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Introduction

Last time: BFS and DFS

Today: Topological Sort, Strongly Connected Components

» Both very classical and important uses of DFS!
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Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS(v) calls DFS(u)

\\ Tee edge
\\ Back edge
\\ Forward edgs

\\ Cross edge

Michael Dinitz

Forward Edges: (v, u) such that u descendent of
v (includes tree edges)

Y
start(v) < start(u)@u) <@

Back Edges: (v, u) such that u an ancestor of v
start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v, u) such that u neither a
descendent nor an ancestor of v

start(u) £ finish(u) < start(v) < finish@
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Topological Sort
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.
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Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.

Definition

11/16

12/15

A topological sort vi,va,...,v, of a DAG is an ordering of the vertices such that all edges are

of the form (v;, v;j) with i <.

Csocks) @ndershorts pants shoes watch @ﬁ@ @
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Definitions
Definition
A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles. J

‘- o
12/15 shoes ) 13/14

6/7 @
@ 25

Jacket 3/4

Definition
A topological sort vy, va,...
of the form (v;, v;j) with i <.

, vp of a DAG is an ordering of the vertices such that all edges are

Csocks) @ndershorts pantshoes watch @ﬁ@ @

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

Q: Can we always topological sort a DAG? How fast?
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list
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Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

DFS(G) {
list - head = NULL:
t=0;
for all ve V {
start(v) = 0;
finish(v) = 0;
t
while 3v € V with start(v) =0 {
DFS(v);
i
}

DFS(v) {
t=t+1:
start(v) = t;
for each edge (v,u) € Alv] {
if start(u) == 0 then DFS(u);

}

t=t+1;

finish(v) = t; 12 9D" 7@
temp = list > head” {4

list - head = v:
list - head — next = temp;
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G ) has no back edges. J

Proof.
Only if (=): contrapositive. IP&. has a back edge:
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges. J

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If («=): contrapositive. If G has a directed cycle C:
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Characterizing DAGs

Theorem
A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.
Only if (=): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If («=): contrapositive. If G has a directed cycle C:

W

> Let u € C with minimum start value, v predecessor in cycle \/,/7\]

» All nodes in C reachable from u == all nodes in C descendants of u T

> (v,u) a back edge \/
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Topological Sort Analysis

Correctness:
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
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Topological Sort Analysis

“u

. /
Correctness: Since G a DAG, never see back edge ;5 )"‘
— Every edge (v, u) out of v a forward or cross edge »

= finish(u) < finish(v)

—= wu already in list when v added to beginning
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

—= wu already in list when v added to beginning

Running Time:
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Topological Sort Analysis

Correctness: Since G a DAG, never see back edge
— Every edge (v, u) out of v a forward or cross edge
= finish(u) < finish(v)

—= wu already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms || October 10, 2024 8/18



Strongly Connected Components (SCC)
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Definitions

Another application of DFS. “Kosaraju’'s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).

Michael Dinitz Lecture 14: Basic Graph Algorithms || October 10, 2024 10/18



Definitions

Another application of DFS. “Kosaraju’'s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).

Michael Dinitz

Lecture 14: Basic Graph Algorithms Il October 10, 2024 10/18



Definitions

Another application of DFS. “Kosaraju’'s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).

Fact: There is a unique partition of V into
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Definitions

Another application of DFS. “Kosaraju’'s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V,E) a directed graph.
Definition

C c V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v € C, u can reach v and vice versa (bireachable).

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence
relation: if u and v are bireachable, and v and
w are bireachable, then v and w are
bireachable.
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm:
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

Michael Dinitz Lecture 14: Basic Graph Algorithms || October 10, 2024 11/18



SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

> Running time: O(n(m+ n))
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SCC Problem

Problem: Given G, compute SCCs (partition V into the SCCs)

Trivial Algorithm

> Running time

Can we do better?

Michael Dinitz

: DFS/BFS from every node, keep track of what's reachable from where

. O(n(m + n))

O(m+ n)?
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Graph of SCCs

Definition: Let G be graph of SCCs:
> Vertex v(C) for each SCC C

> Edge (v(C),v(C')) if 3ue C,veC' such that (u,v) € E

{
£ ¢ V(C) UCCI/

S ‘,\BI
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Graph of SCCs

Definition: Let G be graph of SCCs:
> Vertex v(C) for each SCC C
> Edge (v(C),v(C')) if 3ue C,veC' such that (u,v) € E

N
C
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Graph of SCCs: Structure

Theorem
G is a DAG. J
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Graph of SCCs: Structure

Theorem
G is a DAG.

