Lecture 14: Basic Graph Algorithms II

Michael Dinitz

October 10, 2024 601.433/633 Introduction to Algorithms

Introduction

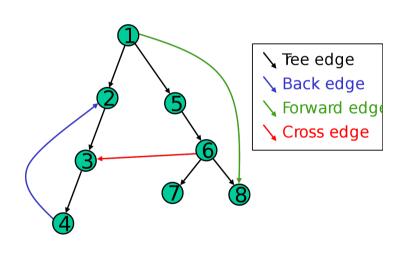
Last time: BFS and DFS

Today: Topological Sort, Strongly Connected Components

Both very classical and important uses of DFS!

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)



Forward Edges: (v, u) such that u descendent of v (includes tree edges) start(v) < start(u) < finish(u) < finish(v)

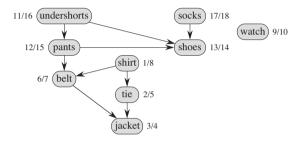
Back Edges: (v, u) such that u an ancestor of v start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of v start(u) finish(u) < start(v) < finish(v)

Topological Sort

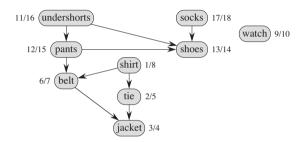
Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.



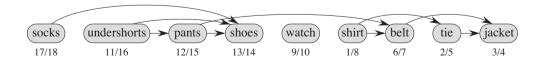
Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.



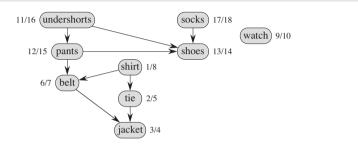
Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_i) with i < j.



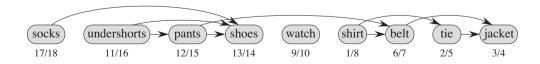
Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.



Definition

A topological sort v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form (v_i, v_i) with i < j.



Q: Can we always topological sort a DAG? How fast?

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

```
DFS(G) {
   list → head = NULL
   t=0:
   for all \mathbf{v} \in \mathbf{V} {
       start(v) = 0;
       finish(v) = 0;
   while \exists v \in V with start(v) = 0 {
       DFS(v);
```

```
DFS(v) {
   t=t+1;
   start(v) = t;
   for each edge (v, u) \in A[v] {
      if start(u) == 0 then DFS(u);
   t = t + 1:
   finish(v) = t;
   temp = list → head
   list \rightarrow head = v
   list \rightarrow head \rightarrow next = temp
```

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (⇒): contrapositive. If Thas a back edge:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If G has a directed cycle C:

Theorem

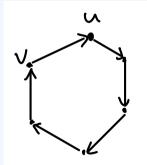
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If G has a directed cycle C:

- Let $u \in C$ with minimum start value, v predecessor in cycle
- lacktriangle All nodes in $m{C}$ reachable from $m{u} \implies$ all nodes in $m{C}$ descendants of $m{u}$
- (v, u) a back edge

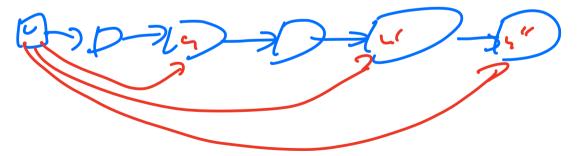


Correctness:

Correctness: Since G a DAG, never see back edge

Correctness: Since **G** a DAG, never see back edge

- \implies Every edge (v, u) out of v a forward or cross edge
- \implies finish(u) < finish(v)
- \Longrightarrow u already in list when v added to beginning



Correctness: Since **G** a DAG, never see back edge

- \implies Every edge (v, u) out of v a forward or cross edge
- \implies finish(u) < finish(v)
- \implies **u** already in list when **v** added to beginning

Running Time:

Correctness: Since **G** a DAG, never see back edge

- \implies Every edge (v, u) out of v a forward or cross edge
- \implies finish(u) < finish(v)
- \implies **u** already in list when **v** added to beginning

Running Time: Same as DFS! O(m+n)

Strongly Connected Components (SCC)

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

G = (V, E) a directed graph.

