Lecture 12: Dynamic Programming II

Michael Dinitz

October 3, 2024 601.433/633 Introduction to Algorithms

Introduction

Today: two more examples of dynamic programming

- **▸** Longest Common Subsequence (strings)
- **▸** Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Longest Common Subsequence

Definitions

String: Sequence of elements of some alphabet $({0, 1}$, or ${A - Z}$ \cup ${a - z}$, etc.)

Definition: A sequence $Z = (z_1, \ldots, z_k)$ is a *subsequence* of $X = (x_1, \ldots, x_m)$ if there exists a strictly increasing sequence (i_1,i_2,\ldots,i_k) such that $\pmb{x_{i_j}} = \pmb{z_j}$ for all $\pmb{j} \in \{1,2,\ldots,k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

▸ Allowed to skip positions, unlike substring!

Definitions

String: Sequence of elements of some alphabet $({0, 1}$, or ${A - Z}$ \cup ${a - z}$, etc.)

Definition: A sequence $Z = (z_1, \ldots, z_k)$ is a subsequence of $X = (x_1, \ldots, x_m)$ if there exists a strictly increasing sequence (i_1,i_2,\ldots,i_k) such that $\pmb{x_{i_j}} = \pmb{z_j}$ for all $\pmb{j} \in \{1,2,\ldots,k\}$.

Example: (B, C, D, B) is a subsequence of (A, B, C, B, D, A, B)

▸ Allowed to skip positions, unlike substring!

Definition: In *Longest Common Subsequence* problem (LCS) we are given two strings $X = (x_1, \ldots, x_m)$ and $Y = (y_1, \ldots, y_n)$. Need to find the longest Z which is a subsequence of both X and Y .

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

$$
\blacktriangleright \ X_i = (x_1, x_2, \ldots, x_i) \ (\text{so } X = X_m)
$$

$$
\blacktriangleright \ \ Y_j = (y_1, y_2, \ldots, y_j) \ (\text{so} \ \mathsf{Y} = \mathsf{Y}_n)
$$

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

$$
\begin{aligned}\n&\blacktriangleright \ X_i = (x_1, x_2, \dots, x_i) \ (\text{so } X = X_m) \\
&\blacktriangleright \ Y_i = (y_1, y_2, \dots, y_i) \ (\text{so } Y = Y_n)\n\end{aligned}
$$

Definition: Let $OPT(i, j)$ be longest common subsequence of X_i and Y_i

So looking for optimal solution $OPT = OPT(m, n)$

▸ Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

$$
\begin{aligned}\n&\blacktriangleright \ X_i = (x_1, x_2, \dots, x_i) \ (\text{so } X = X_m) \\
&\blacktriangleright \ Y_i = (y_1, y_2, \dots, y_i) \ (\text{so } Y = Y_n)\n\end{aligned}
$$

Definition: Let $OPT(i, j)$ be longest common subsequence of X_i and Y_i

So looking for optimal solution $OPT = OPT(m, n)$

▸ Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Let
$$
Z = (z_1, ..., z_k)
$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$).
1. If $x_i = y_j$:

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Let
$$
Z = (z_1, \ldots, z_k)
$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$). 1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Theorem

Let
$$
Z = (z_1, \ldots, z_k)
$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$). 1. If $x_i = y_j$: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

2. If $x_i \neq y_j$ and $z_k \neq x_i$:

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Let
$$
Z = (z_1, \ldots, z_k)
$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$).

1. If
$$
x_i = y_j
$$
: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

2. If
$$
x_i \neq y_j
$$
 and $z_k \neq x_i$: then $Z = OPT(i - 1, j)$

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Let
$$
Z = (z_1, \ldots, z_k)
$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$).

1. If
$$
x_i = y_j
$$
: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

2. If
$$
x_i \neq y_j
$$
 and $z_k \neq x_i$: then $Z = OPT(i - 1, j)$

3. If
$$
x_i \neq y_j
$$
 and $z_k \neq y_j$:

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from solutions to smaller subproblems

Let
$$
Z = (z_1, ..., z_k)
$$
 be an LCS of X_i and Y_j (so $Z = OPT(i, j)$).

