Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 8, 2024 601.433/633 Introduction to Algorithms

Introduction

Next 3-4 weeks: graphs!

- **▸** Super important abstractions, used all over the place in CS
- **▸** Most of my research is in graph algorithms (particularly when graph represents computer/communication network)
- **▸** Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new

▸ Going to move pretty quickly, since much review: see CLRS for details!

Basic Definitions

Definition

A graph $G = (V, E)$ is a pair where V is a set and $E \subseteq \binom{V}{2}$ 2 **)** (unordered pairs) or E **⊆** V **×** V (ordered pairs). (a) (b) (c)

Notation:

- **▸** Elements of V are called vertices or nodes
- **▸** Elements of E are called edges or arcs.
- **▸** If E **⊆ (** V **2** ⊆ $\binom{V}{2}$ then graph is *undirected*, if $E \subseteq V \times V$ graph is *directed*
- \blacktriangleright $|\boldsymbol{V}| = n$ and $|\boldsymbol{E}| = m$ (usually)
- \triangleright So "size of input" = $n + m$

4 1 2

Representations *590 Chapter 22 Elementary Graph Algorithms*

Adjacency List:

- **Example A** of length *n*
- **▶ A[v]** is linked list of vertices *adjacent* to \bm{v} (edge from \bm{u} to \bm{v}) \overline{a} η

Adjacency Matrix:

▶
$$
A \in \{0,1\}^{n \times n}
$$

\n▶ $A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$

Ī

 Ω Ω $\mathbf{0}$ $\mathbf{0}$

Adjacency List:

▸ Pros:

- **▸** Pros:
	- \rightarrow $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently

- **▸** Pros:
	- \rightarrow $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently
- **▸** Cons:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently
- **▸** Cons:
	- **▸** Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

Adjacency List:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently
- **▸** Cons:
	- **▸** Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

Adjacency Matrix:

▸ Pros:

Adjacency List:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently

▸ Cons:

▸ Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

Adjacency Matrix:

▸ Pros:

▶ Can check if $e = (u, v)$ an edge in $O(1)$ time

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently
- **▸** Cons:
	- **▸** Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)
- Adjacency Matrix:
	- **▸** Pros:
		- ▶ Can check if $e = (u, v)$ an edge in $O(1)$ time
	- **▸** Cons:

Adjacency List:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently

▸ Cons:

▸ Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

Adjacency Matrix:

▸ Pros:

▶ Can check if $e = (u, v)$ an edge in $O(1)$ time

▸ Cons:

- \blacktriangleright Takes $\Theta(n^2)$ space: if **m** small, lots wasted!
- **▸** Iterating through edges incident on v takes time $\Theta(n)$, even if $d(v)$ small.

Adjacency List:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently

▸ Cons:

▸ Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Adjacency Matrix:

▸ Pros:

- ▶ Can check if $e = (u, v)$ an edge in $O(1)$ time
- **▸** Cons:
	- \blacktriangleright Takes $\Theta(n^2)$ space: if **m** small, lots wasted!
	- **▸** Iterating through edges incident on v takes time $\Theta(n)$, even if $d(v)$ small.

Adjacency List:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently

▸ Cons:

▸ Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

Adjacency Matrix:

▸ Pros:

- ▶ Can check if $e = (u, v)$ an edge in $O(1)$ time
- **▸** Cons:
	- \blacktriangleright Takes $\Theta(n^2)$ space: if **m** small, lots wasted!
	- **▸** Iterating through edges incident on v takes time $\Theta(n)$, even if $d(v)$ small.

Adjacency List:

- **▸** Pros:
	- \triangleright $O(n+m)$ space
	- **▸** Can iterate through edges adjacent to v very efficiently

▸ Cons:

▸ Hard to check of an edge exists: $O(d(u))$ or $O(d(v))$ (where $d(v)$ is the degree of $v: #$ edges with v as endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

- **▶ Replace adjacency** *list* with adjacency *structure*: Red-black tree, hash table, etc.
- **▸** Not traditional, doesn't gain us much, and more complicated. But better!

