Lecture 12: Dynamic Programming Il

Michael Dinitz

October 3, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 1/24

Introduction

Today: two more examples of dynamic programming
» Longest Common Subsequence (strings)

> Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 2/24

Longest Common Subsequence

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 3/24

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (z1,...,2x) is a subsequence of X = (xy,.. ,xm) if there
exists a strictly increasing sequence (i1, i2, - - . , ix) such that x;. = zj for all je {1,2,...,k}.

Example: (/B

> Allowed to skip positi

is a subsequence of (A, ,B,D, A,

ike substring!

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 4/24

Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A-Z}u{a- z}, etc.)

Definition: A sequence Z = (z1,...,2x) is a subsequence of X = (x1,...,Xm) if there
exists a strictly increasing sequence (i1, i2, - - . , ix) such that x;. = zj forall j € {1,2,...,k}.

Example: (B, C, D, B) is a subsequence of (A,B,C,B,D, A, B)

> Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X=(x15.--3Xm)and Y = (y1,...¥n). Need to find the longest Z which is a subsequence
of both X and Y.

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 4 /24

Subproblems

First and most important step of dynamic programming: define subproblems!

> Not obvious: X and Y might not even be same length!

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 5/24

Subproblems

First and most important step of dynamic programming: define subproblems!

> Not obvious: X and Y might not even be same length!

Prefixes of strings

> Xi = (x1,x2,- .-, Xj) (SO X=Xm)
> Yj= (y19y29°°°7yj) (SO Y = Yn)

Michael Dinitz

Lecture 12: Dynamic Programming Il

October 3, 2024

5/24

Subproblems

First and most important step of dynamic programming: define subproblems!

\

> Not obvious: X and Y might not even be same length! =

Prefixes of strings |
> Xi = (x1,x2,- .-, Xj) (SO X = Xm)

> YJ'= (y19y27°°°7y_i) (SO Y = Yn) E “ L.‘\j

l

Definition: Let OPT (i,j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m, n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 5/24

Subproblems

First and most important step of dynamic programming: define subproblems!

> Not obvious: X and Y might not even be same length!

Prefixes of strings
> Xi = (x1,x2,- .-, Xj) (SO X = Xm)
> Yi=(y1,¥2,---,¥j) (s0 Y = Yy)

Definition: Let OPT (i,j) be longest common subsequence of X; and Y;

So looking for optimal solution OPT = OPT (m,n)

» Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional tablel

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 5/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure X

Pr—

— &% V.

I
Second step of dynamic programming: prove optimal substructure 7

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem
Let Z =(z1,...,2k) be an LCS of Xj and Y (so Z = OPT (i,j)).
1. /fX,' =Y

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem
Let Z =(z1,...,2k) be an LCS of Xj and Y (so Z = OPT (i,j)).
1. If x; = y;j: then zx = x; = yj and Zx_1 = OPT (i -1,j-1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z =(z1,...,2k) be an LCS of Xj and Y (so Z = OPT (i,j)).
1. If x; = y;j: then zx = x; = yj and Zx_1 = OPT (i -1,j-1)
2. It xj # yj and zy # x;:

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z =(z1,...,2k) be an LCS of Xj and Y (so Z = OPT (i,j)).
1. If x; = y;j: then zx = x; = yj and Zx_1 = OPT (i -1,j-1)
2. If x; # yj and zy # x;: then Z = OPT (i - 1,j)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z =(z1,...,2k) be an LCS of Xj and Y (so Z = OPT (i,j)).
1. If x; = y;j: then zx = x; = yj and Zx_1 = OPT (i -1,j-1)
2. If x; # yj and zy # x;: then Z = OPT (i - 1,j)
3. If x; # y; and zy # y;:

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure

Second step of dynamic programming: prove optimal substructure

» Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z =(z1,...,2k) be an LCS of Xj and Y (so Z = OPT (i,j)).
1. If x; = y;j: then zx = x; = yj and Zx_1 = OPT (i -1,j-1)
2. If x; # yj and zy # x;: then Z = OPT (i - 1,j)
3. If x; #yj and zy # y;: then Z = OPT (i,j - 1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 6/24

Optimal Substructure: Proof (I)

Case 1: If x; = y;, then zx = x; = yj and Z,_1 = OPT (i -1,j-1)

Proof Sketch.