1. If
$$
x_i = y_j
$$
: then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

2. If
$$
x_i \neq y_j
$$
 and $z_k \neq x_i$: then $Z = OPT(i - 1, j)$

3. If
$$
x_i \neq y_j
$$
 and $z_k \neq y_j$: then $Z = OPT(i, j - 1)$

Case 1: If
$$
x_i = y_j
$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Case 1: If
$$
x_i = y_j
$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_j = a$, but $z_k \neq a$.

Case 1: If
$$
x_i = y_j
$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_i = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction

Case 1: If
$$
x_i = y_j
$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_i = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction

Part 2: Suppose Z_{k-1} ≠ **OPT** $(i - 1, j - 1)$.

Case 1: If
$$
x_i = y_j
$$
, then $z_k = x_i = y_j$ and $Z_{k-1} = OPT(i-1, j-1)$

Proof Sketch.

Contradiction.

Part 1: Suppose $x_i = y_i = a$, but $z_k \neq a$. Add a to end of Z, still have common subsequence, longer than LCS. Contradiction

Part 2: Suppose Z_{k-1} ≠ **OPT** $(i - 1, j - 1)$.

 \implies ∃W LCS of X_{i-1} , Y_{i-1} of length > $k-1 \implies \geq k$

Ô⇒ (W, a**)** common subsequence of Xⁱ , Y^j of length **>** k

▶ Contradiction to **Z** being LCS of **X**_i and **Y**_i

Case 2: If $x_i \neq y_i$ and $z_k \neq x_i$ then $Z = OPT(i - 1, j)$

Case 2: If $x_i \neq y_i$ and $z_k \neq x_i$ then $Z = OPT(i - 1, j)$

Proof.

Since z^k **≠** xⁱ , Z a common subsequence of Xi**−**1, Y^j

Case 2: If $x_i \neq y_i$ and $z_k \neq x_i$ then $Z = OPT(i - 1, j)$

Proof.

Since z^k **≠** xⁱ , Z a common subsequence of Xi**−**1, Y^j

 $\mathsf{OPT}(i-1,j)$ a common subsequence of $\mathsf{X}_i,\mathsf{Y}_j$ \Rightarrow $|OPT(i-1,j)| \leq |OPT(i,j)| = |Z|$ (def of $OPT(i,j)$ and Z)

Case 2: If $x_i \neq y_i$ and $z_k \neq x_i$ then $Z = OPT(i - 1, j)$

Proof.

Since z^k **≠** xⁱ , Z a common subsequence of Xi**−**1, Y^j

 $\mathsf{OPT}(i-1,j)$ a common subsequence of $\mathsf{X}_i,\mathsf{Y}_j$ \Rightarrow $|OPT(i-1,j)| \leq |OPT(i,j)| = |Z|$ (def of $OPT(i,j)$ and Z)

 \implies Z = OPT(i – 1,j)

Case 3: If
$$
x_i \neq y_j
$$
 and $z_k \neq y_j$ then $Z = OPT(i, j - 1)$

Proof.

Symmetric to Case 2.

Structure Corollary

Corollary $OPT(i,j) = \begin{cases}$ \varnothing if $\boldsymbol{i} = \boldsymbol{0}$ or $\boldsymbol{j} = \boldsymbol{0}$, $OPT(i-1,j-1) \circ x_i$ if $i,j > 0$ and $x_i = y_j$ max**(**OPT**(**i,j **−** 1**)**,OPT**(**i **−** 1,j **))** if i,j **>** 0 and xⁱ **≠** y^j

Structure Corollary

Corollary

$$
OPT(i,j) = \begin{cases} \varnothing & \text{if } i = 0 \text{ or } j = 0, \\ OPT(i-1,j-1) \circ x_i & \text{if } i,j > 0 \text{ and } x_i = y_j \\ max(OPT(i,j-1), OPT(i-1,j)) & \text{if } i,j > 0 \text{ and } x_i \neq y_j \end{cases}
$$

Gives obvious recursive algorithm

▸ Can take exponential time (good exercise at home!)