Proof.

Suppose G not a DAG. Then there is a directed cycle H.
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Graph of SCCs: Structure

Theorem
G is a DAG. )
Proof.
Suppose G not a DAG. Then there is a directed cycle H.
= Uc:v(c)en € is an SCC
DJ
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Graph of SCCs: Structure

Theorem
G is a DAG. J

Proof.

Suppose G not a DAG. Then there is a directed cycle H.
= Uc:v(c)en € is an SCC
= v(C) not an SCC for v(C) e H
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Graph of SCCs: Structure

Theorem
G is a DAG. J

Proof.

Suppose G not a DAG. Then there is a directed cycle H.
= Uc:v(c)en € is an SCC
= v(C) not an SCC for v(C) e H

Contradiction!
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Sink SCC

Since G a DAG, has a topological sort

_ e D
0@@0—%)
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Sink SCC

Since G a DAG, has a topological sort

0= A" =0

Definition: SCC C is a sink SCC if no outgoing edges 1 C

» Claim: At least one sink SCC exists

A
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Sink SCC

Since G a DAG, has a topological sort

_ e D
0@@0—%)

Definition: SCC C is a sink SCC if no outgoing edges

» Claim: At least one sink SCC exists

> Proof: Final SCC in topological sort of G must be a sink.

Michael Dinitz Lecture 14: Basic Graph Algorithms || October 10, 2024 14 /18



Sink SCC

Since G a DAG, has a topological sort

_ e D
0@@0—%)

Definition: SCC C is a sink SCC if no outgoing edges
» Claim: At least one sink SCC exists

> Proof: Final SCC in topological sort of G must be a sink.

What happens if we run DFS(v) where v in a sink SCC?
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Sink SCC

Since G a DAG, has a topological sort

_ e D
0@@0—%)

Definition: SCC C is a sink SCC if no outgoing edges
» Claim: At least one sink SCC exists

> Proof: Final SCC in topological sort of G must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

> See exactly nodes in C!
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Sink SCC

Since G a DAG, has a topological sort

_ e D
0@@0—%)

Definition: SCC C is a sink SCC if no outgoing edges
» Claim: At least one sink SCC exists

> Proof: Final SCC in topological sort of G must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

> See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat
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SCCs and DFS
Run DFS(G), and let finish(C) = max,c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Ci),v(C3)) € E(G). Then finish(Cy) > finish(Cy). J

( ¢

‘ 2

fip M—

Michael Dinitz Lecture 14: Basic Graph Algorithms || October 10, 2024 15/18



SCCs and DFS
Run DFS(G), and let finish(C) = max,¢c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Cy),v(C2)) € E(G). Then finish(C;) > finish(C,).

Proof.
Let x € C;7 U Cy be first node encountered by DFS
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SCCs and DFS
Run DFS(G), and let finish(C) = max,¢c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Cy),v(C2)) € E(G). Then finish(C;) > finish(C,).

Proof.
Let x € C;7 U Cy be first node encountered by DFS

> If x e Cy:
&,

Co
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SCCs and DFS
Run DFS(G), and let finish(C) = max,¢c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Cy),v(C2)) € E(G). Then finish(C;) > finish(C,).

Proof. |
Let x € C; u G, be first node encountered by DFS
> If x € Cy: all of Cy reachable from x, so DFS(x)
D does not complete until all of Cy finished
C
( C y

Michael Dinitz Lecture 14: Basic Graph Algorithms || October 10, 2024 15/18



SCCs and DFS
Run DFS(G), and let finish(C) = max,¢c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Cy),v(C2)) € E(G). Then finish(C;) > finish(C,).

Proof. |
Let x € C; u G, be first node encountered by DFS
> If x € Cy: all of Cy reachable from x, so DFS(x)
D does not complete until all of Cy finished
> If x € Co:
C, (,
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SCCs and DFS
Run DFS(G), and let finish(C) = max,¢c finish(v)

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Cy),v(C2)) € E(G). Then finish(C;) > finish(C,).

Proof. |
Let x € C; u G, be first node encountered by DFS

> If x € Cq: all of C; reachable from x, so DFS(x)
D does not complete until all of Cy finished

> If x € Cy: all of Cy reachable from x but nothing
Cy from Cj, so all of Cy finishes before any node in Cy

Co starts -
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SCCs and DFS
Run DFS(G), and let finish(C) = max,¢c finish(v)

Na

Lemma
Let Cy, Cy distinct SCCs s.t. (v(Cy),v(C2)) € E(G). Then finish(C;) > finish(C,).