Contradiction.

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 7/24

Optimal Substructure: Proof (I)

Case 1: If x; = y;, then zx = x; = yj and Z,_1 = OPT (i -1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = y; = a, but z, # a.

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 7/24

Optimal Substructure: Proof (I)

Case 1: If x; = y;, then zx = x; = yj and Z,_1 = OPT (i -1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = yj = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 7/24

Optimal Substructure: Proof (I)

Case 1: If x; = y;, then zx = x; = yj and Z,_1 = OPT (i -1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = yj = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 + OPT(i-1,j-1).

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 7/24

Optimal Substructure: Proof (I)

Case 1: If x; = y;, then zx = x; = yj and Z,_1 = OPT (i -1,j-1)

Proof Sketch.

Contradiction.

Part 1: Suppose x; = yj = a, but z, # a. Add a to end of Z, still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zy_1 + OPT(i-1,j-1).
— JW LCS of Xj_1, Yj_1 of length > k-1 = >k
—> (W, a) common subsequence of Xj, Y; of length > k
> Contradiction to Z being LCS of X; and Y] [

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 7/24

Optimal Substructure: Proof (II)

Case 2: If x; # yj and z # x; then Z = OPT (i - 1,)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 8/24

Optimal Substructure: Proof (II)

Case 2: If x; # yj and z # x; then Z = OPT (i - 1,)

Proof.

Since z # xj, £ a common subsequence of Xj_1, Y]

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 8/24

Optimal Substructure: Proof (II)

Case 2: If x; # yj and z # x; then Z = OPT (i - 1,)

Proof.

Since zy # x;, Z a common subsequence of Xj_1, Y]

OPT (i -1,j) a common subsequence of Xj, Y;
—> |OPT(i-1,j)|<|OPT((i,j)|=|Z] (def of OPT (i,j) and Z)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 8/24

Optimal Substructure: Proof (II)

Case 2: If x; # yj and z # x; then Z = OPT (i - 1,)

Proof.

Since z, # x;, Z a common subsequence of Xj_1, Y; ’.9 OﬂTC{‘_(j ,') 2 |2)

OPT (i -1,j) a common subsequence of Xj, Y;
—> |OPT(i-1,j)|<|OPT((i,j)|=|Z] (def of OPT (i,j) and Z)

= Z =0PT(i-1,j)) []

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 8/24

Optimal Substructure: Proof (l1)

Case 3: If x; # yj and z # yj then Z = OPT (i,j-1)

Proof.
Symmetric to Case 2. DJ

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 9/24

Structure Corollary

Corollary &é{,."") T
L k1 £ ST .
%) o ifi=0o0rj=0,
OPT (i,j)={O0PT(i-1,j-1) o x; if1,J >0 and x; = y;
\(max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0 and x; # y;

N

(
for B Z—/} ”71- 77/

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 10/24

Structure Corollary

Corollary
v ifi=0orj=0,
OPT(i,j) ={0PT(i-1,j-1)o0 x; ifi,j >0 and x; = y;
max(OPT(i,j-1),0PT(i-1,j)) ifi,j>0and x; *y;

Gives obvious recursive algorithm

» Can take exponential time (good exercise at home!)