Dynamic Programming!

- **▸** Top-Down: are problems getting "smaller"? What does "smaller" mean?
- **▸** Bottom-Up: two-dimensional table! What order to fill it in?

Dynamic Programming Algorithm

```
LCS(X,Y) {
   for(i = 0 to m) M[i, 0] = 0;
   for(j = 0 to n) M[0, j] = 0;
   for(\mathbf{i} = 1 to \mathbf{m}) {
       for(\boldsymbol{i} = 1 to \boldsymbol{n}) {
           if(x_i = y_i)
               M[i, j] = 1 + M[i - 1, j - 1];
           else
               M[i, j] = max(M[i, j - 1], M[i - 1, j]);
            }
        }
    return M[m, n];
}
```
Dynamic Programming Algorithm

```
LCS(X,Y) {
   for(i = 0 to m) M[i, 0] = 0;
   for(j = 0 to n) M[0, j] = 0;
   for(\mathbf{i} = 1 to \mathbf{m}) {
       for(\boldsymbol{i} = 1 to \boldsymbol{n}) {
           if(x_i = y_i)
               M[i, j] = 1 + M[i - 1, j - 1];
           else
               M[i,j] = max(M[i,j-1],M[i-1,j]);
           }
        }
   return M[m, n];
}
```
Running Time: O**(**mn**)**

Theorem

 $M[i,j] = |OPT(i,j)|$

Theorem

 $M[i,j] = |OPT(i,j)|$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Theorem

 $M[i, j] = |OPT(i, j)|$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case: $i + j = 0 \implies i = j = 0 \implies M[i, j] = 0 = |OPT(i, j)|$

Theorem

 $M[i,j] = |OPT(i,j)|$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case:
$$
i + j = 0 \implies i = j = 0 \implies M[i, j] = 0 = |OPT(i, j)|
$$

Inductive Step: Divide into three cases

1. If
$$
i = 0
$$
 or $j = 0$, then $M[i, j] = 0 = |OPT(i, j)|$

Theorem

 $M[i,j] = |OPT(i,j)|$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case:
$$
i + j = 0 \implies i = j = 0 \implies M[i, j] = 0 = |OPT(i, j)|
$$

Inductive Step: Divide into three cases

1. If
$$
i = 0
$$
 or $j = 0$, then $M[i, j] = 0 = |OPT(i, j)|$

2. If
$$
x_i = y_j
$$
, then $M[i, j] = 1 + M[i - 1, j - 1] = 1 + |OPT(i - 1, j - 1)| = |OPT(i, j)|$

Theorem

 $M[i,j] = |OPT(i,j)|$

Proof.

Induction on $\mathbf{i} + \mathbf{j}$ (or could do on iterations in the algorithm)

Base Case:
$$
i + j = 0 \implies i = j = 0 \implies M[i, j] = 0 = |OPT(i, j)|
$$

Inductive Step: Divide into three cases

1. If
$$
i = 0
$$
 or $j = 0$, then $M[i, j] = 0 = |OPT(i, j)|$

2. If
$$
x_i = y_j
$$
, then $M[i, j] = 1 + M[i - 1, j - 1] = 1 + |OPT(i - 1, j - 1)| = |OPT(i, j)|$
3. If $x_i \neq y_j$, then

$$
M[i, j] = \max(M[i, j - 1], M[i - 1, j])
$$
 (def of algorithm)
= max(|OPT(i, j - 1)|, |OPT(i - 1, j)|) (induction)
= |OPT(i, j)| (structure thm/corollary)

Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4

Optimal Binary Search Trees

Problem Definition

Input: probability distribution / search frequency of keys

- **▶** *n* distinct keys $k_1 < k_2 < \cdots < k_n$
- **▶** For each $\boldsymbol{i} \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n}$ $\sum_{i=1}^{n} p_i = 1$

What's the best binary search tree for these keys and frequencies?

