
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Basic Graph Algorithms I Date: 10/8/24

13.1 Introduction

Graphs are an incredibly important abstraction in computer science, so there has been a huge
amount of work on algorithms for graphs. We’ll spend much of the rest of the semester studying
graph algorithms. Today we’ll begin by talking about a few of the simplest, oldest, and (possibly)
most useful algorithms.

Everyone should know what a graph is already, but in case you don’t: a graph is a pair G = (V,E)
where V is a set of elements (usually called vertices or nodes) and E ⊆

(
V
2

)
is a set of edges. The

notation
(
V
2

)
means that the edges are unordered or undirected : the edge {u, v} is the same as the

edge {v, u}. We will sometimes talk about directed graphs, in which E ⊆ V ×V and the edge (u, v)
is different from the edge (v, u).

It is reasonably standard to let n = |V | and m = |E|, so I’m going to use that notation throughout.

13.2 Graph Representations

The first obvious question is: how do we represent a graph? What’s the actual data structure we’re
going to use? There are many possibilities, but there are two classical answers: adjacency matrices
and adjacency lists. Unless otherwise specified, we’re going to assume that we use adjacency lists.

Adjacency Matrix: We have an n× n matrix A. We set Aij = 1 if {i, j} ∈ E and set Aij = 0
otherwise.

Major benefits: can check whether an edge exists in constant time. It also turns out this matrix has
really, really nice properties as a matrix. Obviously it is symmetric, but studying its eigenvalues
and eigenvectors can actually tell us a huge amount about the graph. There’s a whole area of graph
theory called spectral graph theory which studies this.

Major drawbacks: takes Θ(n2) space even if m is small. Iterating over the edges incident on a
vertex v takes time Ω(n) even if there are only a few such edges (need to scan a whole row or
column of the matrix).

Adjacency List: We have an array A of length n, and A[v] is a pointer to a linked list which
contains the edges incident on v. In other words, A[v] is a linked list of the vertices that are adjacent
to v.

Major benefits: only takes O(n+m) space, can iterate over edges very efficiently.

Major drawbacks: takes a long time to check if {u, v} is an edge (time O(d(u)) or O(d(v)), where
d(u) denotes the degree of u).

1

Adjacency Data Structures: Here’s an obvious idea: let’s replace the adjacency list A[v] with
something smarter than an adjacency list! For example, we could store all of the edges that were
in the list in a red-black tree or a hash table (or, if the graph doesn’t change, a two-level hash table
using perfect hashing). This is basically a good idea, but we’re not going to do it: lists are more
traditional, and the algorithms that we’re going to talk about don’t benefit from being stored using
fancier data structures. But it’s a good option to keep in mind for the future.

13.3 Breadth-First Search

BFS is a way of traversing or searching a graph. It is one of the simplest and most obvious ways
of doing this, and has a few nice properties.

Pseudocode is in CLRS – I’d suggest looking at it. But basically we start out from some node v.
We mark it as complete, and put all of its neighbors in a queue (first-in first-out), marking them all
as “in process”. We then pull from the queue, mark that node as complete, and put its neighbors
(that are not already in process or complete) in the queue. The key point is that we only put a
node in the queue if it is not already in process or complete. This means that we essentially search
by levels from v. We first see all of the neighbors of v, then we see all vertices at distance 2 from
v, then all vertices at distance 3 from v, etc.

The running time is O(n + m). We need to spend Θ(n) time on initialization, e.g. setting the
“completed” and “in process” field of each node to 0. Once we’ve started the algorithm, note that
the adjacency list of a vertex is scanned only when that vertex is pulled from the queue. Each node
is pulled from the queue only once, so each adjacency list is scanned only once, so the time is only
O(m). Thus the total running time is O(n+m).

A very nice feature of BFS is that it gives shortest paths. This is proved formally in the book, but
let’s give an informal argument here. Suppose we start at some node v. We claim that for any
node u, the path in the BFS tree from v to u is the shortest possible path.

