Lecture 10: Universal and Perfect Hashing

Michael Dinitz

September 26, 2024 601.433/633 Introduction to Algorithms

Introduction

Another approach to dictionaries (insert, lookup, delete): hashing

• Can improve operations to O(1), but with many caveats!

Should have seen some discussion of hashing in data structures. Also in CLRS.

Separate chaining vs. open addressing

Today: discussion of caveats, more advanced versions of hashing (universal and perfect)

Hashing Basics

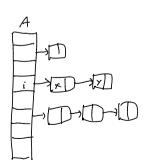
- ► Keys from universe *U* (think very large)
- ▶ Set $S \subseteq U$ of keys we actually care about (think relatively small). |S| = N.
- ▶ Hash table **A** (array) of size **M**.
- ▶ Hash function $h: U \rightarrow [M]$
 - $[M] = \{1, 2, ..., M\}$
- Idea: store x in A[h(x)]

Hashing Basics

- ▶ Keys from universe *U* (think very large)
- ▶ Set $S \subseteq U$ of keys we actually care about (think relatively small). |S| = N.
- ► Hash table **A** (array) of size **M**.
- ▶ Hash function $h: U \rightarrow [M]$
 - $[M] = \{1, 2, ..., M\}$
- Idea: store x in A[h(x)]

One more component: collision resolution

- ► Today: separate chaining
- ▶ A[i] is a linked list containing all x inserted where h(x) = i.



Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
- ▶ Small M. Ideally, M = O(N).

Lookup(x): Walk down the list at A[h(x)] until we find x (or walk to the end of the list)

Insert(x): Add x to the beginning of the list at A[h(x)].

Delete(x): Walk down the list at A[h(x)] until we find x. Remove it from the list.

Question: What should hash function be?

Properties we want:

- Few collisions. Time of lookup, delete for x is O(length of list at A[h(x)]).
- ▶ Small M. Ideally, M = O(N).
- ▶ **h** fast to compute.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

5/16

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

Option 1: don't worry about it, hope world isn't adversarial.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope world isn't adversarial.
- Option 2: Randomness! Random function h: U → [M]
 - For each $x \in U$, choose $y \in [M]$ uniformly at random and set h(x) = y.
 - ▶ Hopefully good behavior in expectation.

Theorem

For any hash function h, if $|U| \ge (N-1)M+1$, then there exists a set S of N elements that all hash to the same location.

Proof.

Pigeonhole principle / contradiction / contrapositive.

So worst case behavior always bad! How can we get around this?

- Option 1: don't worry about it, hope world isn't adversarial.
- Option 2: Randomness! Random function h: U → [M]
 - For each $x \in U$, choose $y \in [M]$ uniformly at random and set h(x) = y.
 - Hopefully good behavior in expectation.
 - ▶ Problem: How can we store/remember/create *h*?

Definition

A probability distribution \boldsymbol{H} over hash functions $\{\boldsymbol{h}: \boldsymbol{U} \rightarrow [\boldsymbol{M}]\}$ is universal if

$$\Pr_{h\sim H}[h(x)=h(y)]\leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Definition

A probability distribution \boldsymbol{H} over hash functions $\{\boldsymbol{h}: \boldsymbol{U} \rightarrow [\boldsymbol{M}]\}$ is universal if

$$\Pr_{h\sim H}[h(x)=h(y)]\leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by \mathbf{H} = uniform distribution over all hash functions

Definition

A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is *universal* if

$$\Pr_{h\sim H}[h(x)=h(y)]\leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by \mathbf{H} = uniform distribution over all hash functions

Theorem

If \boldsymbol{H} is universal, then for every set $\boldsymbol{S} \subseteq \boldsymbol{U}$ with $|\boldsymbol{S}| = \boldsymbol{N}$ and for every $\boldsymbol{x} \in \boldsymbol{U}$, the expected number of collisions (when we draw \boldsymbol{h} from \boldsymbol{H}) between \boldsymbol{x} and elements of \boldsymbol{S} is at most $\boldsymbol{N}/\boldsymbol{M}$.