Problem Definition

Input: probability distribution $/$ search frequency of keys

- **►** *n* distinct keys $k_1 < k_2 < \cdots < k_n$
- **▶** For each $\boldsymbol{i} \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n}$ $\sum_{i=1}^{n} p_i = 1$

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $depth_T(k_i) + 1$ (say depth of root = 0) \implies **E**[cost of search in **T**] = $\sum_{i=1}^{n}$ $\sum_{i=1}^{n} p_i (depth_{\mathcal{T}}(k_i) + 1)$

Problem Definition

Input: probability distribution / search frequency of keys

- **►** *n* distinct keys $k_1 < k_2 < \cdots < k_n$
- **▶** For each $\boldsymbol{i} \in [n]$, probability p_i that we search for k_i (so $\sum_{i=1}^{n}$ $\sum_{i=1}^{n} p_i = 1$

What's the best binary search tree for these keys and frequencies?

Cost of searching for k_i in tree T is $depth_T(k_i) + 1$ (say depth of root = 0) \implies **E**[cost of search in **T**] = $\sum_{i=1}^{n}$ $\sum_{i=1}^{n} p_i (depth_{\mathcal{T}}(k_i) + 1)$

Definition: $c(T) = \sum_{i=1}^{n}$ $\sum_{i=1}^{n} p_i (depth_\mathcal{T}(k_i) + 1)$

Problem: Find search tree T minimizing cost.

Natural approach: greedy (make highest probability key the root). Does this work?

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > ... p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > ... p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

 E **[**cost of search in T **]** $\geq \Omega(n)$

Natural approach: greedy (make highest probability key the root). Does this work?

Set $p_1 > p_2 > ... p_n$, but with $p_i - p_{i+1}$ extremely small (say $1/2^n$)

E[cost of search in $T \ge \Omega(n)$ Balanced search tree: $E[\text{cost}] \leq O(\log n)$

Intuition

Suppose root is $\bm{k_r}$. What does optimal tree look like?

Intuition

Suppose root is $\bm{k_r}$. What does optimal tree look like?

Definition

Let $\mathsf{OPT}(i,j)$ with $i\leq j$ be optimal tree for keys $\{k_i,k_{i+1},\ldots,k_j\}$: tree $\mathcal T$ minimizing $c(T) = \sum_{i=1}^{j}$ $\int_{a=i}^{J} p_a(depth_T(k_a)+1)$

By convention, if $\mathbf{i} > \mathbf{j}$ then $OPT(\mathbf{i}, \mathbf{j})$ empty So overall goal is to find $OPT(1, n)$.

Definition

Let $\mathsf{OPT}(i,j)$ with $i\leq j$ be optimal tree for keys $\{k_i,k_{i+1},\ldots,k_j\}$: tree $\mathcal T$ minimizing $c(T) = \sum_{i=1}^{j}$ $\int_{a=i}^{J} p_a(depth_T(k_a)+1)$

By convention, if $\mathbf{i} > \mathbf{j}$ then $OPT(\mathbf{i}, \mathbf{j})$ empty So overall goal is to find OPT**(**1, n**)**.

Theorem (Optimal Substructure)

Let k_r be the root of $OPT(i,j)$. Then the left subtree of $OPT(i,j)$ is $OPT(i,r-1)$, and the right subtree of $OPT(i, j)$ is $OPT(r + 1, j)$.

