
Lecture 12: Dynamic Programming II

Michael Dinitz

October 3, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 1 / 24



Introduction

Today: two more examples of dynamic programming

▸ Longest Common Subsequence (strings)

▸ Optimal Binary Search Tree (trees)

Important problems, but really: more examples of dynamic programming

Both in CLRS (unlike Weighted Interval Scheduling)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 2 / 24



Longest Common Subsequence

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 3 / 24



Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A −Z} ∪ {a − z}, etc.)

Definition: A sequence Z = (z1, . . . , zk) is a subsequence of X = (x1, . . . ,xm) if there
exists a strictly increasing sequence (i1, i2, . . . , ik) such that xij = zj for all j ∈ {1,2, . . . ,k}.

Example: (B,C ,D,B) is a subsequence of (A,B,C ,B,D,A,B)
▸ Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X = (x1, . . . ,xm) and Y = (y1, . . .yn). Need to find the longest Z which is a subsequence
of both X and Y .

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 4 / 24



Definitions

String: Sequence of elements of some alphabet ({0,1}, or {A −Z} ∪ {a − z}, etc.)

Definition: A sequence Z = (z1, . . . , zk) is a subsequence of X = (x1, . . . ,xm) if there
exists a strictly increasing sequence (i1, i2, . . . , ik) such that xij = zj for all j ∈ {1,2, . . . ,k}.

Example: (B,C ,D,B) is a subsequence of (A,B,C ,B,D,A,B)
▸ Allowed to skip positions, unlike substring!

Definition: In Longest Common Subsequence problem (LCS) we are given two strings
X = (x1, . . . ,xm) and Y = (y1, . . .yn). Need to find the longest Z which is a subsequence
of both X and Y .

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 4 / 24



Subproblems

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

▸ Xi = (x1,x2, . . . ,xi ) (so X = Xm)

▸ Yj = (y1,y2, . . . ,yj ) (so Y = Yn)

Definition: Let OPT(i , j) be longest common subsequence of Xi and Yj

So looking for optimal solution OPT = OPT(m,n)
▸ Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 5 / 24



Subproblems

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

▸ Xi = (x1,x2, . . . ,xi ) (so X = Xm)

▸ Yj = (y1,y2, . . . ,yj ) (so Y = Yn)

Definition: Let OPT(i , j) be longest common subsequence of Xi and Yj

So looking for optimal solution OPT = OPT(m,n)
▸ Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 5 / 24



Subproblems

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

▸ Xi = (x1,x2, . . . ,xi ) (so X = Xm)

▸ Yj = (y1,y2, . . . ,yj ) (so Y = Yn)

Definition: Let OPT(i , j) be longest common subsequence of Xi and Yj

So looking for optimal solution OPT = OPT(m,n)
▸ Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 5 / 24



Subproblems

First and most important step of dynamic programming: define subproblems!

▸ Not obvious: X and Y might not even be same length!

Prefixes of strings

▸ Xi = (x1,x2, . . . ,xi ) (so X = Xm)

▸ Yj = (y1,y2, . . . ,yj ) (so Y = Yn)

Definition: Let OPT(i , j) be longest common subsequence of Xi and Yj

So looking for optimal solution OPT = OPT(m,n)
▸ Last time OPT denotes value of solution, here denotes solution. Be flexible in notation

Two-dimensional table!

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 5 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj : then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)
2. If xi ≠ yj and zk ≠ xi : then Z = OPT(i − 1, j)
3. If xi ≠ yj and zk ≠ yj : then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj :

then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)
2. If xi ≠ yj and zk ≠ xi : then Z = OPT(i − 1, j)
3. If xi ≠ yj and zk ≠ yj : then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj : then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)

2. If xi ≠ yj and zk ≠ xi : then Z = OPT(i − 1, j)
3. If xi ≠ yj and zk ≠ yj : then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj : then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)
2. If xi ≠ yj and zk ≠ xi :

then Z = OPT(i − 1, j)
3. If xi ≠ yj and zk ≠ yj : then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj : then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)
2. If xi ≠ yj and zk ≠ xi : then Z = OPT(i − 1, j)