Dynamic Programming!
> Top-Down: are problems getting “smaller”? What does “smaller” mean?
» Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 10/24

Dynamic Programming Algorithm

LCS(X,Y) { :
for(i =0 to m) M[i,0] = 0; J
for(j =0 to n) M[0,j] = 0;
for(i =1 to m) { |

for(j =1 to n) { -
if(xi = y;) !
Mli,j1=1+M[i-1,j-1];
else
} Mli,j] = max(M[i,j - 1], M[i-1,j]);
}

return M[m, n];

}

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 11/24

Dynamic Programming Algorithm

LCS(X,Y) {
for(i =0 to m) M[i,0] = 0;
for(j =0 to n) M[0,j] = 0;
for(i =1 to m) {
for(j =1 to n) {

if(X,' = yj) . '
Ml[i,jl=1+M[i-1,j-1]; Running Time: O(mn)
else

} M[ivj] = max(M[i,j— 1]7 M[i_ la.i]);
h
return M[m, n];

}

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 11 /24

Correctness

Theorem
M[iaj]=|OPT(i7j)| J

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 12/24

Correctness

Theorem
M[i,j]=|OPT(i,j)| J

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 12/24

Correctness

Theorem
Mli,j]=|OPT(i,j)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 — i=j=0 = M]Ji,j] =0=|0OPT(i,j)]

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 12/24

Correctness

Theorem
Mli,j]=|OPT(i,j)|

Proof.
Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M][i,j]=0=|0OPT(i,j)|
Inductive Step: Divide into three cases
1. Ifi=0o0rj=0, then M[i,j] =0=|OPT(i,j)|

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 12/24

Correctness

Theorem
Mli,j]=|OPT(i,j)|

Proof.
Induction on i +j (or could do on iterations in the algorithm)
Base Case: i+j=0 = i=j=0 = M][i,j]=0=|0OPT(i,j)|
Inductive Step: Divide into three cases

1. Ifi=0o0rj=0, then M[i,j] =0=|OPT(i,j)|

2. If x; = yj, then M[i,jl=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|

/ f 9
Jy% -\() :‘\!*L Jos sT

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 12/24

Correctness

Theorem
Mli,j]=|OPT(i,j)|

Proof.

Induction on i +j (or could do on iterations in the algorithm)

Base Case: i+j=0 = i=j=0 = M][i,j]=0=|0OPT(i,j)|

Inductive Step: Divide into three cases
1. Ifi=0o0rj=0, then M[i,j] =0=|OPT(i,j)|
2. If x; = yj, then M[i,jl1=1+M[i-1,j-1]=1+|OPT(i-1,j-1)|=|OPT(i,j)|
3. If x; # yj, then

Mli,j] = max(M[i,j-1], M[i-1,j]) (def of algorithm)
= max(|OPT (i,j - 1)|,|OPT (i - 1,j)|) (induction)
= |OPT (i,j)| (structure thm /corollary)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 12 /24

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 13/24

Optimal Binary Search Trees

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 14 /24

Problem Definition

Input: probability distribution / search frequency of keys
> n distinct keys ky < kp <+-- < kp
> For each i € [n], probability p; that we search for k; (so X7 ; pi = 1)

What's the best binary search tree for these keys and frequencies?

o
k{\ A
“& On Iy

| &>

44

[<

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 15 /24

Problem Definition

Input: probability distribution / search frequency of keys
> n distinct keys ky < kp <+-- < kp
> For each i € [n], probability p; that we search for k; (so X7 ; pi = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T] =37, pij(deptht(k;) + 1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 15 /24

Problem Definition

Input: probability distribution / search frequency of keys
> n distinct keys ky < kp <+-- < kp

> For each i € [n], probability p; that we search for k; (so X7 ; pi = 1)

What's the best binary search tree for these keys and frequencies?

Cost of searching for k; in tree T is deptht(k;) +1 (say depth of root = 0)
== E[cost of search in T] =Y, pij(deptht(k;) + 1)

Definition: ¢(T) = .7, p;(depthr (k;) + 1) —)

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 15 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 16 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; — p;;1 extremely small (say 1/2")

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 16 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; — p;;1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 16 /24

Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > ...pn, but with p; — p;;1 extremely small (say 1/2")

L
®\ E[cost of search in T] > Q(n)
¢
@\ Balanced search tree: E[cost] < O(logn)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 16 /24

Intuition

Suppose root is k,. What does optimal tree look like?

o\

0T £ [, .,.,/Ch
oo+ Fr Eyeykr,

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 17 /24

Intuition

Suppose root is k,. What does optimal tree look like?