Proof Sketch of Optimal Substructure

Definitions:

- **Example:** Let $T = OPT(i, j)$, T_L its left subtree, T_R its right subtree.
- **▸** Suppose for contradiction T^L **≠** OPT**(**i,r **−** 1**)**, let T **′ =** OPT**(**i,r **−** 1**)** \implies **c**(**T**[']) < **c**(**T**_L) (def of **OPT**(**i**, **r** − 1))
- \blacktriangleright Let $\hat{\bm{\tau}}$ be tree get by replacing $\bm{\tau}_L$ with $\bm{\tau}'$

Proof Sketch of Optimal Substructure

Definitions:

- \triangleright Let $T = OPT(i, j)$, T_I its left subtree, T_R its right subtree.
- **▸** Suppose for contradiction T^L **≠** OPT**(**i,r **−** 1**)**, let T **′ =** OPT**(**i,r **−** 1**)** \implies **c**(**T**[']) < **c**(**T**_L) (def of **OPT**(**i**, **r** − 1))
- \blacktriangleright Let $\hat{\bm{\tau}}$ be tree get by replacing $\bm{\tau}_L$ with $\bm{\tau}'$

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$ Contradicts $T = OPT(i, j)$

Proof Sketch of Optimal Substructure

Definitions:

- \triangleright Let $T = OPT(i, j)$, T_I its left subtree, T_R its right subtree.
- **▸** Suppose for contradiction T^L **≠** OPT**(**i,r **−** 1**)**, let T **′ =** OPT**(**i,r **−** 1**)** \implies **c**(**T**[']) < **c**(**T**_L) (def of **OPT**(**i**, **r** − 1))
- \blacktriangleright Let $\hat{\bm{\tau}}$ be tree get by replacing $\bm{\tau}_L$ with $\bm{\tau}'$

Whole bunch of math (see lecture notes): get that $c(\hat{T}) < c(T)$ Contradicts $T = OPT(i, j)$

Symmetric argument works for $T_R = OPT(r + 1, j)$

Cost Corollary

Corollary

$$
c(OPT(i,j)) = \sum_{a=i}^{j} p_a + \min_{i \leq r \leq j} (c(OPT(i,r-1)) + c(OPT(r+1,j)))
$$

Let k_r be root of $OPT(i, j)$

$$
c(OPT(i,j)) = \sum_{a=i}^{j} p_a(depth_{OPT(i,j)}(k_a) + 1)
$$

=
$$
\sum_{a=i}^{r-1} (p_a(depth_{OPT(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a(depth_{OPT(r+1,j)}(k_a) + 2)
$$

=
$$
\sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a(depth_{OPT(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a(depth_{OPT(r+1,j)}(k_a) + 1)
$$

=
$$
\sum_{a=i}^{j} p_a + c(OPT(i,r-1)) + c(OPT(r+1,j)).
$$

Cost Corollary

Corollary

$$
c(OPT(i,j)) = \sum_{a=i}^{j} p_a + \min_{i \leq r \leq j} (c(OPT(i,r-1)) + c(OPT(r+1,j)))
$$

Let k_r be root of $OPT(i, j)$

$$
c(OPT(i,j)) = \sum_{a=i}^{j} p_a(depth_{OPT(i,j)}(k_a) + 1)
$$

= $\sum_{a=i}^{r-1} (p_a(depth_{OPT(i,r-1)}(k_a) + 2)) + p_r + \sum_{a=r+1}^{j} p_a(depth_{OPT(r+1,j)}(k_a) + 2)$
= $\sum_{a=i}^{j} p_a + \sum_{a=i}^{r-1} (p_a(depth_{OPT(i,r-1)}(k_a) + 1)) + \sum_{a=r+1}^{j} p_a(depth_{OPT(r+1,j)}(k_a) + 1)$
= $\sum_{a=i}^{j} p_a + c(OPT(i,r-1)) + c(OPT(r+1,j)).$

Same logic holds for any possible root **→ take min**
Michael Dinitz
Lecture 12: Dynamic Program [Lecture 12: Dynamic Programming II](#page-0-0) Corollary 20 / 24

Fill in table M:

$$
M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \leq j \end{cases}
$$

Fill in table M:

$$
M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \leq j \end{cases}
$$

Top-Down (memoization): are problems getting smaller?