3. If xi ≠ yj and zk ≠ yj : then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj : then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)
2. If xi ≠ yj and zk ≠ xi : then Z = OPT(i − 1, j)
3. If xi ≠ yj and zk ≠ yj :

then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure

Second step of dynamic programming: prove optimal substructure

▸ Relationship between subproblems: show that solution to subproblem can be found from
solutions to smaller subproblems

Theorem

Let Z = (z1, . . . , zk) be an LCS of Xi and Yj (so Z = OPT(i , j)).
1. If xi = yj : then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)
2. If xi ≠ yj and zk ≠ xi : then Z = OPT(i − 1, j)
3. If xi ≠ yj and zk ≠ yj : then Z = OPT(i , j − 1)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 6 / 24



Optimal Substructure: Proof (I)

Case 1: If xi = yj , then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)

Proof Sketch.

Contradiction.

Part 1: Suppose xi = yj = a, but zk ≠ a. Add a to end of Z , still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zk−1 ≠ OPT(i − 1, j − 1).
Ô⇒ ∃W LCS of Xi−1,Yj−1 of length > k − 1 Ô⇒ ≥ k
Ô⇒ (W ,a) common subsequence of Xi ,Yj of length > k
▸ Contradiction to Z being LCS of Xi and Yj

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 7 / 24



Optimal Substructure: Proof (I)

Case 1: If xi = yj , then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)

Proof Sketch.

Contradiction.

Part 1: Suppose xi = yj = a, but zk ≠ a.

Add a to end of Z , still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zk−1 ≠ OPT(i − 1, j − 1).
Ô⇒ ∃W LCS of Xi−1,Yj−1 of length > k − 1 Ô⇒ ≥ k
Ô⇒ (W ,a) common subsequence of Xi ,Yj of length > k
▸ Contradiction to Z being LCS of Xi and Yj

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 7 / 24



Optimal Substructure: Proof (I)

Case 1: If xi = yj , then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)

Proof Sketch.

Contradiction.

Part 1: Suppose xi = yj = a, but zk ≠ a. Add a to end of Z , still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zk−1 ≠ OPT(i − 1, j − 1).
Ô⇒ ∃W LCS of Xi−1,Yj−1 of length > k − 1 Ô⇒ ≥ k
Ô⇒ (W ,a) common subsequence of Xi ,Yj of length > k
▸ Contradiction to Z being LCS of Xi and Yj

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 7 / 24



Optimal Substructure: Proof (I)

Case 1: If xi = yj , then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)

Proof Sketch.

Contradiction.

Part 1: Suppose xi = yj = a, but zk ≠ a. Add a to end of Z , still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zk−1 ≠ OPT(i − 1, j − 1).

Ô⇒ ∃W LCS of Xi−1,Yj−1 of length > k − 1 Ô⇒ ≥ k
Ô⇒ (W ,a) common subsequence of Xi ,Yj of length > k
▸ Contradiction to Z being LCS of Xi and Yj

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 7 / 24



Optimal Substructure: Proof (I)

Case 1: If xi = yj , then zk = xi = yj and Zk−1 = OPT(i − 1, j − 1)

Proof Sketch.

Contradiction.

Part 1: Suppose xi = yj = a, but zk ≠ a. Add a to end of Z , still have common subsequence,
longer than LCS. Contradiction

Part 2: Suppose Zk−1 ≠ OPT(i − 1, j − 1).
Ô⇒ ∃W LCS of Xi−1,Yj−1 of length > k − 1 Ô⇒ ≥ k
Ô⇒ (W ,a) common subsequence of Xi ,Yj of length > k
▸ Contradiction to Z being LCS of Xi and Yj

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 7 / 24



Optimal Substructure: Proof (II)

Case 2: If xi ≠ yj and zk ≠ xi then Z = OPT(i − 1, j)

Proof.