Adjacency Matrix:

▸ Pros:

▶ Can check if $e = (u, v)$ an edge in $O(1)$ time

▸ Cons:

- \blacktriangleright Takes $\Theta(n^2)$ space: if **m** small, lots wasted!
- **▸** Iterating through edges incident on v takes time $\Theta(n)$, even if $d(v)$ small.

Breadth-First Search (BFS)


```
\mathsf{BFS}(\bm{G} = (\bm{V}, \bm{E}), \bm{s}) {
    Set mark
(
s
)
= True;
    Set mark(v) = False for all v \in V \setminus \{s\};Enqueue
(
s
);
    while(queue not empty)
{
        v
= Dequeue()
;
        forall neighbors \boldsymbol{\mathit{u}} of \boldsymbol{\mathit{v}} \{if(mark(u) == False) {
                 mark
(
u
)
= True;
                 Enqueue
(
u
); }
        }
    }
}
```

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
       v = Dequeue();
      forall neighbors \boldsymbol{u} of \boldsymbol{v} {
          if(maxk(u) == False) {
              mark(u) = True;Enqueue(u);
          }
       }
    }
}
```
Running Time:

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
       v = Dequeue();
      forall neighbors \boldsymbol{u} of \boldsymbol{v} {
          if(maxk(u) == False) {
              mark(u) = True;Enqueue(u);
          }
       }
    }
}
```
Running Time: $O(n + m)$

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue();
      forall neighbors \boldsymbol{u} of \boldsymbol{v} {
          if(maxk(u) == False) {
             mark(u) = True;Enqueue(u);
          }
       }
   }
}
```
Running Time: $O(n + m)$

- **▸** O**(**n**)** for initialization
- **▸** O**(**m**)** for main while loop
	- **▸** Examine every edge twice: when each endpoint dequeued
	- **▸** Or (equivalent): Adjacency list scanned only when vertex dequeued

```
BFS(G = (V, E), s) {
   Set mark(s) = True;
   Set mark(v) = False for all v \in V \setminus \{s\};
   Enqueue(s);
   while(queue not empty) {
      v = Dequeue();
      forall neighbors \boldsymbol{u} of \boldsymbol{v} {
          if(maxk(u) == False) {
             mark(u) = True;Enqueue(u);
          }
       }
   }
```
Running Time: $O(n + m)$

- **▸** O**(**n**)** for initialization
- **▸** O**(**m**)** for main while loop
	- **▸** Examine every edge twice: when each endpoint dequeued
	- **▸** Or (equivalent): Adjacency list scanned only when vertex dequeued

Note: edges that cause a node to be enqueued form a tree!

}

Correctness / Shortest Paths

Definition: Distance $d(u, v)$ from u to v is min $\#$ edges in any path from u to v

Theorem (informal): $BFS(s)$ gives shortest paths from s to all other nodes

Correctness / Shortest Paths \mathcal{P}

Definition: Distance $d(u, v)$ from u to v is min $\#$ edges in any path from u to v

Theorem (informal): $BFS(s)$ gives shortest paths from s to all other nodes

Proof Sketch:

Assume false for contradiction, let $\bm u$ be closest node to $\bm s$ where BFS($\bm s$) doesn't give shortest
path path

Correctness / Shortest Paths \mathcal{P}

Definition: Distance $d(u, v)$ from u to v is min $\#$ edges in any path from u to v

Theorem (informal): $BFS(s)$ gives shortest paths from s to all other nodes

Proof Sketch:

Assume false for contradiction, let $\bm u$ be closest node to $\bm s$ where BFS($\bm s$) doesn't give shortest
path path

 $d(s, w') < d(s, w)$

- has correct distance by def of \boldsymbol{u})
- \implies *u* will be enqueued from *w'*, not w. Contradiction.

Depth-First Search (DFS)

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack! edges are the ones not traversed, the dotted ones were not even looked at.

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
  mark(v) = True;for each edge (v, u) \in A[v] {
     if mark(u) == False then DFS(u);
   }
}
                                   A is reachable from v in G if there is a path v in G if there is a path v \alpha(vi, vi+1) is an arc of G.
```


Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack! edges are the ones not traversed, the dotted ones were not even looked at.