Definition

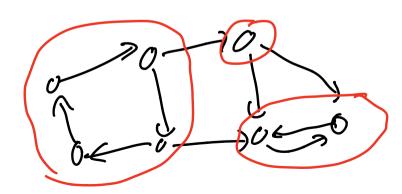
 $C \subseteq V$ is a strongly connected component (SCC) if it is a maximal subset such that for all $u, v \in C$, u can reach v and vice versa (bireachable).

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

G = (V, E) a directed graph.

Definition

 $C \subseteq V$ is a strongly connected component (SCC) if it is a maximal subset such that for all $u, v \in C$, u can reach v and vice versa (bireachable).

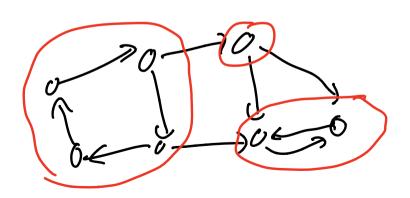


Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

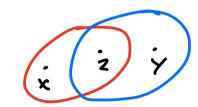
G = (V, E) a directed graph.

Definition

 $C \subseteq V$ is a strongly connected component (SCC) if it is a maximal subset such that for all $u, v \in C$, u can reach v and vice versa (bireachable).



Fact: There is a *unique* partition of **V** into SCCs



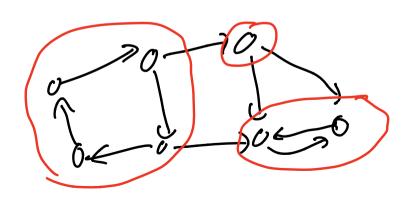
Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

G = (V, E) a directed graph.

Definition

 $C \subseteq V$ is a strongly connected component (SCC) if it is a maximal subset such that for all $u, v \in C$, u can reach v and vice versa (bireachable).

Lecture 14: Basic Graph Algorithms II



Fact: There is a *unique* partition of V into SCCs

Proof: Bireachability is an equivalence relation: if \boldsymbol{u} and \boldsymbol{v} are bireachable, and \boldsymbol{v} and \boldsymbol{w} are bireachable, then \boldsymbol{u} and \boldsymbol{w} are bireachable.

Problem: Given G, compute SCCs (partition V into the SCCs)

Problem: Given \boldsymbol{G} , compute SCCs (partition \boldsymbol{V} into the SCCs)

Trivial Algorithm:

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

• Running time: O(n(m+n))

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

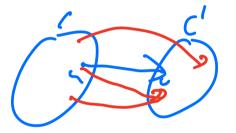
• Running time: O(n(m+n))

Can we do better? O(m + n)?

Graph of SCCs

Definition: Let $\hat{\boldsymbol{G}}$ be graph of SCCs:

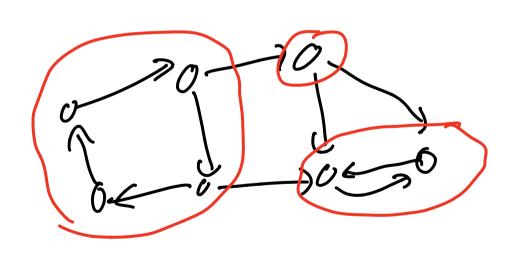
- ▶ Vertex **v**(**C**) for each SCC **C**
- ▶ Edge (v(C), v(C')) if $\exists u \in C, v \in C'$ such that $(u, v) \in E$

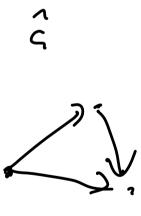


Graph of SCCs

Definition: Let $\hat{\boldsymbol{G}}$ be graph of SCCs:

- ▶ Vertex **v**(**C**) for each SCC **C**
- ▶ Edge (v(C), v(C')) if $\exists u \in C, v \in C'$ such that $(u, v) \in E$





Theorem

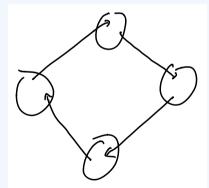
 $\hat{\boldsymbol{G}}$ is a DAG.