Since zk ≠ xi , Z a common subsequence of Xi−1,Yj

OPT(i − 1, j) a common subsequence of Xi ,Yj

Ô⇒ ∣OPT(i − 1, j)∣ ≤ ∣OPT(i , j)∣ = ∣Z ∣ (def of OPT(i , j) and Z )

Ô⇒ Z = OPT(i − 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 8 / 24



Optimal Substructure: Proof (II)

Case 2: If xi ≠ yj and zk ≠ xi then Z = OPT(i − 1, j)

Proof.

Since zk ≠ xi , Z a common subsequence of Xi−1,Yj

OPT(i − 1, j) a common subsequence of Xi ,Yj

Ô⇒ ∣OPT(i − 1, j)∣ ≤ ∣OPT(i , j)∣ = ∣Z ∣ (def of OPT(i , j) and Z )

Ô⇒ Z = OPT(i − 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 8 / 24



Optimal Substructure: Proof (II)

Case 2: If xi ≠ yj and zk ≠ xi then Z = OPT(i − 1, j)

Proof.

Since zk ≠ xi , Z a common subsequence of Xi−1,Yj

OPT(i − 1, j) a common subsequence of Xi ,Yj

Ô⇒ ∣OPT(i − 1, j)∣ ≤ ∣OPT(i , j)∣ = ∣Z ∣ (def of OPT(i , j) and Z )

Ô⇒ Z = OPT(i − 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 8 / 24



Optimal Substructure: Proof (II)

Case 2: If xi ≠ yj and zk ≠ xi then Z = OPT(i − 1, j)

Proof.

Since zk ≠ xi , Z a common subsequence of Xi−1,Yj

OPT(i − 1, j) a common subsequence of Xi ,Yj

Ô⇒ ∣OPT(i − 1, j)∣ ≤ ∣OPT(i , j)∣ = ∣Z ∣ (def of OPT(i , j) and Z )

Ô⇒ Z = OPT(i − 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 8 / 24



Optimal Substructure: Proof (III)

Case 3: If xi ≠ yj and zk ≠ yj then Z = OPT(i , j − 1)

Proof.

Symmetric to Case 2.

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 9 / 24



Structure Corollary

Corollary

OPT(i , j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ if i = 0 or j = 0,
OPT(i − 1, j − 1) ○ xi if i , j > 0 and xi = yj

max(OPT(i , j − 1),OPT(i − 1, j)) if i , j > 0 and xi ≠ yj

Gives obvious recursive algorithm

▸ Can take exponential time (good exercise at home!)

Dynamic Programming!

▸ Top-Down: are problems getting “smaller”? What does “smaller” mean?

▸ Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 10 / 24



Structure Corollary

Corollary

OPT(i , j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∅ if i = 0 or j = 0,
OPT(i − 1, j − 1) ○ xi if i , j > 0 and xi = yj

max(OPT(i , j − 1),OPT(i − 1, j)) if i , j > 0 and xi ≠ yj

Gives obvious recursive algorithm

▸ Can take exponential time (good exercise at home!)

Dynamic Programming!

▸ Top-Down: are problems getting “smaller”? What does “smaller” mean?

▸ Bottom-Up: two-dimensional table! What order to fill it in?

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 10 / 24



Dynamic Programming Algorithm

LCS(X,Y) {
for(i = 0 to m) M[i ,0] = 0;
for(j = 0 to n) M[0, j ] = 0;
for(i = 1 to m) {

for(j = 1 to n) {
if(xi = yj )

M[i , j ] = 1 +M[i − 1, j − 1];
else

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]);
}

}
return M[m,n];

}

Running Time: O(mn)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 11 / 24



Dynamic Programming Algorithm

LCS(X,Y) {
for(i = 0 to m) M[i ,0] = 0;
for(j = 0 to n) M[0, j ] = 0;
for(i = 1 to m) {

for(j = 1 to n) {
if(xi = yj )

M[i , j ] = 1 +M[i − 1, j − 1];
else

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]);
}

}
return M[m,n];