Proof. |
Let x € C;7 U Cy be first node encountered by DFS

> If x € Cq: all of C; reachable from x, so DFS(x)
D does not complete until all of Cy finished

> If x € Cy: all of Cy reachable from x but nothing
Cy from Cj, so all of Cy finishes before any node in Cy

Co starts
[]

So node of max finishing time in a source SCC (no incoming edges in C;')
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Useful Corollary
Run DFS(G), and let finish(C) = max,¢c finish(v).

Corollary |

Let C be collection of all SCCs of G, and let C' € C. Let G' = G ~ (Ucec’ C). Then the node
vV =argmaX,e . . cfinish(u) is in an SCC of G that is a source SCC of G'.
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Useful Corollary
Run DFS(G), and let finish(C) = max,¢c finish(v).

Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G' = G ~ (Ucec’ C). Then the node

v =argmax,q__. ., cfinish(u) is in an SCC of G that is a source SCC of G'.

Proof.
Clearly SCCs of G’ are precisely C ~ C':

—_
@_/9 _ -@O’-”
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Useful Corollary
Run DFS(G), and let finish(C) = max,¢c finish(v).

Corollary

Let C be collection of all SCCs of G, and let C' € C. Let G' = G ~ (Ucec’ C). Then the node

v = argmax o cfinish(u) is in an SCC of G that is a source SCC of G'.

ueUCeC\

Proof.
Clearly SCCs of G’ are precisely C ~ C':

L — L,
Jvce
Lemma == node remaining with max finish time in a _sifk SCC of what remains.
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Kosaraju's Algorithm
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no
outgoing edges).
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no
outgoing edges). Reverse all edges!
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no
outgoing edges). Reverse all edges!
Definition: G' is G with all edges reversed.

» Source SCCin GT is sink SCCin G
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: G' is G with all edges reversed.
» Source SCCin GT is sink SCCin G

Kosaraju's Algorithm:

> DFS(GT) to get finishing times and order 7w on V from
tw.«,sm—a-Hest‘flnlshlng time to g5t~ U £

> Set mark(v) = False for all v e V
> Forall v € V in order of 7 {
if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: G' is G with all edges reversed.
» Source SCCin GT is sink SCCin G

Kosaraju's Algorithm:

» DFS(GT) to get finishing times and order 7 on V from
smallest finishing time to largest

> Set mark(v) = False for all ve V

> Forall v € V in order of 7 {
if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC
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Kosaraju's Algorithm

So node with max finish time in a source SCC (no incoming edges in G). Want sink (no

outgoing edges). Reverse all edges!
Definition: G' is G with all edges reversed.
» Source SCCin GT is sink SCCin G

Kosaraju's Algorithm:

» DFS(GT) to get finishing times and order 7 on V from
smallest finishing time to largest

> Set mark(v) = False for all ve V

> Forall v € V in order of 7 {
if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC
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Correctness Sketch
Let Ci, Cy,..., Cy be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G (Uj':;i CJ) and an SCC of G.
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Correctness Sketch
Let Ci, Cy,..., Cy be sets identified by algorithm (in order)

Theorem
C; is a sink SCC of G (thi CJ) and an SCC of G. J

Proof Sketch.

Induction on 1.

LT A o
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Correctness Sketch
Let Ci, Cy,..., Cy be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G (thi CJ) and an SCC of G.

Proof Sketch. |

Induction on 1.

Base case: i = 1. By previous argument, largest finishing time in GT = in sink SCC of G
== (i is sink SCC of G
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Correctness Sketch
Let Ci, Cy,..., Cy be sets identified by algorithm (in order)

Theorem

C; is a sink SCC of G (UJ’:;} CJ) and an SCC of G.

Proof Sketch. |

Induction on 1.

Base case: i = 1. By previous argument, largest finishing time in GT == in sink SCC of G
= (3 is sink SCC of G
Inductive case: Let i > 1. Let v unmarked node with largest finishing time.

> By induction, subgraph of unmarked nodes is G minus i -1 SCCs of G

» Corollary == v must be in sink SCC of unmarked nodes so get an SCC of unmarked
nodes when run DFS

> Corollary == SCC of original graph
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