
Lecture 11: Dynamic Programming I

Michael Dinitz

October 1, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 1 / 20

Introduction

Dynamic Programming: divide and conquer++
Classical divide and conquer (quicksort, mergesort, . . .)

� Divide problem into subproblems

� Solve each subproblem

� Combine solutions from subproblems into solution for problem

� Usually implemented with recursion

Issues that dynamic programming can help with:

� What if subproblems overlap?

� What if recursion too slow?

Today: motivate dynamic programming through simple example
Thursday: more complicated examples

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 2 / 20

Notes

Dynamic programming used all over the place

� Originally in control theory

� Then many uses in graph algorithms, combinatorial optimization

� Currently: many uses in strings

At JHU:� String algorithms: NLP!� Jason Eisner: new programming language Dyna to automatically do dynamic programming

� String algorithms: computational biology!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 3 / 20

Why “Dynamic Programming”: Richard Bellman

An interesting question is, Where did the name, dynamic programming, come from? The 1950s were

not good years for mathematical research. We had a very interesting gentleman in Washington named

Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word

research. I’m not using the term lightly; I’m using it precisely. His face would su↵use, he would

turn red, and he would get violent if people used the term research in his presence. You can imagine

how he felt, then, about the term mathematical. The RAND Corporation was employed by the Air

Force, and the Air Force had Wilson as its boss, essentially. Hence, I felt I had to do something to

shield Wilson and the Air Force from the fact that I was really doing mathematics inside the RAND

Corporation. What title, what name, could I choose? In the first place I was interested in planning,

in decision making, in thinking. But planning, is not a good word for various reasons. I decided

therefore to use the word “programming”. I wanted to get across the idea that this was dynamic,

this was multistage, this was time-varying. I thought, let’s kill two birds with one stone. Let’s take a

word that has an absolutely precise meaning, namely dynamic, in the classical physical sense. It also

has a very interesting property as an adjective, and that it’s impossible to use the word dynamic in

a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning.

It’s impossible. Thus, I thought dynamic programming was a good name. It was something not even

a Congressman could object to. So I used it as an umbrella for my activities.

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 4 / 20

Example: Weighted Interval Scheduling

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 5 / 20

Weighted Interval Scheduling: Definition

Input:

� n requests (intervals) {1,2, . . . ,n}� For each request i :� Start time si� Finish time fi� Value vi� Assume sorted by finish time:
f1 ≤ f2 ≤ ⋅ ⋅ ⋅ ≤ fn

Feasible:� S ⊆ [n] feasible if no two intervals of S

overlap� (si , fi) ∩ (sj , fj) = � for all i , j ∈ S with
i ≠ j

Goal:

� Find feasible S maximizing v(S) = ∑i∈S vi

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 6 / 20

Definition II

Definition

Let p(i) largest j < i such that fj ≤ si . If no such j exists, p(i) = 0.

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 7 / 20

Obvious Approach

No variation of greedy works.
Example: greedy by earliest finishing times

Need fundamentally di↵erent approach

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 8 / 20

Obvious Approach

No variation of greedy works.
Example: greedy by earliest finishing times

Earliest-finish-time first algorithm

Earliest finish-time first.

・Consider jobs in ascending order of finish time.

・Add job to subset if it is compatible with previously chosen jobs.

Recall. Greedy algorithm is correct if all weights are 1.

Observation. Greedy algorithm fails spectacularly for weighted version.

7

weight = 999

weight = 1

time
0 1 2 3 4 5 6 7 8 9 10 11

b

a
h

Need fundamentally di↵erent approach

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 8 / 20

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?

Fact: Either n ∈ S∗ or n �∈ S∗
If n �∈ S∗: S

∗ optimal solution for{1,2, . . . ,n − 1}
If n ∈ S∗:
� Nothing in (p(n),n − 1] in S

∗:
overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

o

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?
Fact: Either n ∈ S∗ or n �∈ S∗

If n �∈ S∗: S
∗ optimal solution for{1,2, . . . ,n − 1}

If n ∈ S∗:
� Nothing in (p(n),n − 1] in S

∗:
overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?
Fact: Either n ∈ S∗ or n �∈ S∗
If n �∈ S∗:

S
∗ optimal solution for{1,2, . . . ,n − 1}

If n ∈ S∗:
� Nothing in (p(n),n − 1] in S

∗:
overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

o

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?
Fact: Either n ∈ S∗ or n �∈ S∗
If n �∈ S∗: S

∗ optimal solution for{1,2, . . . ,n − 1}

If n ∈ S∗:
� Nothing in (p(n),n − 1] in S

∗:
overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?
Fact: Either n ∈ S∗ or n �∈ S∗
If n �∈ S∗: S

∗ optimal solution for{1,2, . . . ,n − 1}
If n ∈ S∗:

� Nothing in (p(n),n − 1] in S
∗:

overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?
Fact: Either n ∈ S∗ or n �∈ S∗
If n �∈ S∗: S

∗ optimal solution for{1,2, . . . ,n − 1}
If n ∈ S∗:
� Nothing in (p(n),n − 1] in S

∗:
overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

Simple Observation

Let S
∗ ⊆ [n] be optimal solution

(unknown).
What simple observation can we make
about S

∗?
Fact: Either n ∈ S∗ or n �∈ S∗
If n �∈ S∗: S

∗ optimal solution for{1,2, . . . ,n − 1}
If n ∈ S∗:
� Nothing in (p(n),n − 1] in S

∗:
overlap with n

� S
∗ = {n} ∪

opt solution for {1,2, . . . ,p(n)}

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .

Def. p (j) = largest index i < j such that job i is compatible with j.
Ex. p(8) = 5, p(7) = 3, p(2) = 0.

Weighted interval scheduling

8

time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

p(1) = 0

p(2) = 0

p(3) = 0

p(4) = 1

p(5) = 0

p(6) = 2

p(7) = 3

p(8) = 5

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 9 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)
If n ∈ S∗: OPT(n) = vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) =

OPT(n − 1)
If n ∈ S∗: OPT(n) = vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)

If n ∈ S∗: OPT(n) = vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)
If n ∈ S∗: OPT(n) =

vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)
If n ∈ S∗: OPT(n) = vn +OPT(p(n))

Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)
If n ∈ S∗: OPT(n) = vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) =

max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)
If n ∈ S∗: OPT(n) = vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))

Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Formalize

Definition

Let OPT(i) denote value of optimal solution S
∗
i for {1,2, . . . , i}

Note:

� S
∗
i not necessarily equal to S

∗ ∩ {1,2, . . . , i} (but S
∗
n = S

∗)
� OPT(0) = 0 by convention

If n �∈ S∗: OPT(n) = OPT(n − 1)
If n ∈ S∗: OPT(n) = vn +OPT(p(n))
Don’t know if n ∈ S∗, but can still say:

OPT(n) = max(OPT(n − 1),vn +OPT(p(n)))
Now need to prove this more formally. . .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 10 / 20

Structure Theorem

Theorem

OPT(j) =max(OPT(j − 1),vj +OPT(p(j))) for all 1 ≤ j ≤ n

≥: Know there are feasible solutions to {1,2, . . . , j} of value:� OPT(j − 1) (S∗j−1 feasible for {1,2, . . . , j})
� vj +OPT(p(j)) (add j to S

∗
p(j))�⇒ OPT(j) ≥max(OPT(j − 1),vj +OPT(p(j)))

≤: Two cases� If j �∈ S∗j , then S
∗
j ⊆ {1,2, . . . , j − 1}�⇒ S

∗
j feasible for [j − 1] �⇒ OPT(j) ≤ OPT(j − 1) (definition of OPT(j − 1))

� If j ∈ S∗j , then by definition S
∗
j � {j} feasible for {1,2, . . . ,p(j)}

�⇒ OPT(j) − vj = v(S∗j � {j}) ≤ OPT(p(j)) (def of OPT(p(j)))�⇒ OPT(j) ≤ OPT(p(j)) + vj .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 11 / 20

Structure Theorem

Theorem

OPT(j) =max(OPT(j − 1),vj +OPT(p(j))) for all 1 ≤ j ≤ n

≥: Know there are feasible solutions to {1,2, . . . , j} of value:� OPT(j − 1) (S∗j−1 feasible for {1,2, . . . , j})
� vj +OPT(p(j)) (add j to S

∗
p(j))�⇒ OPT(j) ≥max(OPT(j − 1),vj +OPT(p(j)))