}

Running Time: O(mn)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 11 / 24



Correctness

Theorem

M[i , j ] = ∣OPT(i , j)∣

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: i + j = 0 Ô⇒ i = j = 0 Ô⇒ M[i , j ] = 0 = ∣OPT(i , j)∣
Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i , j ] = 0 = ∣OPT(i , j)∣
2. If xi = yj , then M[i , j ] = 1 +M[i − 1, j − 1] = 1 + ∣OPT(i − 1, j − 1)∣ = ∣OPT(i , j)∣
3. If xi ≠ yj , then

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]) (def of algorithm)

=max(∣OPT(i , j − 1)∣, ∣OPT(i − 1, j)∣) (induction)

= ∣OPT(i , j)∣ (structure thm/corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 12 / 24



Correctness

Theorem

M[i , j ] = ∣OPT(i , j)∣

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: i + j = 0 Ô⇒ i = j = 0 Ô⇒ M[i , j ] = 0 = ∣OPT(i , j)∣
Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i , j ] = 0 = ∣OPT(i , j)∣
2. If xi = yj , then M[i , j ] = 1 +M[i − 1, j − 1] = 1 + ∣OPT(i − 1, j − 1)∣ = ∣OPT(i , j)∣
3. If xi ≠ yj , then

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]) (def of algorithm)

=max(∣OPT(i , j − 1)∣, ∣OPT(i − 1, j)∣) (induction)

= ∣OPT(i , j)∣ (structure thm/corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 12 / 24



Correctness

Theorem

M[i , j ] = ∣OPT(i , j)∣

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: i + j = 0 Ô⇒ i = j = 0 Ô⇒ M[i , j ] = 0 = ∣OPT(i , j)∣

Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i , j ] = 0 = ∣OPT(i , j)∣
2. If xi = yj , then M[i , j ] = 1 +M[i − 1, j − 1] = 1 + ∣OPT(i − 1, j − 1)∣ = ∣OPT(i , j)∣
3. If xi ≠ yj , then

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]) (def of algorithm)

=max(∣OPT(i , j − 1)∣, ∣OPT(i − 1, j)∣) (induction)

= ∣OPT(i , j)∣ (structure thm/corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 12 / 24



Correctness

Theorem

M[i , j ] = ∣OPT(i , j)∣

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: i + j = 0 Ô⇒ i = j = 0 Ô⇒ M[i , j ] = 0 = ∣OPT(i , j)∣
Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i , j ] = 0 = ∣OPT(i , j)∣

2. If xi = yj , then M[i , j ] = 1 +M[i − 1, j − 1] = 1 + ∣OPT(i − 1, j − 1)∣ = ∣OPT(i , j)∣
3. If xi ≠ yj , then

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]) (def of algorithm)

=max(∣OPT(i , j − 1)∣, ∣OPT(i − 1, j)∣) (induction)

= ∣OPT(i , j)∣ (structure thm/corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 12 / 24



Correctness

Theorem

M[i , j ] = ∣OPT(i , j)∣

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: i + j = 0 Ô⇒ i = j = 0 Ô⇒ M[i , j ] = 0 = ∣OPT(i , j)∣
Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i , j ] = 0 = ∣OPT(i , j)∣
2. If xi = yj , then M[i , j ] = 1 +M[i − 1, j − 1] = 1 + ∣OPT(i − 1, j − 1)∣ = ∣OPT(i , j)∣

3. If xi ≠ yj , then

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]) (def of algorithm)

=max(∣OPT(i , j − 1)∣, ∣OPT(i − 1, j)∣) (induction)

= ∣OPT(i , j)∣ (structure thm/corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 12 / 24



Correctness

Theorem

M[i , j ] = ∣OPT(i , j)∣

Proof.

