting approach: set M = N , use a universal hash family H . Draw h ∼ H .

� Will have collisions. Need to do something other than chaining.

For each i ∈ [M], let Si = {x ∈ S ∶ h(x) = i} and let ni = �Si �� Use another hash table for Si !� Use Method 1: O(n2
i
)-size perfect hashing of Si .� Let hi ∶ U → [n2

i
] be hash function for Si , and Ai be table (pointer from A[i])

Lookup(x): Look in Ah(x)[hh(x)(x)]

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 13 / 16

Method 2

M = N2 is pretty big!

� Only storing N things, and know them ahead of time

� Want space O(N)
� Open question for a long time!

Starting approach: set M = N , use a universal hash family H . Draw h ∼ H .

� Will have collisions. Need to do something other than chaining.

For each i ∈ [M], let Si = {x ∈ S ∶ h(x) = i} and let ni = �Si �� Use another hash table for Si !� Use Method 1: O(n2
i
)-size perfect hashing of Si .� Let hi ∶ U → [n2

i
] be hash function for Si , and Ai be table (pointer from A[i])

Lookup(x): Look in Ah(x)[hh(x)(x)]

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 13 / 16

Method 2

M = N2 is pretty big!

� Only storing N things, and know them ahead of time

� Want space O(N)
� Open question for a long time!

Starting approach: set M = N , use a universal hash family H . Draw h ∼ H .

� Will have collisions. Need to do something other than chaining.

For each i ∈ [M], let Si = {x ∈ S ∶ h(x) = i} and let ni = �Si �

� Use another hash table for Si !� Use Method 1: O(n2
i
)-size perfect hashing of Si .� Let hi ∶ U → [n2

i
] be hash function for Si , and Ai be table (pointer from A[i])

Lookup(x): Look in Ah(x)[hh(x)(x)]

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 13 / 16

Method 2

M = N2 is pretty big!

� Only storing N things, and know them ahead of time

� Want space O(N)
� Open question for a long time!

Starting approach: set M = N , use a universal hash family H . Draw h ∼ H .

� Will have collisions. Need to do something other than chaining.

For each i ∈ [M], let Si = {x ∈ S ∶ h(x) = i} and let ni = �Si �� Use another hash table for Si !� Use Method 1: O(n2
i
)-size perfect hashing of Si .� Let hi ∶ U → [n2

i
] be hash function for Si , and Ai be table (pointer from A[i])

Lookup(x): Look in Ah(x)[hh(x)(x)]

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 13 / 16

Method 2

M = N2 is pretty big!

� Only storing N things, and know them ahead of time

� Want space O(N)
� Open question for a long time!

Starting approach: set M = N , use a universal hash family H . Draw h ∼ H .

� Will have collisions. Need to do something other than chaining.

For each i ∈ [M], let Si = {x ∈ S ∶ h(x) = i} and let ni = �Si �� Use another hash table for Si !� Use Method 1: O(n2
i
)-size perfect hashing of Si .� Let hi ∶ U → [n2

i
] be hash function for Si , and Ai be table (pointer from A[i])

Lookup(x): Look in Ah(x)[hh(x)(x)]
Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 13 / 16

Picture

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 14 / 16

Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

�⇒ Lookup time O(1)

Size: O(N +∑N

i=1 n2
i
)

Theorem
Let H be universal onto a table of size N . Then

Pr
h∼H �

N�
i=1

n2
i
> 4N� < 1�2.

So like with method 1: keep drawing h ∼ H until ∑N

i=1 n2
i
≤ 4N

Prove that E �∑N

i=1 n2
i
� ≤ 2N .� Implies theorem by Markov’s inequality� Pr[X > 2E [X]] ≤ 1�2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16

Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

�⇒ Lookup time O(1)
Size: O(N +∑N

i=1 n2
i
)

Theorem
Let H be universal onto a table of size N . Then

Pr
h∼H �

N�
i=1

n2
i
> 4N� < 1�2.

So like with method 1: keep drawing h ∼ H until ∑N

i=1 n2
i
≤ 4N

Prove that E �∑N

i=1 n2
i
� ≤ 2N .� Implies theorem by Markov’s inequality� Pr[X > 2E [X]] ≤ 1�2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16

Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

�⇒ Lookup time O(1)
Size: O(N +∑N

i=1 n2
i
)

Theorem
Let H be universal onto a table of size N . Then

Pr
h∼H �

N�
i=1

n2
i
> 4N� < 1�2.

So like with method 1: keep drawing h ∼ H until ∑N

i=1 n2
i
≤ 4N

Prove that E �∑N

i=1 n2
i
� ≤ 2N .� Implies theorem by Markov’s inequality� Pr[X > 2E [X]] ≤ 1�2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16

Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

�⇒ Lookup time O(1)
Size: O(N +∑N

i=1 n2
i
)

Theorem
Let H be universal onto a table of size N . Then

Pr
h∼H �

N�
i=1

n2
i
> 4N� < 1�2.

So like with method 1: keep drawing h ∼ H until ∑N

i=1 n2
i
≤ 4N

Prove that E �∑N

i=1 n2
i
� ≤ 2N .� Implies theorem by Markov’s inequality� Pr[X > 2E [X]] ≤ 1�2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16

Proof
Observation: ∑N

i=1 n2
i
is exactly number of ordered pairs that collide, including self-collisions

� Example: If Si = {a,b, c} then n2
i
= 9. Ordered colliding pairs:(a,a), (a,b), (a, c), (b,a), (b,b), (b, c), (c,a), (c,b), (c, c)

Let Cxy =
�������
1 if h(x) = h(y)
0 otherwise

E � N�
i=1

n2
i
� = E

�������x∈S �y∈S Cxy

������= N + �
x∈S �

y∈S ∶y≠x
E [Cxy] (linearity of expectations)

≤ N + N(N − 1)
M

(definition of universal)

< 2N (since M = N)

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 16 / 16

Proof
Observation: ∑N

i=1 n2
i
is exactly number of ordered pairs that collide, including self-collisions

� Example: If Si = {a,b, c} then n2
i
= 9. Ordered colliding pairs:(a,a), (a,b), (a, c), (b,a), (b,b), (b, c), (c,a), (c,b), (c, c)

Let Cxy =
�������
1 if h(x) = h(y)
0 otherwise

E � N�
i=1

n2
i
� = E

�������x∈S �y∈S Cxy

������= N + �
x∈S �

y∈S ∶y≠x
E [Cxy] (linearity of expectations)

≤ N + N(N − 1)
M

(definition of universal)

< 2N (since M = N)

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 16 / 16

Proof
Observation: ∑N

i=1 n2
i
is exactly number of ordered pairs that collide, including self-collisions

� Example: If Si = {a,b, c} then n2
i
= 9. Ordered colliding pairs:(a,a), (a,b), (a, c), (b,a), (b,b), (b, c), (c,a), (c,b), (c, c)

Let Cxy =
�������
1 if h(x) = h(y)
0 otherwise

E � N�
i=1

n2
i
� = E

�������x∈S �y∈S Cxy

������= N + �
x∈S �

y∈S ∶y≠x
E [Cxy] (linearity of expectations)

≤ N + N(N − 1)
M

(definition of universal)

< 2N (since M = N)

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 16 / 16