Theorem

 $\hat{\boldsymbol{G}}$ is a DAG.

Proof.

Suppose $\hat{\boldsymbol{G}}$ not a DAG. Then there is a directed cycle \boldsymbol{H} .



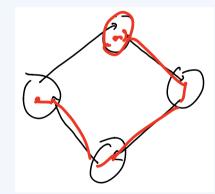
Theorem

 $\hat{\boldsymbol{G}}$ is a DAG.

Proof.

Suppose $\hat{\boldsymbol{G}}$ not a DAG. Then there is a directed cycle \boldsymbol{H} .

$$\Longrightarrow \bigcup_{C:\nu(C)\in H} C$$
 is an SCC



Theorem

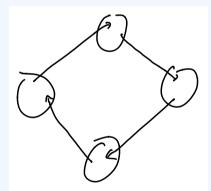
 $\hat{\boldsymbol{G}}$ is a DAG.

Proof.

Suppose $\hat{\boldsymbol{G}}$ not a DAG. Then there is a directed cycle \boldsymbol{H} .

 $\Longrightarrow \bigcup_{C:\nu(C)\in H} C$ is an SCC

 $\implies v(C)$ not an SCC for $v(C) \in H$



Theorem

 $\hat{\boldsymbol{G}}$ is a DAG.

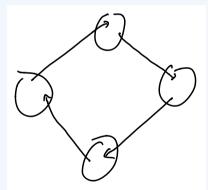
Proof.

Suppose $\hat{\boldsymbol{G}}$ not a DAG. Then there is a directed cycle \boldsymbol{H} .

 $\Longrightarrow \bigcup_{C:\nu(C)\in H} C$ is an SCC

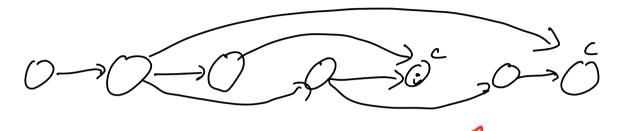
 $\implies v(C)$ not an SCC for $v(C) \in H$

Contradiction!



Since $\hat{\boldsymbol{G}}$ a DAG, has a topological sort

Since $\hat{\boldsymbol{G}}$ a DAG, has a topological sort



Definition: SCC C is a sink SCC if no outgoing edges in C

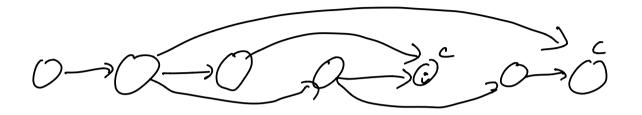
Claim: At least one sink SCC exists

Since $\hat{\boldsymbol{G}}$ a DAG, has a topological sort

Definition: SCC *C* is a *sink* SCC if no outgoing edges

- Claim: At least one sink SCC exists
- Proof: Final SCC in topological sort of \hat{G} must be a sink.

Since $\hat{\boldsymbol{G}}$ a DAG, has a topological sort

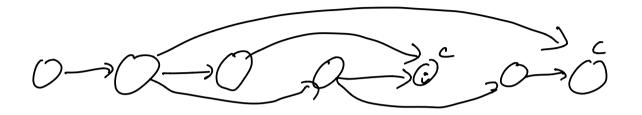


Definition: SCC *C* is a *sink* SCC if no outgoing edges

- Claim: At least one sink SCC exists
- Proof: Final SCC in topological sort of \hat{G} must be a sink.

What happens if we run DFS(\boldsymbol{v}) where \boldsymbol{v} in a sink SCC?

Since $\hat{\boldsymbol{G}}$ a DAG, has a topological sort



Definition: SCC *C* is a *sink* SCC if no outgoing edges

- Claim: At least one sink SCC exists
- Proof: Final SCC in topological sort of \hat{G} must be a sink.

What happens if we run DFS(\boldsymbol{v}) where \boldsymbol{v} in a sink SCC?

► See exactly nodes in *C*!

Since $\hat{\boldsymbol{G}}$ a DAG, has a topological sort

Definition: SCC *C* is a *sink* SCC if no outgoing edges

- Claim: At least one sink SCC exists
- Proof: Final SCC in topological sort of \hat{G} must be a sink.