Definition

A probability distribution H over hash functions $\{h: U \rightarrow [M]\}$ is *universal* if

$$\Pr_{h\sim H}[h(x)=h(y)]\leq 1/M$$

for all $x, y \in U$ with $x \neq y$.

Clearly satisfied by \mathbf{H} = uniform distribution over all hash functions

Theorem

If \boldsymbol{H} is universal, then for every set $\boldsymbol{S} \subseteq \boldsymbol{U}$ with $|\boldsymbol{S}| = \boldsymbol{N}$ and for every $\boldsymbol{x} \in \boldsymbol{U}$, the expected number of collisions (when we draw \boldsymbol{h} from \boldsymbol{H}) between \boldsymbol{x} and elements of \boldsymbol{S} is at most $\boldsymbol{N}/\boldsymbol{M}$.

So Lookup(x) and Delete(x) have expected time O(N/M).

 \implies If $M = \Omega(N)$, operations in O(1) time!

Michael Dinitz

Main Proof

Theorem

If \boldsymbol{H} is universal, then for every set $\boldsymbol{S} \subseteq \boldsymbol{U}$ with $|\boldsymbol{S}| = \boldsymbol{N}$ and for every $\boldsymbol{x} \in \boldsymbol{U}$, the expected number of collisions (when we draw \boldsymbol{h} from \boldsymbol{H}) between \boldsymbol{x} and elements of \boldsymbol{S} is at most $\boldsymbol{N}/\boldsymbol{M}$.

Proof.

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

$$\implies E[C_{xy}] = \Pr_{h \in H}[h(x) = h(y)] \le 1/M$$

Main Proof

Theorem

If H is universal, then for every set $S \subseteq U$ with |S| = N and for every $x \in U$, the expected number of collisions (when we draw h from H) between x and elements of S is at most N/M.

Proof.

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

$$\implies E[C_{xy}] = \Pr_{h \in H}[h(x) = h(y)] \le 1/M$$

Number of collisions between x and S is exactly $\sum_{y \in S} C_{xy}$

$$\implies E\left[\sum_{y \in S} C_{xy}\right] = \sum_{y \in S} E\left[C_{xy}\right] \le \sum_{y \in S} \frac{1}{M} = N/M$$

Michael Dinitz

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most O(M) elements in the system at any time, the expected total cost of the whole sequence is only O(L) (assuming h takes constant time to compute).

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most O(M) elements in the system at any time, the expected total cost of the whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of expectations.

Main Corollary

Corollary

If H is universal, then for any sequence of L insert, lookup, and delete operations in which there are at most O(M) elements in the system at any time, the expected total cost of the whole sequence is only O(L) (assuming h takes constant time to compute).

Proof.

By theorem, each operation O(1) in expectation. Total time is sum: linearity of expectations.

So universal distributions are great. Can we construct them?

Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \dots\}$, then that set is called a *universal hash family*.

Often use **H** to refer to both set of functions and uniform distribution over it.

Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \dots\}$, then that set is called a *universal hash family*.

Often use **H** to refer to both set of functions and uniform distribution over it.

Notation:

- $U = \{0,1\}^u \text{ (so } |U| = 2^u)$
- $M = 2^b$, so an index to A is an element of $\{0, 1\}^b$

Universal Hash Families

Definition

If H is universal and is a uniform distribution over a set of functions $\{h_1, h_2, \dots\}$, then that set is called a *universal hash family*.

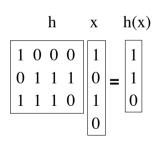
Often use **H** to refer to both set of functions and uniform distribution over it.

Notation:

- $U = \{0,1\}^u \text{ (so } |U| = 2^u)$
- $M = 2^b$, so an index to A is an element of $\{0,1\}^b$

Construction: $H = \{0,1\}^{b \times u}$, i.e., H is all $b \times u$ binary matrices

Each h∈ H is a (linear) function from U to [M]: h(x) = hx ∈ {0,1}^b (all operations mod 2)



Theorem

H is a universal hash family: $\Pr_{h \sim H}[h(x) = h(y)] \leq 1/M$ for all $x \neq y \in \{0,1\}^u$.

