Lecture 13: Basic Graph Algorithms

Michael Dinitz

October 8, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

1/21

Introduction

Next 3-4 weeks: graphs!
» Super important abstractions, used all over the place in CS

» Most of my research is in graph algorithms (particularly when graph represents
computer/communication network)

» Great course on Graph Theory in AMS

Today: review of basic graph algorithms from Data Structures, possibly one or two new

» Going to move pretty quickly, since much review: see CLRS for details!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 2/21

Basic Definitions
Definition

A graph G = (V,E) is a pair where V is a set and E ¢ (\2/) (unordered pairs) or EC V x V
(ordered pairs).

Notation:
» Elements of V are called vertices or nodes
Elements of E are called edges or arcs.
If Ec (‘2/) then graph is undirected, if E € V x V graph is directed
|V|=n and |E| = m (usually)
So "“size of input” =n+m

vV v v Vv

S e

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 3/21

Representations

Adjacency List: Adjacency Matrix:
'S nxn
> Array A of length n Ac{0,1}
» A[v] is linked list of vertices adjacent to > A = 1 if(i,j)eE
y - .
v (edge from u to v) 10 otherwise

1 2 3 45
1 2| 5|/ 110 1.0 0 1
2 L P{s] P33 FHe]/] 2010 1 1 1
3 2| 4|/ 310 1.0 1 0
4 2| —5| ™3|/ 410 1 1 0 1
5 NENNENRZ 501101 0
- 1 23 456
1[P2 —+{4]/] 110 10100
2 | = 51/ 2/0 00 01 0
(D) (2) (3) 3| 6] P51/ 30000 11
4 L ™ 2|/ 410 1 0 0 0 O
s| Pl 500 00100
(4} (5) O® 6| 6]/ 6/0 00001

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 4/21

Representations (cont'd)

Adjacency List:
» Pros:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List:
> Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List:
> Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

» Cons:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List:
> Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently

> Cons:
» Hard to check of an edge exists:

O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms

October 8, 2024

5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:

> Pros: > Pros:
» O(n+ m) space
» Can iterate through edges adjacent to v
very efficiently
> Cons:
» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms

October 8, 2024

5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently
> Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons:

» Hard to check of an edge exists:
O(d(u)) or O(d(v)) (where d(v) is
the degree of v: # edges with v as
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is * lterating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is » |terating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is » |terating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Representations (cont'd)

Adjacency List: Adjacency Matrix:
> Pros: > Pros:
» O(n+ m) space > Can check if e = (u,v) an edge in O(1)
» Can iterate through edges adjacent to v time
very efficiently » Cons:
> Cons: » Takes @(n?) space: if m small, lots
» Hard to check of an edge exists: wasted!
O(d(u)) or O(d(v)) (where d(v) is » |terating through edges incident on v
the degree of v: # edges with v as takes time ©(n), even if d(v) small.
endpoint)

This class: adjacency list unless otherwise specified.

Any way to improve these?
» Replace adjacency list with adjacency structure: Red-black tree, hash table, etc.

» Not traditional, doesn't gain us much, and more complicated. But better!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 5/21

Breadth-First Search (BFS)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 6/21

BFS Definition

Idea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

Fat
_*
F—1

"l

/ \
e —
' Rt
| B \:] Ii-t' |
L -

e - T, .
(0) (=) () ()

(v)
"'\-_-"‘I.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

DIOIOIDD

S

(v)
"'\-_-"‘I.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

—_

s .-.'_'-\.
e -
F - N, o) L ry l , Iy - ,
{ 4 1 1L «) L I L g |}
' e 1 A LS A % r
I]) £
I h]
'y A
~—

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

7/21

BFS Definition

Idea: explore graph in levels or layers from source s

N
b

— - :

2 T - # , # LY

(4) e) () (e)

L% % Fy L F
e e ,

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

-_-'\-\. .".-_-""'

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

AT
I'-\. B ..'I

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 7/21

BFS Definition

Idea: explore graph in levels or layers from source s

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

7/21

BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark (u) = True;
Enqueue(u);
}
}
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

Set mark(s) = True; Running Time:
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);

while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

Set mark(s) = True; Running Time: O(n+ m)
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);

while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark(u) = True;
Enqueue(u);
}
}
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {

}

Set mark(s) = True;

Set mark(v) = False for all v e V ~ {s};

Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark (u) = True;
Enqueue(u);
}
}
}

Running Time: O(n+m)
» O(n) for initialization
» O(m) for main while loop
> Examine every edge twice:
when each endpoint dequeued
> Or (equivalent): Adjacency list
scanned only when vertex
dequeued

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

BFS Pseudocode
Idea: explore with a queue (FIFO)

BFS(G = (V, E),s) {
Set mark(s) = True;
Set mark(v) = False for all v e V ~ {s};
Enqueue(s);
while(queue not empty) {
v = Dequeue();
forall neighbors u of v {
if(mark (u) == False) {
mark (u) = True;
Enqueue(u);
}
}
}
}

Running Time: O(n+m)
» O(n) for initialization
» O(m) for main while loop

> Examine every edge twice:
when each endpoint dequeued

> Or (equivalent): Adjacency list
scanned only when vertex
dequeued

Note: edges that cause a node to be
enqueued form a tree!