Induction on i + j (or could do on iterations in the algorithm)

Base Case: i + j = 0 Ô⇒ i = j = 0 Ô⇒ M[i , j ] = 0 = ∣OPT(i , j)∣
Inductive Step: Divide into three cases

1. If i = 0 or j = 0, then M[i , j ] = 0 = ∣OPT(i , j)∣
2. If xi = yj , then M[i , j ] = 1 +M[i − 1, j − 1] = 1 + ∣OPT(i − 1, j − 1)∣ = ∣OPT(i , j)∣
3. If xi ≠ yj , then

M[i , j ] =max(M[i , j − 1],M[i − 1, j ]) (def of algorithm)

=max(∣OPT(i , j − 1)∣, ∣OPT(i − 1, j)∣) (induction)

= ∣OPT(i , j)∣ (structure thm/corollary)
Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 12 / 24



Computing a Solution

Like we talked about last lecture: backtrack through dynamic programming table.

Details in CLRS 15.4

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 13 / 24



Optimal Binary Search Trees

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 14 / 24



Problem Definition

Input: probability distribution / search frequency of keys

▸ n distinct keys k1 < k2 < ⋅ ⋅ ⋅ < kn

▸ For each i ∈ [n], probability pi that we search for ki (so ∑n
i=1 pi = 1)

What’s the best binary search tree for these keys and frequencies?

Cost of searching for ki in tree T is depthT (ki ) + 1 (say depth of root = 0)
Ô⇒ E [cost of search in T ] = ∑n

i=1 pi (depthT (ki ) + 1)

Definition: c(T) = ∑n
i=1 pi (depthT (ki ) + 1)

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 15 / 24



Problem Definition

Input: probability distribution / search frequency of keys

▸ n distinct keys k1 < k2 < ⋅ ⋅ ⋅ < kn

▸ For each i ∈ [n], probability pi that we search for ki (so ∑n
i=1 pi = 1)

What’s the best binary search tree for these keys and frequencies?

Cost of searching for ki in tree T is depthT (ki ) + 1 (say depth of root = 0)
Ô⇒ E [cost of search in T ] = ∑n

i=1 pi (depthT (ki ) + 1)

Definition: c(T) = ∑n
i=1 pi (depthT (ki ) + 1)

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 15 / 24



Problem Definition

Input: probability distribution / search frequency of keys

▸ n distinct keys k1 < k2 < ⋅ ⋅ ⋅ < kn

▸ For each i ∈ [n], probability pi that we search for ki (so ∑n
i=1 pi = 1)

What’s the best binary search tree for these keys and frequencies?

Cost of searching for ki in tree T is depthT (ki ) + 1 (say depth of root = 0)
Ô⇒ E [cost of search in T ] = ∑n

i=1 pi (depthT (ki ) + 1)

Definition: c(T) = ∑n
i=1 pi (depthT (ki ) + 1)

Problem: Find search tree T minimizing cost.

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 15 / 24



Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > . . .pn, but with pi − pi+1 extremely small (say 1/2n)

 

y

su ka
ta
IKate y ka

E [cost of search in T ] ≥ Ω(n)
Balanced search tree: E [cost] ≤ O(logn)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 16 / 24



Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > . . .pn, but with pi − pi+1 extremely small (say 1/2n)

 

y

su ka
ta
IKate y ka

E [cost of search in T ] ≥ Ω(n)
Balanced search tree: E [cost] ≤ O(logn)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 16 / 24



Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > . . .pn, but with pi − pi+1 extremely small (say 1/2n)

 

y

su ka
ta
IKate y ka

E [cost of search in T ] ≥ Ω(n)

Balanced search tree: E [cost] ≤ O(logn)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 16 / 24



Obvious Approach

Natural approach: greedy (make highest probability key the root). Does this work?

Set p1 > p2 > . . .pn, but with pi − pi+1 extremely small (say 1/2n)

 

y

su ka
ta
IKate y ka

E [cost of search in T ] ≥ Ω(n)
Balanced search tree: E [cost] ≤ O(logn)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 16 / 24



Intuition

Suppose root is kr . What does optimal tree look like?

 

y

su ka
ta
IKate y ka

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 17 / 24



Intuition

Suppose root is kr . What does optimal tree look like?

 

y

su ka
ta
IKate y ka

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 17 / 24



Subproblems

Definition

Let OPT(i , j) with i ≤ j be optimal tree for keys {ki ,ki+1, . . . ,kj}: tree T minimizing

c(T) = ∑j
a=i pa(depthT (ka) + 1)

By convention, if i > j then OPT(i , j) empty
So overall goal is to find OPT(1,n).