Let’s do an informal proof by contradiction. Let d(v, x) denote the length of the shortest path from
v to x, for every x ∈ V . Suppose that u is the closest node to v in which the BFS does not return
the shortest path. Let w′ be the node just before u on the shortest path, and let w be the node
just before u on the BFS path. If w = w′ then we are done – w′ is closer to v than u is, so by
assumption the BFS tree has the shortest path to w, and so it also has the shortest path to u. If
w ̸= w′, then we have two cases. If d(v, w) = d(v, w′) then we are done, since this means the BFS
has a shortest path to u. Otherwise d(v, w′) < d(v, w). But this means that the BFS would have
found u from w′ before it found u from w, giving a contradiction.

13.4 Depth-First Search

DFS is the other obvious way to explore a graph. Instead of going by breadth, we go by depth.
Again, pseudocode is in the book, but we’re going to spend a little more time on DFS since it
will be useful in some of the algorithms we’ll talk about later. DFS is super easy to implement
recursively: when we call DFS on a node v, we iterate through its neighbors and for any unmarked
neighbor u we mark it and then call DFS on u. It can also be implemented iteratively using a stack

2

rather than a queue.

The basic pseudocode would look something like this. Let’s assume that G is directed, since it’s a
more general setting and will be useful for the next few algorithms anyway.

Init: for each v in V, mark(v) = False

DFS(v) {

mark(v) = True

for each edge (v,u) in A[v] {

if mark(u) == False then DFS(u)

}

}

DFS also takes time O(n+m). We again have to spend Θ(n) time initializing the graph, and then
since we only visit each vertex once we only scan each adjacency list once, so we spend time O(m)
in the main algorithm.

Here’s an example. The labeled nodes are the ones visited by calling DFS(A), the the solid edges
are traversed by the algorithm, the dashed edges were considered but not traversed, and the dotted
edges were not even looked at.

for each arc (vw) in adjacency-list(v) {

if mark(w) == F then DFS(w)

}

Basically, we look at each arc and if the other side has not already been visited yet, we recursively
visit it. Here’s an example. The labeled nodes are the ones visited by calling DFS(A). The dashed
edges are the ones not traversed, the dotted ones were not even looked at.

A

B

C

D E

F

A node w is reachable from v in G if there is a path v = v0, v1, v2, . . . , vk = w such that each
(vi, vi+1) is an arc of G.

Fact 1 When DFS(v) terminates, it has visited (marked) all the nodes that can be reached from v.

Proof: The simple proof is by induction. We will terminate because every call to DFS(v) is to an
unmarked node, and each such call marks a node. There are n nodes, hence n calls, before we stop.

Now suppose some node w that is reachable from v and is not marked when DFS(v) terminates.
Since w is reachable, there is a path v = v0, v1, v2, . . . , vk = w from v to w, and a first node vi

on this path that is not marked. But this is impossible, because we marked vi�1 and would have
examined the arc (vi�1, vi). ⌅
Of course, it may be the case that not all the nodes in G are reachable from v. So really we should
do the following

DFS-graph(graph G)

for all v in V, mark(v) = F.

While there exists an unmarked node v

DFS(v)

This process will visit all the nodes of the graph (just by the definition of the procedure). Here’s
the old example.

A

B

C

D E

F

G

H

I

It will help to have a few more pieces of data defined, which will make reasoning about DFS much
easier. One is active(v), which is a flag that indicates that v is currently on the recursion stack.
Two other numbers are pre(v) and post(v) which are “times” at which we add v to the recursion
stack, and when we remove v from it. (In 15-210, these were the times at which you enter v and
exit v.)

Here is the depth first search procedure:

2

Let’s prove a simple property about DFS, which is obvious (and you should know from Data
Structures) but is a good warmup proof.

Definition 13.4.1 A node u is reachable from v is there is a path v = v0, v1, . . . , vk = u such that
each (vi, vi+1) is an edge of G.

Theorem 13.4.2 When DFS(v) terminates, it has visited (marked) all of the nodes that are reach-
able from v.

Proof: We first prove that DFS(v) terminates. This is obvious because every call to DFS is to
an unmarked node, and each such call immediately marks the node. Thus there can be at most n
calls to DFS, so it terminates.