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 8/21

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:
Assume false for contradiction, let u be closest node to s where BFS(s) doesn’t give shortest

path

BES £th

A ﬁ
shokad peth

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21

Correctness / Shortest Paths

Definition: Distance d(u,v) from u to v is min # edges in any path from u to v

Theorem (informal): BFS(s) gives shortest paths from s to all other nodes

Proof Sketch:
Assume false for contradiction, let u be closest node to s where BFS(s) doesn’t give shortest

path
BES =N d(s,w') < d(s,w)

= w' dequeued before w (since w’

$ has correct distance by def of u)
\ — u will be enqueued from w’, not
w. Contradiction.
5(1:/&'“. J’ fe vF(’\

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 9/21

Depth-First Search (DFS)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 10/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u);
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v,u) € A[v] {
if mark(u) == False then DFS(u); ..
} Running time:

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
i€ k(u) == False then DFS(u):
\ if mark(u) alse then (u) Running time: O(m + n)

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Definition

Intuition: Instead of exploring wide (breadth), explore far (deep): just keep walking until see a
node we've already seen, then backtrack!

Init: for each v € V, mark(v) = False;

DFS(v) {
mark(v) = True;
for each edge (v, u) € A[v] {
i€ k(u) == False then DFS(u):
\ if mark(u) alse then (u) Running time: O(m + n)

} » O(n) initialization

» Every edge considered at most
twice

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 11/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem

When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X v

o

f{/S‘{' L.'\'\VIC{_J A-L e {"—“1

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

% 4
o—) o_dﬁ_%a_/)o———)a_zo—%o

o

ff'5+ L.'\'\VIQ.J A-L e {"—-U‘

x is marked so DFS(x) must have been called

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.

Suppose u reachable from v but not marked when DFS(v) terminates.

X V4
o/_),,_/\)‘_%,_/)o—_-)a_zo—/)o

o

Fres wane o nod e ("—“1

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

DFS: Correctness

Definition: u is reachable from v if there is a path v = vy, v1,..., Vg = u such that
(vj,vjy1) € E for all i € {0,1,...,k-1}.

Theorem
When DFS(v) terminates, it has visited (marked) all nodes that are reachable from v.

Proof.
Suppose u reachable from v but not marked when DFS(v) terminates.

X V4
o/_),,_/\)‘_%,_/)o—_-)a_zo—/;o

o

Fres wane o nod e ("—“1

x is marked so DFS(x) must have been called
== y was either marked or DFS(y) called and it became marked.
Contradiction. 0l

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 12/21

Graph variant

After DFS(v), node marked if and only if reachable from v.

Might want to continue until all nodes marked.

DFS(G) {
for all v € V, set mark(v) = False;
while there exists an unmarked node v {
DFS(v);
}

}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 13/21

Timestamps

Explicitly keep track of “start” and “finishing” times

» Replaces mark

DFS(G) {
t=0;
forallve V {
start(v) = 0;
finish(v) = 0;
}
while 3v € V with start(v) =0 {
DFS(v);
}
}

for each edge (v,u) € A[v] {

DFS(v) {
t=t+1;
start(v) = t;
if start(u) ==
}
t=t+1;

finish(v) = t;

then DFS(u);

Michael Dinitz

Lecture 13: Basic Graph Algorithms

October 8, 2024

14 /21

Timestamp Example

11/16 17/18

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

15/21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

\\ Tee edge

\\ Back edge

\\ Forward edg
\\ Cross edge

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

\\ Back edge

\\ Forward edg
\\ Cross edge

Back Edges: (v, u) such that u an ancestor of v

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

Back ed
?:F;rf,v;dizg Back Edges: (v, u) such that u an ancestor of v
\ Cross edge start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

\\ Tee edge

Back ed
?:F;rf,v;dizg Back Edges: (v, u) such that u an ancestor of v
\ Cross edge start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 16 /21

Topological Sort

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 17 /21

Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no

directed cycles.

Michael Dinitz

1116 17118
910
12715 (pants) 13114
(shird) s
6
(tie) s
34

Lecture 13: Basic Graph Algorithms

October 8, 2024

18/21

Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J
IIH(» socks) 17/18
1215 1314
1/x
6/7
(tie) s
Definition

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (v;,v;) with i <.

EEORORTT

17/18 11/16 12/15 13/14 910 1718 6/7 2/5 3/4

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 18 /21

Definitions

Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J
11/16 (Undershorts) (s0cks) 17718
G @@
215 (Gans) Ghoss) 1314
(shird) s
617 (belt)
(tie) s
Definition

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are
of the form (v;,v;) with i <.

= ~
EEORORTT

17/18 11/16 12/15 13/14 910 1718 6/7 2/5 3/4

Q: Can we always topological sort a DAG? How fast?
Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 18 /21

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 19/21

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

DFS(v
OFS(G) { i
list - head = NULL; start(v)’ s
t=0; "
' for each edge (v, u) € A[v] {
forall veV{ if start(u) == 0 then DFS(u);
start(v) = 0;)
finish(v) = 0; fetel
} B - b
while v € V with start(v) =0 { f;:z(—vzis_ti head:
) DFS(v); list - head = v;
) list - head — next = temp;
}

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 19/21

Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Michael Dinitz

Lecture 13: Basic Graph Algorithms

October 8, 2024

20 /21

Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If (<): contrapositive. If G has a directed cycle C:

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 20/21

Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
If (<): contrapositive. If G has a directed cycle C:

wn

» Let u e C with minimum start value, v predecessor in cycle \l./?\]
» All nodes in C reachable from u == all nodes in C descendants of u

» (v,u) a back edge \/

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024

20 /21

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 21/21

Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
== Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

== u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 13: Basic Graph Algorithms October 8, 2024 21/21

