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Introduction

Another approach to dictionaries (insert, lookup, delete): hashing

▸ Can improve operations to O(1), but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.

▸ Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)
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Hashing Basics
▸ Keys from universe U (think very large)

▸ Set S ⊆ U of keys we actually care about (think relatively small). ∣S ∣ = N .

▸ Hash table A (array) of size M .
▸ Hash function h ∶ U → [M]

▸ [M] = {1,2, . . . ,M}
▸ Idea: store x in A[h(x)]

One more component: collision resolution

▸ Today: separate chaining

▸ A[i ] is a linked list containing all x
inserted where h(x) = i .
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Dictionary Operations

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x . Remove it from the list.

Question: What should hash function be?

Properties we want:

▸ Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
▸ Small M . Ideally, M = O(N).
▸ h fast to compute.
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Bad News

Theorem

For any hash function h, if ∣U ∣ ≥ (N − 1)M + 1, then there exists a set S of N elements that
all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

▸ Option 1: don’t worry about it, hope world isn’t adversarial.
▸ Option 2: Randomness! Random function h ∶ U → [M]

▸ For each x ∈ U , choose y ∈ [M] uniformly at random and set h(x) = y .
▸ Hopefully good behavior in expectation.
▸ Problem: How can we store/remember/create h?
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Universal Hashing

Definition

A probability distribution H over hash functions {h ∶ U → [M]} is universal if

Pr
h∼H
[h(x) = h(y)] ≤ 1/M

for all x,y ∈ U with x ≠ y .

Clearly satisfied by H = uniform distribution over all hash functions

Theorem

If H is universal, then for every set S ⊆ U with ∣S ∣ = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N/M .

So Lookup(x) and Delete(x) have expected time O(N/M).
Ô⇒ If M = Ω(N), operations in O(1) time!
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Main Proof

Theorem

If H is universal, then for every set S ⊆ U with ∣S ∣ = N and for every x ∈ U , the expected
number of collisions (when we draw h from H) between x and elements of S is at most N/M .

Proof.

Let Cxy =
⎧⎪⎪⎨⎪⎪⎩

1 if h(x) = h(y)
0 otherwise

Ô⇒ E [Cxy ] = Pr
h∼H
[h(x) = h(y)] ≤ 1/M

Number of collisions between x and S is exactly ∑y∈S Cxy

Ô⇒ E
⎡⎢⎢⎢⎢⎣
∑
y∈S

Cxy

⎤⎥⎥⎥⎥⎦
= ∑

y∈S
E [Cxy ] ≤ ∑

y∈S

1

M
= N/M
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Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which
there are at most O(M) elements in the system at any time, the expected total cost of the
whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of
expectations.

So universal distributions are great. Can we construct them?
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Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions {h1,h2, . . .}, then that
set is called a universal hash family.

Often use H to refer to both set of functions and uniform distribution over it.

Notation:

▸ U = {0,1}u (so ∣U ∣ = 2u)

▸ M = 2b, so an index to A is an element of {0,1}b

Construction: H = {0,1}b×u , i.e., H is all b × u binary matrices

▸ Each h ∈ H is a (linear) function from U to [M]:
h(x) = hx ∈ {0,1}b (all operations mod 2)

10.4. UNIVERSAL HASHING 53

We now immediately get the following corollary.

Corollary 10.3 If H is universal then for any sequence of L insert, lookup, and delete operations
in which there are at most M elements in the system at any one time, the expected total cost of the
L operations for a random h ∈ H is only O(L) (viewing the time to compute h as constant).

Proof: For any given operation in the sequence, its expected cost is constant by Theorem 10.2,
so the expected total cost of the L operations is O(L) by linearity of expectation.

Question: can we actually construct a universal H? If not, this this is all pretty vacuous. Luckily,
the answer is yes.

Terminology: If H is a uniform distribution over a set of hash functions {h1, h2, . . .}, then that
set is called a universal hash family. We will use “H” for both the set and the probability
distribution. Either way, we think of H as a probabilistic way of constructing a hash function.

10.4.1 Constructing a universal hash family: the matrix method

Let’s say keys are u-bits long. Say the table size M is power of 2, so an index is b-bits long with
M = 2b.

What we will do is pick h to be a random b-by-u 0/1 matrix, and define h(x) = hx, where we do
addition mod 2. These matrices are short and fat. For instance:

=
1  0  0  0    1       1
0  1  1  1    0       1
1  1  1  0    1       0
                  0

h        x      h(x)

Claim 10.4 For x �= y, Prh[h(x) = h(y)] = 1/M = 1/2b.

Proof: First of all, what does it mean to multiply h by x? We can think of it as adding some of
the columns of h (doing vector addition mod 2) where the 1 bits in x indicate which ones to add.
(e.g., we added the 1st and 3rd columns of h above)

Now, take an arbitrary pair of keys x, y such that x �= y. They must differ someplace, so say they
differ in the ith coordinate and for concreteness say xi = 0 and yi = 1. Imagine we first choose all
of h but the ith column. Over the remaining choices of ith column, h(x) is fixed. However, each
of the 2b different settings of the ith column gives a different value of h(y) (in particular, every
time we flip a bit in that column, we flip the corresponding bit in h(y)). So there is exactly a 1/2b

chance that h(x) = h(y).

There are other methods to construct universal hash families based on multiplication modulo primes
as well (see Section 10.6.1).

The next question we consider is: if we fix the set S, can we find a hash function h such that all
lookups are constant-time? The answer is yes, and this leads to the topic of perfect hashing.
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Universality

Theorem

H is a universal hash family: Prh∼H[h(x) = h(y)] ≤ 1/M for all x ≠ y ∈ {0,1}u .