≤: Two cases� If j �∈ S∗j , then S
∗
j ⊆ {1,2, . . . , j − 1}�⇒ S

∗
j feasible for [j − 1] �⇒ OPT(j) ≤ OPT(j − 1) (definition of OPT(j − 1))

� If j ∈ S∗j , then by definition S
∗
j � {j} feasible for {1,2, . . . ,p(j)}

�⇒ OPT(j) − vj = v(S∗j � {j}) ≤ OPT(p(j)) (def of OPT(p(j)))�⇒ OPT(j) ≤ OPT(p(j)) + vj .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 11 / 20

Structure Theorem

Theorem

OPT(j) =max(OPT(j − 1),vj +OPT(p(j))) for all 1 ≤ j ≤ n

≥: Know there are feasible solutions to {1,2, . . . , j} of value:� OPT(j − 1) (S∗j−1 feasible for {1,2, . . . , j})
� vj +OPT(p(j)) (add j to S

∗
p(j))�⇒ OPT(j) ≥max(OPT(j − 1),vj +OPT(p(j)))

≤: Two cases

� If j �∈ S∗j , then S
∗
j ⊆ {1,2, . . . , j − 1}�⇒ S

∗
j feasible for [j − 1] �⇒ OPT(j) ≤ OPT(j − 1) (definition of OPT(j − 1))

� If j ∈ S∗j , then by definition S
∗
j � {j} feasible for {1,2, . . . ,p(j)}

�⇒ OPT(j) − vj = v(S∗j � {j}) ≤ OPT(p(j)) (def of OPT(p(j)))�⇒ OPT(j) ≤ OPT(p(j)) + vj .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 11 / 20

Structure Theorem

Theorem

OPT(j) =max(OPT(j − 1),vj +OPT(p(j))) for all 1 ≤ j ≤ n

≥: Know there are feasible solutions to {1,2, . . . , j} of value:� OPT(j − 1) (S∗j−1 feasible for {1,2, . . . , j})
� vj +OPT(p(j)) (add j to S

∗
p(j))�⇒ OPT(j) ≥max(OPT(j − 1),vj +OPT(p(j)))

≤: Two cases� If j �∈ S∗j , then S
∗
j ⊆ {1,2, . . . , j − 1}�⇒ S

∗
j feasible for [j − 1] �⇒ OPT(j) ≤ OPT(j − 1) (definition of OPT(j − 1))

� If j ∈ S∗j , then by definition S
∗
j � {j} feasible for {1,2, . . . ,p(j)}

�⇒ OPT(j) − vj = v(S∗j � {j}) ≤ OPT(p(j)) (def of OPT(p(j)))�⇒ OPT(j) ≤ OPT(p(j)) + vj .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 11 / 20

Structure Theorem

Theorem

OPT(j) =max(OPT(j − 1),vj +OPT(p(j))) for all 1 ≤ j ≤ n

≥: Know there are feasible solutions to {1,2, . . . , j} of value:� OPT(j − 1) (S∗j−1 feasible for {1,2, . . . , j})
� vj +OPT(p(j)) (add j to S

∗
p(j))�⇒ OPT(j) ≥max(OPT(j − 1),vj +OPT(p(j)))

≤: Two cases� If j �∈ S∗j , then S
∗
j ⊆ {1,2, . . . , j − 1}�⇒ S

∗
j feasible for [j − 1] �⇒ OPT(j) ≤ OPT(j − 1) (definition of OPT(j − 1))

� If j ∈ S∗j , then by definition S
∗
j � {j} feasible for {1,2, . . . ,p(j)}

�⇒ OPT(j) − vj = v(S∗j � {j}) ≤ OPT(p(j)) (def of OPT(p(j)))�⇒ OPT(j) ≤ OPT(p(j)) + vj .

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 11 / 20

Obvious Algorithm

Previous theorem a recurrence relation!

� Suggests obvious recursive algorithm for computing OPT(j)

Schedule(j) {
If j = 0 return 0;
else return max(Schedule(j − 1), vj + Schedule(p(j));

}

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 12 / 20

Obvious Algorithm

Previous theorem a recurrence relation!

� Suggests obvious recursive algorithm for computing OPT(j)

Schedule(j) {
If j = 0 return 0;
else return max(Schedule(j − 1), vj + Schedule(p(j));

}

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 12 / 20

Correctness

Theorem

Schedule(j) returns OPT(j).

