Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 8, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 1/21

Introduction

Next 3-4 weeks: graphs!
» Super important abstractions, used all over the place in CS

> Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)

» Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new

» Going to move pretty quickly, since much review: see CLRS for details!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 2/21

Basic Definitions
Definition

A graph G = (V,E) is a pair where V is a set and E ¢ (‘2/) (unordered pairs) or EC V x V
(ordered pairs).

Notation:
> Elements of V are called vertices or nodes
> Elements of E are called edges or arcs.
» If EC (‘2/) then graph is undirected, if E € V x V graph is directed
> |V|=n and |E| = m (usually)
> So “size of input” =n+m

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 3/21

Representations
Adjacency List: Adjacency Matrix:
» Array A of length n » Ae{0,1}™"
{1 if (i,j) cE

> A[v] is linked list of vertices adjacent to

v (edge from u to v) 710 otherwise
1 2 3 45
1 [2] 5] 1/o01 00 1
(1) © 2| P[P P3][F{a]/] 201 0 1 1 1
n’o 3| 2] P4l 3]0 1.0 1 0
4| 2] 5] 3|/ 410 1 1 0 1
(5} (4) s| el P P2]/] 5011101 0
1 23 456
1 [2] 4]/] 1[01 0100
(()Z} 2| Hs]/] 200 0001 0
(1) (2) (3) 3| 6] P5]/] 3]0 000 1 1
4| +2]/] 410 1.0 0 0 0
s|—{4]/] 51000100
(4 O (6D 6| +{6]/] 6/0 000 0 1

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 4 /21

Representations (cont'd)

Adjacency List:
> Pros:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List:
> Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List:
> Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List:
> Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms

October 8, 2024

5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: > Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently
» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: > Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
» Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

» Pros: » Pros:
> O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: > Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is > Iterating through edges incident on v
the degree of v: # edges with v as takes time @(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?
> Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

> Not traditional, doesn’t gain us much, and more complicated. But better!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Breadth-First Search (BFS)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 6/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

\
| @ J
\ '
T —
' 4 \ 4 \
.] |« J
b S \, s
:’- -.\ f' -\ /- ‘\ /-- -\
Ca Y (e Y() (g)
\ /S \ /J \' /J N\ /
"— -\
Cn)
. S

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

— D
4 \ F 4 \
{ b] | < J
\ S b 'y

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz

Lecture 13: Basic Graph Algorithms

October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

o :
@ e

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

P N
QOO

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

|dea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V \ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V \ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

Running Time:

}
}
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V \ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark(u) == False) {
mark(u) = True;
Enqueue(u);

Running Time: O(n+ m)

}
}
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

Set mark(s) = True; Running Time: O(n+ m)

Set mark(v) = False for all v e V \ {s}; > O(n) for initialization
Enqueue(s); > O(m) for main while loop
while(queue not empty) { > Examine every edge twice:
v = Dequeue(); when each endpoint dequeued
forall neighbors u of v { > Or (equivalent): Adjacency list
if(mark (u) == False) { scanned only when vertex
dequeued

mark(u) = True;

\ Enqueue(u); S cl(o) < OC»\}
LLv

}

}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
ldea: explore with a queue (FIFO)

BFS(G = (V,E),s) {
Set mark(s) = True; Running Time: O(n+m)
Set mark(v) = False for all v e V \ {s}; > O(n) for initialization
Enqueue(s); > O(m) for main while loop
while(queue not empty) { > Examine every edge twice:
v = Dequeue(); when each endpoint dequeued
forall neighbors u of v { > Or (equivalent): Adjacency list
if(mark (u) == False) { scanned only when vertex
mark(u) = True; dequeued
Enqueue(u);
} Note: edges that cause a node to be
1 enqueued form a tree!
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:
Assume false for contradiction, let u be closest node to s where BFS(s) doesn’t give shortest
path

Bes eath

A 1“117
shokat p=th

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:
Assume false for contradiction, let u be closest node to s where BFS(s) doesn’t give shortest

path
BrS 1N d(s,w') < d(s,w)

—> w' dequeued before w (since w'

s has correct distance by def of u)
\ —= u will be enqueued from w’, not
w. Contradiction.
SLV/&"& j’ fe a[’b\

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21

Depth-First Search (DFS)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 10/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
if mark(u) == False then DFS(u);
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
if mark(u) == False then DFS(u); L
! Running time:

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

A
Pty

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
\ if mark(u) alse then DFS(u); Running time: O(m + n)

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {

\ if mark(u) alse then DFS(u); Running time: O(m + n)

} > O(n) initialization

» Every edge considered at most
twice

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Correctness 5[0 %

Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v. J

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness
Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof. |

Suppose u reachable from v but not marked when DFS(v) terminates.