®

c;

OfT F-r qre OIT Fer
[k'/ . k’_la lc‘-.pl/"‘/k'/-—l(((' l‘h}

“}1)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 17 /24

Subproblems

Definition
Let OPT (i,j) with i <j be optimal tree for keys {k;, kis1,...,kj}: tree T minimizing
c(T) = Z{a=,~ pa(deptht(ka) +1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 18 /24

Subproblems

Definition
Let OPT (i,j) with i <j be optimal tree for keys {k;, kis1,...,kj}: tree T minimizing
c(T) =X _.pa(deptht(ka)+1)

By convention, if i > j then OPT (i,j) empty
So overall goal is to find OPT (1, n).

Theorem (Optimal Substructure) |

Let k, be the root of OPT (i,j). Then the left subtree of OPT (i,j) is OPT (i,r -1), and
the right subtree of OPT (i,j) is OPT (r +1,j).

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 18 /24

Proof Sketch of Optimal Substructure

7
Definitions: ﬂ'/‘

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

> Suppose for contradiction Ty # OPT (i,r-1), let T"= OPT (i,r-1)
—> ¢(T') <c(Ty.) (def of OPT (i,r-1))

» Let T be tree get by replacing T with T’

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 19/24

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

> Suppose for contradiction Ty # OPT (i,r-1),let T"= OPT(i,r-1)
—> ¢(T') <c(Ty.) (def of OPT (i,r-1))

» Let T be tree get by replacing T with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 19/24

Proof Sketch of Optimal Substructure

Definitions:

» Let T = OPT(i,j), T its left subtree, Tg its right subtree.

> Suppose for contradiction Ty # OPT (i,r-1),let T"= OPT(i,r-1)
—> ¢(T') <c(Ty.) (def of OPT (i,r-1))

» Let T be tree get by replacing T with T’

Whole bunch of math (see lecture notes): get that ¢(T) < ¢(T)
Contradicts T = OPT (i,)

Symmetric argument works for Tg = OPT (r + 1,)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 19/24

Cost Corollary

Corollary

c(OPT(i,j)) = ¥’ . pa+minig,¢;(c(OPT(i,r-1)) + c(OPT(r +1,j)))

Let k, be root of OPT (i,}j)

J
c(OPT (i,j)) = Z Pa(depthOPT(i,j)(ka) +1)

a=i
r-1 J

= Z(pa(deptho:ar(, r-1)(ka) +2)) +pr+). pa(depthopr(r.1,j)(ka) +2)
a=i a=r+1
j r-1

= a*t Z(Pa(depthOPT(: r-1)(ka) +1)) + Z Pa(depthoprt(r.1.j)(ka) +1)
a=i a=i a=r+1
J'

a+Cc(OPT(i,r-1))+c(OPT(r+1,j)).

a:

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 20/24

Cost Corollary

Corollary

c(OPT(i,j)) = ¥’ . pa+minig,¢;(c(OPT(i,r-1)) + c(OPT(r +1,j)))

Let k, be root of OPT (i,}j)

J
c(OPT (i,j)) = Z Pa(depthOPT(i,j)(ka) +1)

a=i
r-1 J

= Y (pa(depthopr(i,-1)(ka) +2)) + pr+), pa(depthopr(,.1,jy(ka) +2)
a=i a=r+1
J r-1 J

=) Pa+) (pa(depthopr(i,_1)(ka) +1)) +) pa(depthopr(ri1,j)(ka) +1)
a=i a=i a=r+1

= ipa +c(OPT(i,r-1)) +c(OPT(r+1,j)).