Proof.

Induction on j

� Base case: j = 0. Then Schedule(j) returns 0 = OPT(j)
� Inductive step: Schedule(j) returns

max(Schedule(j − 1), vj + Schedule(p(j))) (def of algorithm)

=max(OPT(j − 1),vj +OPT(p(j))) (induction)

= OPT(j) (structure theorem)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 13 / 20

Correctness

Theorem

Schedule(j) returns OPT(j).
Proof.

Induction on j

� Base case: j = 0. Then Schedule(j) returns 0 = OPT(j)
� Inductive step: Schedule(j) returns

max(Schedule(j − 1), vj + Schedule(p(j))) (def of algorithm)

=max(OPT(j − 1),vj +OPT(p(j))) (induction)

= OPT(j) (structure theorem)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 13 / 20

Correctness

Theorem

Schedule(j) returns OPT(j).
Proof.

Induction on j

� Base case: j = 0. Then Schedule(j) returns 0 = OPT(j)

� Inductive step: Schedule(j) returns

max(Schedule(j − 1), vj + Schedule(p(j))) (def of algorithm)

=max(OPT(j − 1),vj +OPT(p(j))) (induction)

= OPT(j) (structure theorem)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 13 / 20

Correctness

Theorem

Schedule(j) returns OPT(j).
Proof.

Induction on j

� Base case: j = 0. Then Schedule(j) returns 0 = OPT(j)
� Inductive step: Schedule(j) returns

max(Schedule(j − 1), vj + Schedule(p(j))) (def of algorithm)

=max(OPT(j − 1),vj +OPT(p(j))) (induction)

= OPT(j) (structure theorem)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 13 / 20

Running Time

Suppose p(j) = j − 2 for all j :

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Schedule(j) calls Schedule(j − 1) and
Schedule(j − 2)

Let T(n) be running time of Schedule(n) on
this instance

T(n) = T(n − 1) +T(n − 2) + c

Fibonacci numbers: exponential in n

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 14 / 20

Running Time

Suppose p(j) = j − 2 for all j :

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Schedule(j) calls Schedule(j − 1) and
Schedule(j − 2)

Let T(n) be running time of Schedule(n) on
this instance

T(n) = T(n − 1) +T(n − 2) + c

Fibonacci numbers: exponential in n

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 14 / 20

Running Time

Suppose p(j) = j − 2 for all j :

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Schedule(j) calls Schedule(j − 1) and
Schedule(j − 2)

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Let T(n) be running time of Schedule(n) on
this instance

T(n) = T(n − 1) +T(n − 2) + c

Fibonacci numbers: exponential in n

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 14 / 20

Running Time

Suppose p(j) = j − 2 for all j :

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Schedule(j) calls Schedule(j − 1) and
Schedule(j − 2)

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Let T(n) be running time of Schedule(n) on
this instance

T(n) = T(n − 1) +T(n − 2) + c

Fibonacci numbers: exponential in n

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 14 / 20

Running Time

Suppose p(j) = j − 2 for all j :

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Schedule(j) calls Schedule(j − 1) and
Schedule(j − 2)

Weighted interval scheduling: brute force

Observation. Recursive algorithm fails spectacularly because of redundant

subproblems ⇒ exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like

Fibonacci sequence.

11

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

recursion tree

Let T(n) be running time of Schedule(n) on
this instance

T(n) = T(n − 1) +T(n − 2) + c

Fibonacci numbers: exponential in n

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 14 / 20

Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
If j = 0 return 0;
else if M[j] nonempty return M[j];
else {

M[j] =max(Schedule(j − 1),vj + Schedule(p(j)));
return M[j];

}
}

Correctness: (basically) same as before.� Change inductive hypothesis to:
“Schedule(j) returns OPT(j) and after it returns, M[j] = OPT(j)”

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 15 / 20

Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
If j = 0 return 0;
else if M[j] nonempty return M[j];
else {

M[j] =max(Schedule(j − 1),vj + Schedule(p(j)));
return M[j];

}
}

Correctness: (basically) same as before.� Change inductive hypothesis to:
“Schedule(j) returns OPT(j) and after it returns, M[j] = OPT(j)”

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 15 / 20

Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
If j = 0 return 0;
else if M[j] nonempty return M[j];
else {

M[j] =max(Schedule(j − 1),vj + Schedule(p(j)));
return M[j];

}
}

Correctness: (basically) same as before.� Change inductive hypothesis to:
“Schedule(j) returns OPT(j) and after it returns, M[j] = OPT(j)”

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 15 / 20

Fix: Memoization

Idea: avoid recomputation!