X 4
—) 0D a—D0——20—0

(2N

Fiost aaneled b o el

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X Y
o—) D/?}—%MHMO_/)O

(2N

F{fs—[— .ﬂnr\&/lcgc‘ node e (7'—“]

x is marked so DFS(x) must have been called

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X Y
o—) 0_/-\)}_%#/)0——3&%0—/?0

(2N

F{fs—[— u*\hﬁ/lc(_c‘ node e (’f—ﬂl

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness
Definition: u is reachable from v if there is a path v = vy, v1,..., vk = u such that
(vi,vi,1) € Eforallie{0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.
Suppose u reachable from v but not marked when DFS(v) terminates.

X Y
o—) 0_/-\)}_%#/)0——3&%0—/?0

(2N

F{fs—[— u*\hﬁ/lc(_c‘ node e (’f—ﬂl

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.

Contradiction.]

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

Graph variant

After DFS(v), node marked if and only if reachable from v.

Might want to continue until all nodes marked.

DFS(G) {
for all v e V, set mark(v) = False;

while there exists an unmarked node v {
DFS(v);
t

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 13 /21

Timestamps

Explicitly keep track of “start” and “finishing” times

> Replaces mark

DFS(G) {
t=0;
forall ve V {
start(v) = 0;
finish(v) = 0;
}
while 3v € V with start(v) =0 {
DFS(v);
}
}

DFS(v) {
t=t+1;
start(v) = t;
for each edge (v, u) € A[v] {
if start(u) == 0 then DFS(u);
}

t=t+1;
finish(v) = t;

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

Timestamp Example

11/16 (undershorts

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 15/21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge

\\ Back edge
\\ Forward edgs
\\ Cross edge

Michael Dinitz

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge

\\ Back edge
\\ Forward edgs
\\ Cross edge

Michael Dinitz

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge

\\ Back edge
\\ Forward edgs
\\ Cross edge

Michael Dinitz

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v
start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge
\\ Back edge
\\ Forward edgs

\\ Cross edge

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v, u) such that u an ancestor of v

start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Topological Sort

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 17/21

Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no

directed cycles.

Michael Dinitz

Lecture 13: Basic Graph Algorithms

October 8, 2024

18 /21

Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

11/16

12/15

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are

of the form (v;, v;j) with i <.

Csocks) @ndershorts pants shoes watch @ﬁ@ @

17/18

Michael Dinitz

11/16

12/15 13/14 9/10 1/8

Lecture 13: Basic Graph Algorithms

6/7

2/5

3/4

October 8, 2024

18 /21

Definitions
Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J

11/16 17/18
12115 13/14
@ 18
6/7 @
@ 25
3/4

Definition
A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are

of the form (v;, v;j) with i <.

>) (o) i) o) (o)

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5

Q: Can we always topological sort a DAG? How fast?

Lecture 13: Basic Graph Algorithms October 8, 2024 18/21

Michael Dinitz

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 19/21

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

DFS(G) {
list - head = NULL;
t=0;
for all ve V {
start(v) = 0;

finish(v) = 0;
}
while 3v € V with start(v) =0 {
DFS(v);
}
}

Michael Dinitz Lecture 13: Basic Graph Algorithms

DFS(v) {
t=t+1:
start(v) = t;
for each edge (v,u) € Alv] {
if start(u) == 0 then DFS(u);
}

t=t+1;

finish(v) = t;

temp = list - head,

list - head = v;

list - head — next = temp;

October 8, 2024

19/21

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Proof.
Only if (=): contrapositive. If G has a back edge:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If («=): contrapositive. If G has a directed cycle C:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If («=): contrapositive. If G has a directed cycle C:

W

> Let u € C with minimum start value, v predecessor in cycle \/,/7\]

» All nodes in C reachable from u == all nodes in C descendants of u T

> (v,u) a back edge \/

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

—= wu already in list when v added to beginning

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 21/21

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

—= wu already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 21/21

