
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Basic Graph Algorithms II Date: 10/10/24

14.1 Introduction

Today we’re going to continue our discussion of basic graph algorithms. Last class we talked about
BFS and DFS, ending with a discussion of DFS. Today we’re going to use DFS to design some
interesting and extremely fast algorithms.

14.2 Topological Sort

DFS has a number of nice applications, some of which are discussed in the book. One of its most
famous applications is doing a “topological sort” on a directed acyclic graph (DAG). A DAG is a
directed graph in which there are no directed cycles, although if we reinterpret edges as undirected
there might be cycles. A topological sort of a DAG is an ordering of the vertices v1, . . . , vn so that
all edges are of the form (vi, vj) where i < j. In other words, we can line up all of the nodes so
that there are no edges going backwards.

It turns out that we can use DFS to find topological sorts of DAGs. First, let’s use DFS to
characterize DAGs

Theorem 14.2.1 A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof: One direction is obvious: if there is a back edge then we clearly have a directed cycle. For
the other direction, suppose that there is a directed cycle C in G. Then consider the node u ∈ C
with minimum start value. Since all nodes in C are reachable from u, they will be descendants of
u and so any v ∈ C with v ̸= u has finish(v) < finish(u). But then if v is the predecessor of u on
the cycle, the edge (v, u) will be a back edge.

So if G has a back edge then it has a directed cycle and if it has a directed cycle then it has a back
edge. This proves the theorem.

So now we know that if we call DFS on a DAG, we will never find any back edges. But this
automatically gives us a topological sort! When a node finished (i.e. we return from DFS(v)), we
just put v at the head of the list. Since there are no back edges, every edge (v, u) is either a forward
edge or a cross edge, and thus u has already finished and been put in the list. So no edges go
backwards in the list, and we have a topological sort in O(m+ n) time.

14.3 Strongly Connected Components

Let’s do another application of DFS. This was originally invented by Rao Kosaraju, who you
may know or have heard of – he’s a professor here, and was one of the founders of the JHU CS
department.

Let G = (V,E) be a directed graph. We say that two vertices v and u are equivalent, denoted

1



u ≡ v, if v is reachable from u and u is reachable from v. It is not hard to see that this is formally
an equivalence relation, i.e. it satisfies the following three properties.

1. Reflexivity: v ≡ v (obviously).

2. Symmetry: If v ≡ w then w ≡ v. This is immediate from the definition.

3. Transitivity: If v ≡ w and w ≡ u then v ≡ u. This is also reasonably straightforward: if
there is a path from v to w and a path from w to u, then there is a path from v to u. And
the same reasoning implies that there is a path from u to v.

Since ≡ satisfies all three properties, it naturally gives us a partition of V into components in which
each pair of vertices are equivalent. These are called the strongly connected components (or SCCs)
of the graph. So C is a SCC if it is a maximal set such that if u, v ∈ C then u ≡ v. We want to
design an algorithm to compute the SCCs of G.

A trivial algorithm would be to run DFS or BFS from each node to see what you can reach, and
then if two nodes can reach each other we put them in the same SCC. But this requires n different
full DFS runs, each of which takes time O(n+m), so the total running time is O(n2 +mn). This
is not so good.

Let’s be a little more careful. Before we define the algorithm, let’s first set up some notation and
get some intuition. Let Ĝ be the graph of SCCs: there is a vertex v(C) in Ĝ for each SCC of G,
and there is an edge from v(C) to v(C ′) if there is an edge from some u ∈ C to some v in C ′.

Lemma 14.3.1 Ĝ is a DAG.

Proof: By definition, if two nodes u and v are in the same SCC then they are each reachable from
the other. Thus if there is a path in Ĝ from v(C) to v(C ′), every node in C ′ is reachable from every
node in C. Thus if there is a directed cycle v(C1), v(C2), . . . , v(Ck) in Ĝ, then C1 ∪ C2 ∪ · · · ∪ Ck

would be a SCC in G. This contradicts our definition of Ĝ, and thus Ĝ cannot have a directed
cycle and so is a DAG.