Table M of size n, initially all empty

Schedule(j) {
If j = 0 return 0;
else if M[j] nonempty return M[j];
else {

M[j] =max(Schedule(j − 1),vj + Schedule(p(j)));
return M[j];

}
}

Correctness: (basically) same as before.� Change inductive hypothesis to:
“Schedule(j) returns OPT(j) and after it returns, M[j] = OPT(j)”

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 15 / 20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).

Proof.

On call to Schedule(j):

� Either return entry from table (O(1) time), or

� Two recursive calls, then fill in table entry that was empty

�⇒ running time = O(1) × # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls�⇒ At most 2n recursive calls

So running time at most O(n)
Dynamic Programming!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 16 / 20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).
Proof.

On call to Schedule(j):

� Either return entry from table (O(1) time), or

� Two recursive calls, then fill in table entry that was empty

�⇒ running time = O(1) × # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls�⇒ At most 2n recursive calls

So running time at most O(n)
Dynamic Programming!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 16 / 20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).
Proof.

On call to Schedule(j):

� Either return entry from table (O(1) time), or

� Two recursive calls, then fill in table entry that was empty

�⇒ running time = O(1) × # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls�⇒ At most 2n recursive calls

So running time at most O(n)
Dynamic Programming!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 16 / 20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).
Proof.

On call to Schedule(j):

� Either return entry from table (O(1) time), or

� Two recursive calls, then fill in table entry that was empty

�⇒ running time = O(1) × # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls�⇒ At most 2n recursive calls

So running time at most O(n)
Dynamic Programming!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 16 / 20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).
Proof.

On call to Schedule(j):

� Either return entry from table (O(1) time), or

� Two recursive calls, then fill in table entry that was empty

�⇒ running time = O(1) × # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls�⇒ At most 2n recursive calls

So running time at most O(n)

Dynamic Programming!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 16 / 20

Running Time

Theorem

The worst-case running time of Schedule(n) is at most O(n).
Proof.

On call to Schedule(j):

� Either return entry from table (O(1) time), or

� Two recursive calls, then fill in table entry that was empty

�⇒ running time = O(1) × # recursive calls

Fill in one (previously empty) table entry after 2 recursive calls�⇒ At most 2n recursive calls

So running time at most O(n)
Dynamic Programming!

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 16 / 20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?

� Idea 1: keep track of solution in another table (or in M)� Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

� Better idea: Backtrack through completed table!

Solution(j) {
If j = 0 then return �;
else if vj +M[p(j)] >M[j − 1] return {j} ∪ Solution(p(j));
else return Solution(j − 1);

}

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 17 / 20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?� Idea 1: keep track of solution in another table (or in M)

� Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

� Better idea: Backtrack through completed table!

Solution(j) {
If j = 0 then return �;
else if vj +M[p(j)] >M[j − 1] return {j} ∪ Solution(p(j));
else return Solution(j − 1);

}

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 17 / 20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?� Idea 1: keep track of solution in another table (or in M)� Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

� Better idea: Backtrack through completed table!

Solution(j) {
If j = 0 then return �;
else if vj +M[p(j)] >M[j − 1] return {j} ∪ Solution(p(j));
else return Solution(j − 1);

}

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 17 / 20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?� Idea 1: keep track of solution in another table (or in M)� Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

� Better idea: Backtrack through completed table!

Solution(j) {
If j = 0 then return �;
else if vj +M[p(j)] >M[j − 1] return {j} ∪ Solution(p(j));
else return Solution(j − 1);

}

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 17 / 20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?� Idea 1: keep track of solution in another table (or in M)� Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

� Better idea: Backtrack through completed table!