What happens if we run DFS(\boldsymbol{v}) where \boldsymbol{v} in a sink SCC?

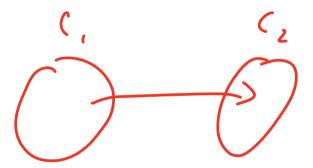
► See exactly nodes in *C*!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

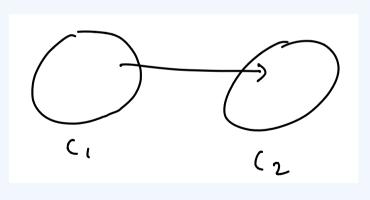


Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

Proof.



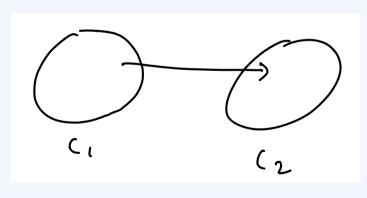
Let $x \in C_1 \cup C_2$ be first node encountered by DFS

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

Proof.



Let $x \in C_1 \cup C_2$ be first node encountered by DFS

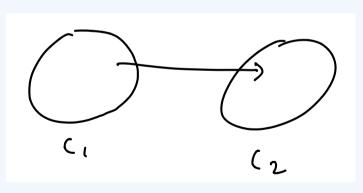
▶ If $x \in C_1$:

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

Proof.



Let $x \in C_1 \cup C_2$ be first node encountered by DFS

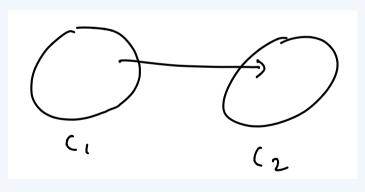
▶ If $x \in C_1$: all of C_2 reachable from x, so DFS(x) does not complete until all of C_2 finished

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

Proof.



Let $x \in C_1 \cup C_2$ be first node encountered by DFS

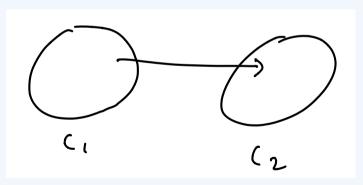
- If $x \in C_1$: all of C_2 reachable from x, so DFS(x) does not complete until all of C_2 finished
- ▶ If $x \in C_2$:

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

Proof.



Let $x \in C_1 \cup C_2$ be first node encountered by DFS

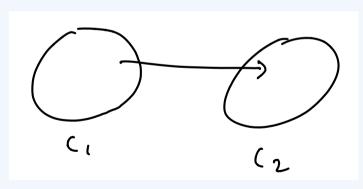
- ▶ If $x \in C_1$: all of C_2 reachable from x, so DFS(x) does not complete until all of C_2 finished
- If $x \in C_2$: all of C_2 reachable from x but nothing from C_1 , so all of C_2 finishes before any node in C_1 starts

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then $finish(C_1) > finish(C_2)$.

Proof.



Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- If $x \in C_1$: all of C_2 reachable from x, so DFS(x) does not complete until all of C_2 finished
- If $x \in C_2$: all of C_2 reachable from x but nothing from C_1 , so all of C_2 finishes before any node in C_1 starts

So node of max finishing time in a source SCC (no incoming edges in \hat{G}).

Useful Corollary

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$.

Corollary

Let \mathcal{C} be collection of all SCCs of G, and let $\mathcal{C}' \subseteq C$. Let $G' = G \setminus (\bigcup_{C \in \mathcal{C}'} C)$. Then the node $\mathbf{v} = \operatorname{argmax}_{\mathbf{u} \in \bigcup_{C \in \mathcal{C} \setminus \mathcal{C}'} C} \operatorname{finish}(\mathbf{u})$ is in an SCC of G that is a source SCC of G'.

Useful Corollary

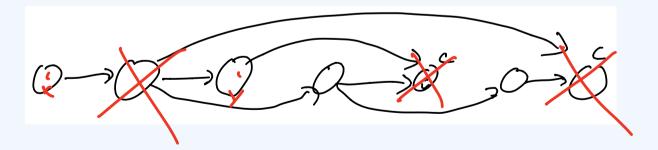
Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$.