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x)=h(y)] \leq 1/M$ for all $x\neq y\in\{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x=1} h^i$ (where h^i is i'th column of h).

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x)=h(y)] \leq 1/M$ for all $x\neq y\in\{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x)=h(y)] \leq 1/M$ for all $x\neq y\in\{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i . Let h' = h with h^i all 0's

h(x) = h'(x) already fixed.

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x)=h(y)] \leq 1/M$ for all $x\neq y\in\{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i . Let h' = h with h^i all 0's

- h(x) = h'(x) already fixed.
- If h(y) = h(x), then h^i must equal h(x) h'(y)

Theorem

H is a universal hash family: $Pr_{h\sim H}[h(x)=h(y)] \leq 1/M$ for all $x\neq y\in\{0,1\}^u$.

Proof.

Matrix multiplication: $h(x) = hx = \sum_{i:x_i=1} h^i$ (where h^i is i'th column of h).

Since $x \neq y$, there is i s.t. $x_i \neq y_i$. WLOG, $x_i = 0$ and $y_i = 1$.

Draw all entries of h except for h^i . Let h' = h with h^i all 0's

- h(x) = h'(x) already fixed.
- ▶ If h(y) = h(x), then h^i must equal h(x) h'(y)
- ▶ Happens with probability exactly $1/2^b = 1/M$

Perfect Hashing

Suppose you know **S**, never changes.

- Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Perfect Hashing

Suppose you know **S**, never changes.

- ▶ Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- ► Sorted array: lookups $O(\log N)$
- ▶ Balanced search tree: O(log N)

Perfect Hashing

Suppose you know **S**, never changes.

- ▶ Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- ► Sorted array: lookups $O(\log N)$
- ▶ Balanced search tree: O(log N)

Can we do better with hashing?

Perfect Hashing

Suppose you know **S**, never changes.

- ▶ Build table, then do lookups. Like a real dictionary!
- Care more about time to do lookup than time to build dictionary

Obvious approaches:

- ► Sorted array: lookups $O(\log N)$
- ▶ Balanced search tree: O(log N)

Can we do better with hashing? Yes, through universal hashing!

Use table of size $M = N^2$.

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

 $Pr_{h\sim H}[h(x) = h(y)] \le 1/M = 1/N^2$ by universality.

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

 $Pr_{h\sim H}[h(x)=h(y)] \leq 1/M = 1/N^2$ by universality.

$$\Pr_{h \sim H} [\exists \text{ collision in } S] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \Pr_{h \sim H} [h(x) = h(y)] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \frac{1}{N^2}$$
$$= \binom{N}{2} \frac{1}{N^2} = \frac{N(N-1)}{2} \frac{1}{N^2} \leq \frac{1}{2}$$

Use table of size $M = N^2$.

Theorem

Let **H** be universal with $M = N^2$. Then $Pr_{h\sim H}[no\ collisions\ in\ S] <math>\geq 1/2$.

Proof.

Fix $x, y \in S$ with $x \neq y$.

 $Pr_{h\sim H}[h(x) = h(y)] \le 1/M = 1/N^2$ by universality.

$$\Pr_{h \sim H} [\exists \text{ collision in } S] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \Pr_{h \sim H} [h(x) = h(y)] \leq \sum_{\substack{x,y \in S \\ x \neq y}} \frac{1}{N^2}$$
$$= \binom{N}{2} \frac{1}{N^2} = \frac{N(N-1)}{2} \frac{1}{N^2} \leq \frac{1}{2}$$

So keep sampling $h \sim H$ until get one with no collisions!

Michael Dinitz

- $M = N^2$ is pretty big!
 - Only storing N things, and know them ahead of time
 - ▶ Want space *O(N)*
 - ▶ Open question for a long time!

- $M = N^2$ is pretty big!
 - Only storing N things, and know them ahead of time
 - ▶ Want space *O(N)*
 - Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

Will have collisions. Need to do something other than chaining.