Fill in table M:

$$
M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \leq j \end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! j **−** i decreases in every recursive call.

Fill in table M:

$$
M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \leq r \leq j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \leq j \end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! j **−** i decreases in every recursive call.

Correctness. Claim $M[i, j] = c(OPT(i, j))$. Induction on $j - i$.

Fill in table M:

$$
M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \le j \end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! j **−** i decreases in every recursive call.

Correctness. Claim $M[i, j] = c(OPT(i, j))$. Induction on $j - i$.

▸ Base case: if j **−** i **<** 0 then M**[**i,j**] =** OPT**(**i,j **) =** 0

Fill in table M:

$$
M[i,j] = \begin{cases} 0 & \text{if } i > j \\ \min_{i \le r \le j} \left(\sum_{a=i}^{j} p_a + M[i, r-1] + M[r+1, j] \right) & \text{if } i \le j \end{cases}
$$

Top-Down (memoization): are problems getting smaller? Yes! j **−** i decreases in every recursive call.

Correctness. Claim $M[i, j] = c(OPT(i, j))$. Induction on $j - i$.

▸ Base case: if j **−** i **<** 0 then M**[**i,j**] =** OPT**(**i,j **) =** 0

▸ Inductive step:

$$
M[i,j] = \min_{i \le r \le j} \left(\sum_{a=1}^{j} p_a + M[i, r-1] + M[r+1, j] \right)
$$
 (alg def)
\n
$$
= \min_{i \le r \le j} \left(\sum_{a=1}^{j} p_a + c(OPT(i, r-1)) + c(OPT(r+1, j)) \right)
$$
 (induction)
\n
$$
= c(OPT(i,j)) \bigg|_{\text{Lecture 12: Dynamic Programming II}}
$$
 (cost corollary)
\n
$$
\text{Michael Dinitz}
$$
 (cost corollary)
\n
$$
\text{October 3, 2024}
$$

Algorithm: Bottom-up

What order to fill the table in?

▸ Obvious approach: for(i **=** 1 to n **−** 1) for(j **=** i **+** 1 to n) Doesn't work!

Algorithm: Bottom-up

What order to fill the table in?

- **▸** Obvious approach: for(i **=** 1 to n **−** 1) for(j **=** i **+** 1 to n) Doesn't work!
- **▸** Take hint from induction: j **−** i

```
OBST {
    Set M[i, j] = 0 for all j > i;
     Set M[i, i] = p_i for all i
    for(\ell = 1 to n - 1) {
         for(\mathbf{i} = 1 to \mathbf{n} - \ell) {
              \mathbf{i} = \mathbf{i} + \mathbf{\ell}\bm{M}[i,j] = \min_{i \leq r \leq j} \left( \sum_{i=1}^{j} \right)\int_{a=i}^{J} p_a + M[i, r-1] + M[r+1, j]}
     }
    return M[1, n];
}
```
Correctness: same as top-down

Correctness: same as top-down

Running Time:

▸ # table entries:

Correctness: same as top-down

Running Time:

 \blacktriangleright # table entries: $O(n^2)$

Correctness: same as top-down

- \blacktriangleright # table entries: $O(n^2)$
- \blacktriangleright Time to compute table entry $M[i,j]$:

Correctness: same as top-down

- \blacktriangleright # table entries: $O(n^2)$
- **▶** Time to compute table entry $M[i,j]$: $O(j i) = O(n)$

Correctness: same as top-down

- \blacktriangleright # table entries: $O(n^2)$
- **▶** Time to compute table entry $M[i, j]$: $O(j i) = O(n)$ Total running time: $O(n^3)$

Bonus Content

Obvious Question: Robustness.

▸ What if given distribution is wrong?

Want algorithm that gives a solution with cost a function of true optimal cost, "distance" between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. Binary Search Trees with Distributional Predictions. NeurIPS '24