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
   mark(v) = True;for each edge (v, u) \in A[v] {
     if mark(u) == False then DFS(u);
   }
}
                                      (vi, vi+1) is an arc of G.
```


Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack! edges are the ones not traversed, the dotted ones were not even looked at.

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
   mark(v) = True;for each edge (v, u) \in A[v] {
     if mark(u) == False then DFS(u);
   }
}
                                      (vi, vi+1) is an arc of G.
```


 P_{max} Running time: $O(m + n)$

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a node we've already seen, then backtrack! edges are the ones not traversed, the dotted ones were not even looked at.

```
Init: for each v ∈ V, mark(v) = False;
DFS(v) {
  mark(v) = True;for each edge (v, u) \in A[v] {
     if mark(u) =False then DFS(u);
   }
}
```


P_{max} Running time: $O(m + n)$

- **→** $O(n)$ initialization
- **► Every edge considered at most** twice

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that (v_i, v_{i+1}) ∈ **E** for all i ∈ {0,1,..., $k-1$ }.

Theorem

When $DFS(v)$ terminates, it has visited (marked) all nodes that are reachable from v .

Proof

Suppose \boldsymbol{u} reachable from \boldsymbol{v} but not marked when DFS(\boldsymbol{v}) terminates.

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v . visited marked all nodes reachable from ^v

Proof

Suppose $\boldsymbol{\mathit{u}}$ reachable from $\boldsymbol{\mathit{v}}$ but not marked when DFS $(\boldsymbol{\mathit{v}})$ terminates.

PI Terminates

$$
0
$$

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v . visited marked all nodes reachable from ^v

Proof

Suppose $\boldsymbol{\mathit{u}}$ reachable from $\boldsymbol{\mathit{v}}$ but not marked when DFS $(\boldsymbol{\mathit{v}})$ terminates.

 ${\pmb x}$ is marked so DFS(${\pmb x})$ must have been called

PI Terminates

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v . visited marked all nodes reachable from ^v

Proof

Suppose $\boldsymbol{\mathit{u}}$ reachable from $\boldsymbol{\mathit{v}}$ but not marked when DFS $(\boldsymbol{\mathit{v}})$ terminates.

 ${\pmb x}$ is marked so DFS(${\pmb x})$ must have been called

PI Terminates

 \Rightarrow **y** was either marked or DFS(y) called and it became marked.

Definition: u is reachable from v if there is a path $v = v_0, v_1, \ldots, v_k = u$ such that $(\mathbf{v}_i, \mathbf{v}_{i+1}) \in E$ for all $i \in \{0, 1, \ldots, k-1\}$.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v . visited marked all nodes reachable from ^v

Proof

Suppose $\boldsymbol{\mathit{u}}$ reachable from $\boldsymbol{\mathit{v}}$ but not marked when DFS $(\boldsymbol{\mathit{v}})$ terminates.

 ${\pmb x}$ is marked so DFS(${\pmb x})$ must have been called

PI Terminates

Dalal I \implies **y** was either marked or DFS(y) called and it became marked. Contradiction.

Michael Dinitz **[Lecture 13: Basic Graph Algorithms](#page-0-0)** Coctober 8, 2024 12 / 21

Graph variant

After DFS(v), node marked if and only if reachable from v .