Theorem (Optimal Substructure)

Let kr be the root of OPT(i , j). Then the left subtree of OPT(i , j) is OPT(i , r − 1), and
the right subtree of OPT(i , j) is OPT(r + 1, j).

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 18 / 24



Subproblems

Definition

Let OPT(i , j) with i ≤ j be optimal tree for keys {ki ,ki+1, . . . ,kj}: tree T minimizing

c(T) = ∑j
a=i pa(depthT (ka) + 1)

By convention, if i > j then OPT(i , j) empty
So overall goal is to find OPT(1,n).

Theorem (Optimal Substructure)

Let kr be the root of OPT(i , j). Then the left subtree of OPT(i , j) is OPT(i , r − 1), and
the right subtree of OPT(i , j) is OPT(r + 1, j).

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 18 / 24



Proof Sketch of Optimal Substructure

Definitions:

▸ Let T = OPT(i , j), TL its left subtree, TR its right subtree.
▸ Suppose for contradiction TL ≠ OPT(i , r − 1), let T ′ = OPT(i , r − 1)
Ô⇒ c(T ′) < c(TL) (def of OPT(i , r − 1))
▸ Let T̂ be tree get by replacing TL with T ′

Whole bunch of math (see lecture notes): get that c(T̂) < c(T)
Contradicts T = OPT(i , j)

Symmetric argument works for TR = OPT(r + 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 19 / 24



Proof Sketch of Optimal Substructure

Definitions:

▸ Let T = OPT(i , j), TL its left subtree, TR its right subtree.
▸ Suppose for contradiction TL ≠ OPT(i , r − 1), let T ′ = OPT(i , r − 1)
Ô⇒ c(T ′) < c(TL) (def of OPT(i , r − 1))
▸ Let T̂ be tree get by replacing TL with T ′

Whole bunch of math (see lecture notes): get that c(T̂) < c(T)
Contradicts T = OPT(i , j)

Symmetric argument works for TR = OPT(r + 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 19 / 24



Proof Sketch of Optimal Substructure

Definitions:

▸ Let T = OPT(i , j), TL its left subtree, TR its right subtree.
▸ Suppose for contradiction TL ≠ OPT(i , r − 1), let T ′ = OPT(i , r − 1)
Ô⇒ c(T ′) < c(TL) (def of OPT(i , r − 1))
▸ Let T̂ be tree get by replacing TL with T ′

Whole bunch of math (see lecture notes): get that c(T̂) < c(T)
Contradicts T = OPT(i , j)

Symmetric argument works for TR = OPT(r + 1, j)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 19 / 24



Cost Corollary

Corollary

c(OPT(i , j)) = ∑j
a=i pa +mini≤r≤j (c(OPT(i , r − 1)) + c(OPT(r + 1, j)))

Let kr be root of OPT(i , j)

c(OPT(i , j)) =
j

∑
a=i

pa(depthOPT(i ,j)(ka) + 1)

=
r−1
∑
a=i
(pa(depthOPT(i ,r−1)(ka) + 2)) + pr +

j

∑
a=r+1

pa(depthOPT(r+1,j)(ka) + 2)

=
j

∑
a=i

pa +
r−1
∑
a=i
(pa(depthOPT(i ,r−1)(ka) + 1)) +

j

∑
a=r+1

pa(depthOPT(r+1,j)(ka) + 1)

=
j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j)).

Same logic holds for any possible root Ô⇒ take min

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 20 / 24



Cost Corollary

Corollary

c(OPT(i , j)) = ∑j
a=i pa +mini≤r≤j (c(OPT(i , r − 1)) + c(OPT(r + 1, j)))

Let kr be root of OPT(i , j)

c(OPT(i , j)) =
j

∑
a=i

pa(depthOPT(i ,j)(ka) + 1)

=
r−1
∑
a=i
(pa(depthOPT(i ,r−1)(ka) + 2)) + pr +

j

∑
a=r+1

pa(depthOPT(r+1,j)(ka) + 2)

=
j

∑
a=i

pa +
r−1
∑
a=i
(pa(depthOPT(i ,r−1)(ka) + 1)) +

j

∑
a=r+1

pa(depthOPT(r+1,j)(ka) + 1)

=
j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j)).