Since Ĝ is a DAG, there is a topological sort of Ĝ. Suppose I knew this topological sort, and
suppose that v(C) is a sink Ĝ (and so has no edges leaving it). Then if we were to run a DFS from
a node in C, we would mark exactly the nodes in C. In other words, we would find C! We could
then remove these nodes from G, and run a DFS from the new final node in the topological sort of
Ĝ (which was previously the next-to-last node), to find the next SCC. We can just keep repeating
this until we find all of the SCCs.

Of course, we don’t know Ĝ or else we would already know the SCCs. What Rao figured out is
that it’s actually easy to find a node in a sink SCC, even though we don’t know Ĝ. First, we need
to extend our notion of finishing time to SCCs. Let finish(C) = maxv∈C finish(v).

Lemma 14.3.2 Suppose we run a DFS of G. Let C1 and C2 be distinct SCCs, and suppose there
is an edge (u, v) ∈ E where u ∈ C1 and v ∈ C2. Then finish(C1) > finish(C2).

Proof: Let x ∈ C1 ∪ C2 be the first node encountered in C1 ∪ C2 by the DFS. We break into
two cases. First, suppose that x ∈ C2. Then the DFS will visit all nodes in C2 before it visits any
nodes in C1, so clearly finish(C1) > finish(C2). On the other hand, suppose that x ∈ C1. Then all

2



other nodes in C1 ∪ C2 will be descendants of x and hence the finish time of x will be larger than
the finish time of any other node in C1 ∪ C2. Thus finish(C1) > finish(C2)

Note that this lemma implies that the node with largest finishing time is in a source SCC (an SCC
with no incoming edges in Ĝ). Of course, what we wanted was a node in a sink SCC, not a node
in a source SCC. But this is easily fixed: let GT be the graph we get by reversing every edge of G.
Then the SCCs do not change, but clearly the edges of Ĝ are all reversed. So a node which is in a
source SCC of GT is in a sink SCC of G.

So we can find a node in a sink SCC. Of course, to get overall fast running time we can’t do a DFS
each time we remove a SCC. But it turns out that we don’t need to (see below and the book)! The
finishing times of a DFS of GT are enough. This gives the following overall algorithm.

DFS(G^T) to get finishing times

Repeat until G is empty:

Let v be the vertex in G with largest finishing time

Runs DFS(v) in G to define an SCC C of all nodes found in this DFS

Delete C from G

Let’s first analyze the running time. Flipping the graph is O(n+m). The first DFS call is O(n+m).
Then all of the remaining calls combined are only O(n+m), since we only consider each edge once.
Thus the total running time is O(n+m). (Note: there are some missing details here. For example,
how do we repeatedly find the vertex with largest finishing time without paying a log factor to
maintain a heap? Good exercise to do at home: fill in the blanks! Hint: make a list of vertices
ordered by finishing time in O(n+m) time (without paying an extra log factor to sort).

For the correctness proof, see the book (I only sketched it in class, and will do only a sketch here).

Theorem 14.3.3 Kosaraju’s SCC algorithm correctly identifies all SCCs.

Proof: Let C1, C2, . . . , Ck be the sets identified by the algorithm, in order (so the first set deleted
is C1, then C2, etc). We claim that for all i ∈ {1, . . . , k}, the set Ci is a sink SCC of G \ ∪i−1

j=1Cj .
We prove this by induction on i. For the base case, when i = 1, we know from Lemma 14.3.2 and
the definition of GT that the vertex v with largest finishing time is in a sink SCC of G. Hence C1,
the set of nodes reachable from v, is exactly the SCC containing v and so is a sink SCC of G as
desired.

For the inductive step, suppose that the statement is true for all j ≤ i− 1, and now we prove it for
i. Lemma 14.3.2 implies that the vertex v remaining with largest finishing time must be in an SCC
which does not have an edge to any still remaining SCC (or else a node from that SCC would have
larger finishing time by Lemma 14.3.2). Hence Ci, the set of nodes reachable from v in G \∪i−1

j=1Cj ,

is indeed a sink SCC of G \ ∪i−1
j=1Cj as claimed.

3


	Introduction
	Topological Sort
	Strongly Connected Components