Solution(j) {
If j = 0 then return �;
else if vj +M[p(j)] >M[j − 1] return {j} ∪ Solution(p(j));
else return Solution(j − 1);

}

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 17 / 20

Finding the Solution

Algorithm finds value of optimal solution: what if we want to find the solution itself?� Idea 1: keep track of solution in another table (or in M)� Uses lots of extra space, need to be careful about how much time spend copying/moving
solutions

� Better idea: Backtrack through completed table!

Solution(j) {
If j = 0 then return �;
else if vj +M[p(j)] >M[j − 1] return {j} ∪ Solution(p(j));
else return Solution(j − 1);

}

Correctness: Direct from correctness of previous algorithm
Running Time: O(n)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 17 / 20

Memoization vs Iteration: Top-Down vs Bottom-Up

Previous technique: “Memoization”, “Top-Down Dynamic Programming”� Remember outcome of recursive calls� Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”� Start at “bottom” of table, work way up� Every table entry we need already filled in!

Schedule {
M[0] = 0;
for(i = 1 to n) {

M[i] = max(vi +M[p(i)], M[i − 1]);
}
return M[n];

}

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 18 / 20

Memoization vs Iteration: Top-Down vs Bottom-Up

Previous technique: “Memoization”, “Top-Down Dynamic Programming”� Remember outcome of recursive calls� Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”� Start at “bottom” of table, work way up� Every table entry we need already filled in!

Schedule {
M[0] = 0;
for(i = 1 to n) {

M[i] = max(vi +M[p(i)], M[i − 1]);
}
return M[n];

}

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 18 / 20

Memoization vs Iteration: Top-Down vs Bottom-Up

Previous technique: “Memoization”, “Top-Down Dynamic Programming”� Remember outcome of recursive calls� Starts at “top” problem, works way “down” via recursion

Alternative: “Bottom-Up Dynamic Programming”� Start at “bottom” of table, work way up� Every table entry we need already filled in!

Schedule {
M[0] = 0;
for(i = 1 to n) {

M[i] = max(vi +M[p(i)], M[i − 1]);
}
return M[n];

}
Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 18 / 20

Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

� If M[j] doesn’t need to be computed (doesn’t appear in recursion tree for M[n]), won’t
waste time on it!

� Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:

� Easier to analyze running time: sum over all table entries of time to compute entry

� Often faster in practice (iteration vs recursion)

Use whatever you feel more comfortable with (most experienced people use bottom-up)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 19 / 20

Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

� If M[j] doesn’t need to be computed (doesn’t appear in recursion tree for M[n]), won’t
waste time on it!

� Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:

� Easier to analyze running time: sum over all table entries of time to compute entry

� Often faster in practice (iteration vs recursion)

Use whatever you feel more comfortable with (most experienced people use bottom-up)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 19 / 20

Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

� If M[j] doesn’t need to be computed (doesn’t appear in recursion tree for M[n]), won’t
waste time on it!

� Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:

� Easier to analyze running time: sum over all table entries of time to compute entry

� Often faster in practice (iteration vs recursion)

Use whatever you feel more comfortable with (most experienced people use bottom-up)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 19 / 20

Top-Down vs Bottom-Up (cont’d)

Some people only call bottom-up dynamic programming, but this is ridiculous

Top-Down pros:

� If M[j] doesn’t need to be computed (doesn’t appear in recursion tree for M[n]), won’t
waste time on it!

� Algorithm design relatively easy: write recursive algorithm, remember (memoize) answers

Bottom-up pros:

� Easier to analyze running time: sum over all table entries of time to compute entry

� Often faster in practice (iteration vs recursion)

Use whatever you feel more comfortable with (most experienced people use bottom-up)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 19 / 20

Principles of Dynamic Programming (CLRS 15.3)

Main step: break problem into subproblems

� WIS: Subproblems {1, . . . , i} (prefixes)
� Often determined by choice (“is n in S

∗?”)
� Want small (polynomial) number of subproblems (table entries)

Prove optimal substructure: Optimal solution to subproblem can be found from optimal
solutions to smaller subproblems

� Not an algorithmic statement! Smaller very important!

Turn optimal substructure theorem into algorithm (top-down or bottom-up) which fills in table
indexed by subproblems

� Correctness: induction and optimal substructure theorem� Running time: sum of time of all table entries� Often (not always) just (# table entries) × (time per entry)

Michael Dinitz Lecture 11: Dynamic Programming I October 1, 2024 20 / 20