Same logic holds for any possible root Ô⇒ take min
Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 20 / 24



Algorithm
Fill in table M :

M[i , j ] =
⎧⎪⎪⎨⎪⎪⎩

0 if i > j
mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]) if i ≤ j

Top-Down (memoization): are problems getting smaller? Yes! j − i decreases in every
recursive call.

Correctness. Claim M[i , j ] = c(OPT(i , j)). Induction on j − i .
▸ Base case: if j − i < 0 then M[i , j ] = OPT(i , j) = 0
▸ Inductive step:

M[i , j ] = min
i≤r≤j
⎛
⎝

j

∑
a=i

pa +M[i , r − 1] +M[r + 1, j ]
⎞
⎠

(alg def)

= min
i≤r≤j
⎛
⎝

j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j))
⎞
⎠

(induction)

= c(OPT(i , j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 21 / 24



Algorithm
Fill in table M :

M[i , j ] =
⎧⎪⎪⎨⎪⎪⎩

0 if i > j
mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]) if i ≤ j

Top-Down (memoization): are problems getting smaller?

Yes! j − i decreases in every
recursive call.

Correctness. Claim M[i , j ] = c(OPT(i , j)). Induction on j − i .
▸ Base case: if j − i < 0 then M[i , j ] = OPT(i , j) = 0
▸ Inductive step:

M[i , j ] = min
i≤r≤j
⎛
⎝

j

∑
a=i

pa +M[i , r − 1] +M[r + 1, j ]
⎞
⎠

(alg def)

= min
i≤r≤j
⎛
⎝

j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j))
⎞
⎠

(induction)

= c(OPT(i , j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 21 / 24



Algorithm
Fill in table M :

M[i , j ] =
⎧⎪⎪⎨⎪⎪⎩

0 if i > j
mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]) if i ≤ j

Top-Down (memoization): are problems getting smaller? Yes! j − i decreases in every
recursive call.

Correctness. Claim M[i , j ] = c(OPT(i , j)). Induction on j − i .
▸ Base case: if j − i < 0 then M[i , j ] = OPT(i , j) = 0
▸ Inductive step:

M[i , j ] = min
i≤r≤j
⎛
⎝

j

∑
a=i

pa +M[i , r − 1] +M[r + 1, j ]
⎞
⎠

(alg def)

= min
i≤r≤j
⎛
⎝

j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j))
⎞
⎠

(induction)

= c(OPT(i , j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 21 / 24



Algorithm
Fill in table M :

M[i , j ] =
⎧⎪⎪⎨⎪⎪⎩

0 if i > j
mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]) if i ≤ j

Top-Down (memoization): are problems getting smaller? Yes! j − i decreases in every
recursive call.

Correctness. Claim M[i , j ] = c(OPT(i , j)). Induction on j − i .

▸ Base case: if j − i < 0 then M[i , j ] = OPT(i , j) = 0
▸ Inductive step:

M[i , j ] = min
i≤r≤j
⎛
⎝

j

∑
a=i

pa +M[i , r − 1] +M[r + 1, j ]
⎞
⎠

(alg def)

= min
i≤r≤j
⎛
⎝

j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j))
⎞
⎠

(induction)

= c(OPT(i , j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 21 / 24



Algorithm
Fill in table M :

M[i , j ] =
⎧⎪⎪⎨⎪⎪⎩

0 if i > j
mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]) if i ≤ j

Top-Down (memoization): are problems getting smaller? Yes! j − i decreases in every
recursive call.