Might want to continue until all nodes marked.

```
DFS(G) {
   for all v \in V, set mark(v) = False;
   while there exists an unmarked node \mathbf{v} \nmidDFS(v);}
}
```
Timestamps

Explicitly keep track of "start" and "finishing" times

▸ Replaces mark

 $DFS(G)$ { $t = 0$: for all v **∈** V { $start(v) = 0$; f *inish* $(v) = 0$; } while $\exists v \in V$ with start(v) = 0 { $DFS(v);$ } }

 $DFS(v)$ { $t = t + 1$; $start(v) = t;$ for each edge $(v, u) \in A[v]$ { if $start(u) == 0$ then $DFS(u)$; } $t = t + 1$; f *inish* $(v) = t$; }

Timestamp Example

DFS naturally gives a spanning forest: edge (v, u) if DFS (v) calls DFS (u)

Forward Edges: **(**v, u**)** such that u descendent of v (includes tree edges)

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v

DFS naturally gives a spanning forest: edge (v, u) if DFS (v) calls DFS (u)

Forward Edges: **(**v, u**)** such that u descendent of v (includes tree edges) $start(v) < start(u) < finish(u) < finish(v)$

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of **v**

DFS naturally gives a spanning forest: edge (v, u) if DFS (v) calls DFS (u)

Forward Edges: **(**v, u**)** such that u descendent of v (includes tree edges) $start(v) < start(u) <$ finish $(u) <$ finish (v)

Back Edges: (v, u) such that u an ancestor of v $start(u) < start(v) < finish(v) < finish(u)$

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of **v**

DFS naturally gives a spanning forest: edge (v, u) if DFS (v) calls DFS (u)

Forward Edges: **(**v, u**)** such that u descendent of v (includes tree edges) $start(v) < start(u) <$ finish $(u) <$ finish (v)

Back Edges: (v, u) such that u an ancestor of v $start(u) < start(v) < finish(v) < finish(u)$

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of **v**

 $start(u) < finish(u) < start(v) < finish(v)$

Topological Sort

Definitions

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definitions

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A *topological sort* v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form **(**vⁱ , v^j **)** with i **<** j.

finishing times from a depth-first search are shown next to each vertex. **(b)** The same graph shown

Definitions

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A *topological sort* v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form **(**vⁱ , v^j **)** with i **<** j.

finishing times from a depth-first search are shown next to each vertex. **(b)** The same graph shown

Q: Can we always topological sort a DAG? How fast?

Michael Dinitz **Michael Dinity Contains the Contract of the Co**

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Topological Sort

Algorithm (informal): Run DFS(\boldsymbol{G}). When DFS(\boldsymbol{v}) returns, put \boldsymbol{v} at beginning of list

```
DFS(G) {
   list \rightarrow head = NULLt = 0;
   for all v \in V {
      start(v) = 0;
       finish(v) = 0;
   }
   while \exists v \in V with start(v) = 0 {
      DFS(v);
   }
}
```

```
DFS(v) {
   t = t + 1;
   start(v) = t;
   for each edge (v, u) \in A[v] {
       if start(u) == 0 then DFS(u);
    }
   t = t + 1;
   finish(v) = t;
   temp = list \rightarrow head;
   list \rightarrow head = v;
   list \rightarrow head \rightarrow next = temp}
```
Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (**⇒**): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (**⇒**): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If **G** has a directed cycle **C**:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (**⇒**): contrapositive. If G has a back edge: Directed cycle! Not a DAG. ki ⁿ Kai Koti ska

If (\Leftarrow) : contrapositive. If **G** has a directed cycle **C**:

- **▸** Let u **∈** C with minimum start value, v predecessor in cycle
- **▶** All nodes in C reachable from $u \implies$ all nodes in C descendants of u
- **▸ (**v, u**)** a back edge

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

- **Ô⇒** Every edge **(**v, u**)** out of v a forward or cross edge
- \implies finish (u) < finish (v)

 \implies **µ** already in list when **v** added to beginning

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

- **Ô⇒** Every edge **(**v, u**)** out of v a forward or cross edge
- \implies finish (u) < finish (v)

 \implies **µ** already in list when **v** added to beginning

Running Time: Same as DFS! $O(m + n)$