Now suppose that u is reachable from v but is not marked when DFS(v) terminates. Since u is
reachable from v, there is a path v = v0, v1, . . . , vk = u from v to u, and since v is marked but u is
not there is some node vi on this path which is the first unmarked node. But this is a contradiction,

3

since when we examined examined the adjacency list of vi−1 we would have seen that vi is unmarked
and we would have recursively called DFS(vi) and marked it.

Of course, it might not be possible to reach all nodes in the graph from our starting node, so it’s
pretty common to simply call DFS on unmarked vertices until everything has been marked:

DFS(G) {

for all v in V, set mark(v) = false

while there exists an unmarked node v

DFS(v)

}

DFS naturally comes with a notion of timestamps. We can define start(v) to be the “time” at
which we began processing v, and we can define finish(v) to be the “time” at which we finished
processing v. We can modify our algorithm to keep track of these as follows.

DFS(G) {

i = 0

for all v in V {

start(v) = 0

end(v) = 0

}

for all v in V if start(v) == 0 then DFS(v)

}

DFS(v) {

i = i+1

start(v) = i

for each edge (v,u) in A[v] {

if start(u) == 0 then DFS(u)

}

i = i+1

finish(v) = i

}

This is clearly the same algorithm, it just keeps track of start and finish times, which are useful
pieces of data when we try to reason about DFS and its uses.

13.4.1 Edge types

Define a tree edge to be an edge (v, u) such that DFS(v) calls DFS(u), i.e. the edge is traversed by
the algorithm. It is easy to see that the tree edges actually form a collection of trees such that every
node is in exactly one tree, i.e. they form a spanning forest. This is sometimes called the depth-first

4

forest (or tree) of G. Moreover, every tree is rooted at the node of the tree with minimum start
time.

This DFS forest naturally lets us partition the edges into three types:

1. Forward edges are edges (v, u) where u is a descendent of v in this tree. This includes tree
edges. Note that in any forward edge, start(v) < start(u) < finish(u) < finish(v).

2. Back edges are edges (v, u) where u is an ancestor of v. Note that in any back edge, start(u)
< start(v) < finish(v) < finish(u).

3. Cross edges are edges (v, u) where u is neither an ancestor nor a descendent of v. In this case
start(u) < finish(u) < start(v) < finish(v).

A good exercise to do at home is to formally prove these relationships between the start and
finishing times, but since they’re reasonably intuitive we’re just going to trust it for now (but you
should know how to prove them!).

13.5 Topological Sort

DFS has a number of nice applications, some of which are discussed in the book. One of its most
famous applications is doing a “topological sort” on a directed acyclic graph (DAG). A DAG is a
directed graph in which there are no directed cycles, although if we reinterpret edges as undirected
there might be cycles. A topological sort of a DAG is an ordering of the vertices v1, . . . , vn so that
all edges are of the form (vi, vj) where i < j. In other words, we can line up all of the nodes so
that there are no edges going backwards.

It turns out that we can use DFS to find topological sorts of DAGs. First, let’s use DFS to
characterize DAGs

Theorem 13.5.1 A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof: One direction is obvious: if there is a back edge then we clearly have a directed cycle. For
the other direction, suppose that there is a directed cycle C in G. Then consider the node u ∈ C
with minimum start value. Since all nodes in C are reachable from u, they will be descendants of
u and so any v ∈ C with v ̸= u has finish(v) < finish(u). But then if v is the predecessor of u on
the cycle, the edge (v, u) will be a back edge.

So if G has a back edge then it has a directed cycle and if it has a directed cycle then it has a back
edge. This proves the theorem.

So now we know that if we call DFS on a DAG, we will never find any back edges. But this
automatically gives us a topological sort! When a node finished (i.e. we return from DFS(v)), we
just put v at the head of the list. Since there are no back edges, every edge (v, u) is either a forward
edge or a cross edge, and thus u has already finished and been put in the list. So no edges go
backwards in the list, and we have a topological sort in O(m+ n) time.

5

	Introduction
	Graph Representations
	Breadth-First Search
	Depth-First Search
	Edge types

	Topological Sort