Correctness. Claim M[i , j ] = c(OPT(i , j)). Induction on j − i .
▸ Base case: if j − i < 0 then M[i , j ] = OPT(i , j) = 0

▸ Inductive step:

M[i , j ] = min
i≤r≤j
⎛
⎝

j

∑
a=i

pa +M[i , r − 1] +M[r + 1, j ]
⎞
⎠

(alg def)

= min
i≤r≤j
⎛
⎝

j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j))
⎞
⎠

(induction)

= c(OPT(i , j)) (cost corollary)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 21 / 24



Algorithm
Fill in table M :

M[i , j ] =
⎧⎪⎪⎨⎪⎪⎩

0 if i > j
mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]) if i ≤ j

Top-Down (memoization): are problems getting smaller? Yes! j − i decreases in every
recursive call.

Correctness. Claim M[i , j ] = c(OPT(i , j)). Induction on j − i .
▸ Base case: if j − i < 0 then M[i , j ] = OPT(i , j) = 0
▸ Inductive step:

M[i , j ] = min
i≤r≤j
⎛
⎝

j

∑
a=i

pa +M[i , r − 1] +M[r + 1, j ]
⎞
⎠

(alg def)

= min
i≤r≤j
⎛
⎝

j

∑
a=i

pa + c(OPT(i , r − 1)) + c(OPT(r + 1, j))
⎞
⎠

(induction)

= c(OPT(i , j)) (cost corollary)
Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 21 / 24



Algorithm: Bottom-up
What order to fill the table in?

▸ Obvious approach: for(i = 1 to n − 1) for(j = i + 1 to n) Doesn’t work!

▸ Take hint from induction: j − i

OBST {
Set M[i , j ] = 0 for all j > i ;
Set M[i , i ] = pi for all i
for(ℓ = 1 to n − 1) {

for(i = 1 to n − ℓ) {
j = i + ℓ
M[i , j ] =mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]);
}

}
return M[1,n];

}

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 22 / 24



Algorithm: Bottom-up
What order to fill the table in?

▸ Obvious approach: for(i = 1 to n − 1) for(j = i + 1 to n) Doesn’t work!
▸ Take hint from induction: j − i

OBST {
Set M[i , j ] = 0 for all j > i ;
Set M[i , i ] = pi for all i
for(ℓ = 1 to n − 1) {

for(i = 1 to n − ℓ) {
j = i + ℓ
M[i , j ] =mini≤r≤j (∑j

a=i pa +M[i , r − 1] +M[r + 1, j ]);
}

}
return M[1,n];

}
Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 22 / 24



Analysis

Correctness: same as top-down

Running Time:

▸ # table entries: O(n2)
▸ Time to compute table entry M[i , j ]: O(j − i) = O(n)

Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 23 / 24



Analysis

Correctness: same as top-down

Running Time:

▸ # table entries:

O(n2)
▸ Time to compute table entry M[i , j ]: O(j − i) = O(n)

Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 23 / 24



Analysis

Correctness: same as top-down

Running Time:

▸ # table entries: O(n2)

▸ Time to compute table entry M[i , j ]: O(j − i) = O(n)
Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 23 / 24



Analysis

Correctness: same as top-down

Running Time:

▸ # table entries: O(n2)
▸ Time to compute table entry M[i , j ]:

O(j − i) = O(n)
Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 23 / 24



Analysis

Correctness: same as top-down

Running Time:

▸ # table entries: O(n2)
▸ Time to compute table entry M[i , j ]: O(j − i) = O(n)

Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 23 / 24



Analysis

Correctness: same as top-down

Running Time:

▸ # table entries: O(n2)
▸ Time to compute table entry M[i , j ]: O(j − i) = O(n)

Total running time: O(n3)

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 23 / 24



Bonus Content

Obvious Question: Robustness.

▸ What if given distribution is wrong?

Want algorithm that gives a solution with cost a function of true optimal cost, “distance”
between given distribution and true distribution.

Dinitz, Im, Lavastida, Moseley, Niaparast, Vassilvitskii. Binary Search Trees with
Distributional Predictions. NeurIPS ’24

Michael Dinitz Lecture 12: Dynamic Programming II October 3, 2024 24 / 24