Same logic holds for any possible root == take min
Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 20/24

Algorithm
Fill in table M:

. 0 if 1>
M['a.l]:{

min;¢,j (ZJ‘;,:’, Pa+ Mli,r-1]1+ M[r+ l,j]) if i<y

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 21 /24

Algorithm
Fill in table M:

i 0 ifi>j
1= minisrsj(Z{;,:;pa*M[ia"l]+M[r+1’j]) i<y

Top-Down (memoization): are problems getting smaller?

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 21 /24

Algorithm

Fill in table M:
0 ifi>j
M i = .
[i,]] {minigrgj (ZJ‘.F,- pa+ Ml[i,r-1]+ M[r+ l,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every
recursive call.

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 21 /24

Algorithm

Fill in table M:
0 ifi>j
M i = .
[i,]] {minigrgj (ZJF,- pa+ Ml[i,r-1]+ M[r+ l,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every
recursive call.

Correctness. Claim MJi,j] = c(OPT (i,j)). Induction on j -1i.

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 21 /24

Algorithm

Fill in table M:
0 ifi>j
M i = .
[i,]] {minigrgj (ZJF,- pa+ Ml[i,r-1]+ M[r+ l,j]) ifi<j

Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every
recursive call.

Correctness. Claim MJi,j] = c(OPT (i,j)). Induction on j -1i.
> Base case: if j—i <0 then M[i,j]=OPT(i,j)=0

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 21 /24

Algorithm
Fill in table M:
0 ifi>j
MIi. i = .
[la.l] {miniSrSj (Zja=’-pa+M[i7r—1]+M[r+17j]) |fi$.i

Top-Down (memoization): are problems getting smaller? Yes! j—i decreases in every
recursive call.

Correctness. Claim MJi,j] = c(OPT (i,j)). Induction on j -1i.
> Base case: if j—i <0 then M[i,j]=OPT(i,j)=0
> Inductive step:

MJi,j] 'r!lrlg(Zpa+M i,r-1]+ M| r+1,1]) (alg def)
= min Z pa+ c(OPT(i,r-1))+c(OPT(r+ 1,]))) (induction)

I<r<_]
= C(OPT(I,_[)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 21 /24

Algorithm: Bottom-up
What order to fill the table in?
> Obvious approach: for(i =1 to n-1) for(j =i+ 1 to n) Doesn’'t work!

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 22 /24

Algorithm: Bottom-up
What order to fill the table in?

> Obvious approach: for(i =1 to n-1) for(j =i+ 1 to n) Doesn’'t work!

> Take hint from induction: j —1i

OBST {

}
}

}

Set M[i,j] =0 for all j > i;

Set M[i,i] = p; for all i

for(l=1ton-1) {
for(i=1ton-2) {

Jj=i+¥

M[i,j] = min;c,; (Z{;’:i Pa+ Mli,r-1]+ M[r+ l,j]);

return M[1, n];

/

Michael Dinitz

Lecture 12: Dynamic Programming Il

October 3, 2024

22/24

Analysis

Correctness: same as top-down

Running Time:

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 23 /24

Analysis

Correctness: same as top-down

Running Time:

> # table entries:

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 23 /24

Analysis

Correctness: same as top-down

Running Time:
> 4 table entries: O(n?)

Michael Dinitz

Lecture 12: Dynamic Programming Il

October 3, 2024

23/24

Analysis

Correctness: same as top-down

Running Time:
> 4 table entries: O(n?)
> Time to compute table entry M[i,j]:

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 23 /24

Analysis

Correctness: same as top-down

Running Time:
> 4 table entries: O(n?)
> Time to compute table entry M[i,j]: O(j-1) = O(n)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 23 /24

Analysis

Correctness: same as top-down

Running Time:

> 4 table entries: O(n?)

> Time to compute table entry M[i,j]: O -1) = O(n)
Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 23 /24

Bonus Content

Obvious Question: Robustness.

> What if given distribution is wrong?

Want algorithm that gives a solution with cost a function of true optimal cost, “distance”
between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. Binary Search Trees with
Distributional Predictions. NeurlPS '24

Michael Dinitz Lecture 12: Dynamic Programming Il October 3, 2024 24 /24