Corollary

Let \mathcal{C} be collection of all SCCs of G, and let $\mathcal{C}' \subseteq C$. Let $G' = G \setminus (\bigcup_{C \in \mathcal{C}'} C)$. Then the node $\mathbf{v} = \operatorname{argmax}_{\mathbf{u} \in \bigcup_{C \in \mathcal{C} \setminus \mathcal{C}'} C} \operatorname{finish}(\mathbf{u})$ is in an SCC of G that is a source SCC of G'.

Proof.

Clearly SCCs of G' are precisely $C \setminus C'$:



Useful Corollary

Run DFS(G), and let $finish(C) = \max_{v \in C} finish(v)$.

Corollary

Let \mathcal{C} be collection of all SCCs of G, and let $\mathcal{C}' \subseteq C$. Let $G' = G \setminus (\bigcup_{C \in \mathcal{C}'} C)$. Then the node $\mathbf{v} = \operatorname{argmax}_{\mathbf{u} \in \bigcup_{C \in \mathcal{C} \setminus \mathcal{C}'} C} \operatorname{finish}(\mathbf{u})$ is in an SCC of G that is a source SCC of G'.

Proof.

Clearly SCCs of G' are precisely $C \setminus C'$:



Lemma \implies node remaining with max finish time in a sink SCC of what remains.

So node with max finish time in a *source* SCC (no incoming edges in $\hat{\mathbf{G}}$). Want sink (no outgoing edges).

So node with max finish time in a *source* SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges!

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges!

Definition: G^T is G with all edges reversed.

• Source SCC in G^T is sink SCC in G

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges!

Definition: G^T is G with all edges reversed.

• Source SCC in G^T is sink SCC in G

Kosaraju's Algorithm:

- DFS(G^T) to get finishing times and order π on V from smallest finishing time to largest \mathcal{L}
 - ▶ Set mark(v) = False for all $v \in V$
 - Forall v ∈ V in order of π {
 if mark(v) = False {
 Run DFS(v), let C be all nodes found
 Return C as an SCC

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges!

Definition: G^T is G with all edges reversed.

• Source SCC in G^T is sink SCC in G

Kosaraju's Algorithm:

- ▶ DFS(G^T) to get finishing times and order π on V from smallest finishing time to largest
- ▶ Set mark(v) = False for all $v \in V$

```
Forall v ∈ V in order of π {
if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC
```

Running Time:

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges!

Definition: G^T is G with all edges reversed.

Source SCC in G^T is sink SCC in G

Kosaraju's Algorithm:

- ▶ DFS(G^T) to get finishing times and order π on V from smallest finishing time to largest
- ▶ Set mark(v) = False for all $v \in V$

```
Forall v ∈ V in order of π {
if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC
```

Running Time: O(m + n)

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$C_i$$
 is a sink SCC of $G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right)$, and an SCC of G .

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

 C_i is a sink SCC of $G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right)$, and an SCC of G.

Proof Sketch.

Induction on *i*.

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$C_i$$
 is a sink SCC of $G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right)$, and an SCC of G .

Proof Sketch.

Induction on i.

Base case: i = 1. By previous argument, largest finishing time in $G^T \implies$ in sink SCC of G

 \implies C_1 is sink SCC of G

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$C_i$$
 is a sink SCC of $G \setminus \left(\bigcup_{i=1}^{i-1} C_i\right)$, and an SCC of G .

Proof Sketch.

Induction on *i*.

Base case: i = 1. By previous argument, largest finishing time in $G^T \implies$ in sink SCC of G

 \implies C_1 is sink SCC of G

Inductive case: Let i > 1. Let ν unmarked node with largest finishing time.

- ▶ By induction, subgraph of unmarked nodes is G minus i 1 SCCs of G
- Corollary w must be in sink SCC of unmarked nodes so get an SCC of unmarked nodes when run DFS
- ▶ Corollary ⇒ SCC of original graph