- $M = N^2$ is pretty big!
 - Only storing N things, and know them ahead of time
 - ▶ Want space *O(N)*
 - Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

▶ Will have collisions. Need to do something other than chaining.

For each $i \in [M]$, let $S_i = \{x \in S : h(x) = i\}$ and let $n_i = |S_i|$

- $M = N^2$ is pretty big!
 - Only storing N things, and know them ahead of time
 - ▶ Want space *O(N)*
 - ▶ Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

Will have collisions. Need to do something other than chaining.

For each
$$i \in [M]$$
, let $S_i = \{x \in S : h(x) = i\}$ and let $n_i = |S_i|$

- ▶ Use another hash table for S_i!
- Use Method 1: $O(n_i^2)$ -size perfect hashing of S_i .
 - Let $h_i: U \to [n_i^2]$ be hash function for S_i , and A_i be table (pointer from A[i])

- $M = N^2$ is pretty big!
 - ▶ Only storing **N** things, and know them ahead of time
 - ▶ Want space *O(N)*
 - ▶ Open question for a long time!

Starting approach: set M = N, use a universal hash family H. Draw $h \sim H$.

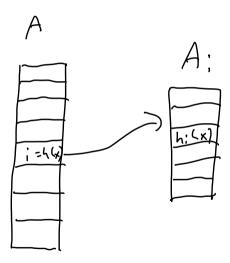
Will have collisions. Need to do something other than chaining.

For each
$$i \in [M]$$
, let $S_i = \{x \in S : h(x) = i\}$ and let $n_i = |S_i|$

- ▶ Use another hash table for S_i!
- Use Method 1: $O(n_i^2)$ -size perfect hashing of S_i .
 - Let $h_i: U \to [n_i^2]$ be hash function for S_i , and A_i be table (pointer from A[i])

Lookup(x): Look in $A_{h(x)}[h_{h(x)}(x)]$

Picture



Lookup time: by analysis of Method 1, no collisions in second level.

 \implies Lookup time O(1)

Lookup time: by analysis of Method 1, no collisions in second level.

$$\implies$$
 Lookup time $O(1)$

Size:
$$O(N + \sum_{i=1}^{N} n_i^2)$$

Lookup time: by analysis of Method 1, no collisions in second level.

 \implies Lookup time O(1)

Size:
$$O(N + \sum_{i=1}^{N} n_i^2)$$

Theorem

Let **H** be universal onto a table of size **N**. Then

$$\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.$$

So like with method 1: keep drawing $h \sim H$ until $\sum_{i=1}^{N} n_i^2 \leq 4N$

Lookup time: by analysis of Method 1, no collisions in second level.

$$\implies$$
 Lookup time $O(1)$

Size:
$$O(N + \sum_{i=1}^{N} n_i^2)$$

Theorem

Let **H** be universal onto a table of size **N**. Then

$$\Pr_{h \sim H} \left[\sum_{i=1}^{N} n_i^2 > 4N \right] < 1/2.$$

So like with method 1: keep drawing $h \sim H$ until $\sum_{i=1}^{N} n_i^2 \leq 4N$

Prove that $E\left[\sum_{i=1}^{N} n_i^2\right] \leq 2N$.

- Implies theorem by Markov's inequality
 - ▶ $Pr[X > 2E[X]] \le 1/2$ for nonnegative random variables X.

Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions

Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions

Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

Proof

Observation: $\sum_{i=1}^{N} n_i^2$ is exactly number of ordered pairs that collide, including self-collisions

► Example: If $S_i = \{a, b, c\}$ then $n_i^2 = 9$. Ordered colliding pairs: (a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)

Let
$$C_{xy} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$$

$$E\left[\sum_{i=1}^{N} n_{i}^{2}\right] = E\left[\sum_{x \in S} \sum_{y \in S} C_{xy}\right]$$

$$= N + \sum_{x \in S} \sum_{y \in S: y \neq x} E\left[C_{xy}\right] \qquad \text{(linearity of expectations)}$$

$$\leq N + \frac{N(N-1)}{M} \qquad \text{(definition of universal)}$$

$$< 2N \qquad \qquad \text{(since } M = N)$$