Proof.

Matrix multiplication: h(x) = hx = ∑i ∶xi=1 hi (where hi is i ’th column of h).

Since x ≠ y , there is i s.t. xi ≠ yi . WLOG, xi = 0 and yi = 1.
Draw all entries of h except for hi . Let h′ = h with hi all 0’s

▸ h(x) = h′(x) already fixed.

▸ If h(y) = h(x), then hi must equal h(x) − h′(y)
▸ Happens with probability exactly 1/2b = 1/M
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Perfect Hashing

Suppose you know S , never changes.
▸ Build table, then do lookups. Like a real dictionary!

▸ Care more about time to do lookup than time to build dictionary

Obvious approaches:

▸ Sorted array: lookups O(logN)
▸ Balanced search tree: O(logN)

Can we do better with hashing? Yes, through universal hashing!
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Method 1
Use table of size M = N2.

Theorem

Let H be universal with M = N2. Then Prh∼H[no collisions in S] ≥ 1/2.

Proof.

Fix x,y ∈ S with x ≠ y .
Prh∼H[h(x) = h(y)] ≤ 1/M = 1/N2 by universality.

Pr
h∼H
[∃ collision in S] ≤ ∑

x,y∈S
x≠y

Pr
h∼H
[h(x) = h(y)] ≤ ∑

x,y∈S
x≠y

1

N2

= (
N
2
)

1

N2
=

N(N − 1)
2

1

N2
≤
1

2

So keep sampling h ∼ H until get one with no collisions!
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Method 2

M = N2 is pretty big!

▸ Only storing N things, and know them ahead of time

▸ Want space O(N)
▸ Open question for a long time!

Starting approach: set M = N , use a universal hash family H . Draw h ∼ H .

▸ Will have collisions. Need to do something other than chaining.

For each i ∈ [M], let Si = {x ∈ S ∶ h(x) = i} and let ni = ∣Si ∣
▸ Use another hash table for Si !
▸ Use Method 1: O(n2

i )-size perfect hashing of Si .

▸ Let hi ∶ U → [n2
i ] be hash function for Si , and Ai be table (pointer from A[i ])

Lookup(x): Look in Ah(x)[hh(x)(x)]
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Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

Ô⇒ Lookup time O(1)

Size: O(N +∑N
i=1 n2

i )

Theorem

Let H be universal onto a table of size N . Then

Pr
h∼H
[

N
∑
i=1

n2
i > 4N] < 1/2.

So like with method 1: keep drawing h ∼ H until ∑N
i=1 n2

i ≤ 4N

Prove that E [∑N
i=1 n2

i ] ≤ 2N .

▸ Implies theorem by Markov’s inequality
▸ Pr[X > 2E [X ]] ≤ 1/2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16



Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

Ô⇒ Lookup time O(1)

Size: O(N +∑N
i=1 n2

i )

Theorem

Let H be universal onto a table of size N . Then

Pr
h∼H
[

N
∑
i=1

n2
i > 4N] < 1/2.

So like with method 1: keep drawing h ∼ H until ∑N
i=1 n2

i ≤ 4N

Prove that E [∑N
i=1 n2

i ] ≤ 2N .

▸ Implies theorem by Markov’s inequality
▸ Pr[X > 2E [X ]] ≤ 1/2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16



Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

Ô⇒ Lookup time O(1)

Size: O(N +∑N
i=1 n2

i )

Theorem

Let H be universal onto a table of size N . Then

Pr
h∼H
[

N
∑
i=1

n2
i > 4N] < 1/2.

So like with method 1: keep drawing h ∼ H until ∑N
i=1 n2

i ≤ 4N

Prove that E [∑N
i=1 n2

i ] ≤ 2N .

▸ Implies theorem by Markov’s inequality
▸ Pr[X > 2E [X ]] ≤ 1/2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16



Analysis
Lookup time: by analysis of Method 1, no collisions in second level.

Ô⇒ Lookup time O(1)

Size: O(N +∑N
i=1 n2

i )

Theorem

Let H be universal onto a table of size N . Then

Pr
h∼H
[

N
∑
i=1

n2
i > 4N] < 1/2.

So like with method 1: keep drawing h ∼ H until ∑N
i=1 n2

i ≤ 4N

Prove that E [∑N
i=1 n2

i ] ≤ 2N .

▸ Implies theorem by Markov’s inequality
▸ Pr[X > 2E [X ]] ≤ 1/2 for nonnegative random variables X .

Michael Dinitz Lecture 10: Universal and Perfect Hashing September 26, 2024 15 / 16



Proof
Observation: ∑N

i=1 n2
i is exactly number of ordered pairs that collide, including self-collisions

▸ Example: If Si = {a,b, c} then n2
i = 9. Ordered colliding pairs:

(a,a), (a,b), (a, c), (b,a), (b,b), (b, c), (c,a), (c,b), (c, c)

Let Cxy =
⎧⎪⎪⎨⎪⎪⎩

1 if h(x) = h(y)
0 otherwise

E [
N
∑
i=1

n2
i ] = E

⎡⎢⎢⎢⎢⎣
∑
x∈S
∑
y∈S

Cxy

⎤⎥⎥⎥⎥⎦
= N + ∑

x∈S
∑

y∈S ∶y≠x
E [Cxy ] (linearity of expectations)

≤ N +
N(N − 1)

M
(definition of universal)

< 2N (since M = N)
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