
Lecture 14: Basic Graph Algorithms II

Michael Dinitz

October 10, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 1 / 18



Introduction

Last time: BFS and DFS

Today: Topological Sort, Strongly Connected Components

▸ Both very classical and important uses of DFS!

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 2 / 18



Edge Types

DFS naturally gives a spanning forest: edge (v ,u) if DFS(v) calls DFS(u)

Forward Edges: (v ,u) such that u descendent of
v (includes tree edges)

start(v) < start(u) < finish(u) < finish(v)

Back Edges: (v ,u) such that u an ancestor of v
start(u) < start(v) < finish(v) < finish(u)

Cross Edges: (v ,u) such that u neither a
descendent nor an ancestor of v
start(u) < finish(u) < start(v) < finish(v)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 3 / 18



Topological Sort

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 4 / 18



Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Definition

A topological sort v1,v2, . . . ,vn of a DAG is an ordering of the vertices such that all edges are
of the form (vi ,vj ) with i < j .

22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Q: Can we always topological sort a DAG? How fast?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 5 / 18



Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Definition

A topological sort v1,v2, . . . ,vn of a DAG is an ordering of the vertices such that all edges are
of the form (vi ,vj ) with i < j .

22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Q: Can we always topological sort a DAG? How fast?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 5 / 18



Definitions

Definition

A directed graph G is a Directed Acyclic Graph (DAG) if it has no directed cycles.22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Definition

A topological sort v1,v2, . . . ,vn of a DAG is an ordering of the vertices such that all edges are
of the form (vi ,vj ) with i < j .

22.4 Topological sort 613

11/16

12/15

6/7
1/8

2/5

3/4

17/18

13/14
9/10

17/18 11/16 12/15 13/14 9/10 1/8 6/7 2/5 3/4

(a)

(b)

undershorts

pants

belt
shirt

tie

jacket

socks

shoes
watch

socks undershorts pants shoes watch shirt belt tie jacket

Figure 22.7 (a) Professor Bumstead topologically sorts his clothing when getting dressed. Each
directed edge .u; !/ means that garment u must be put on before garment !. The discovery and
finishing times from a depth-first search are shown next to each vertex. (b) The same graph shown
topologically sorted, with its vertices arranged from left to right in order of decreasing finishing time.
All directed edges go from left to right.

pants). A directed edge .u; !/ in the dag of Figure 22.7(a) indicates that garment u
must be donned before garment !. A topological sort of this dag therefore gives an
order for getting dressed. Figure 22.7(b) shows the topologically sorted dag as an
ordering of vertices along a horizontal line such that all directed edges go from left
to right.

The following simple algorithm topologically sorts a dag:

TOPOLOGICAL-SORT.G/

1 call DFS.G/ to compute finishing times !: f for each vertex !
2 as each vertex is finished, insert it onto the front of a linked list
3 return the linked list of vertices

Figure 22.7(b) shows how the topologically sorted vertices appear in reverse order
of their finishing times.

We can perform a topological sort in time ‚.V C E/, since depth-first search
takes ‚.V CE/ time and it takes O.1/ time to insert each of the jV j vertices onto
the front of the linked list.

We prove the correctness of this algorithm using the following key lemma char-
acterizing directed acyclic graphs.

Q: Can we always topological sort a DAG? How fast?
Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 5 / 18



Topological Sort

Algorithm (informal): Run DFS(G ). When DFS(v) returns, put v at beginning of list

DFS(G ) {
list → head = NULL;
t = 0;
for all v ∈ V {

start(v) = 0;
finish(v) = 0;

}
while ∃v ∈ V with start(v) = 0 {

DFS(v);
}

}

DFS(v) {
t = t + 1;
start(v) = t;
for each edge (v ,u) ∈ A[v] {

if start(u) == 0 then DFS(u);
}
t = t + 1;
finish(v) = t;
temp = list → head ;
list → head = v ;
list → head → next = temp;

}

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 6 / 18



Topological Sort

Algorithm (informal): Run DFS(G ). When DFS(v) returns, put v at beginning of list

DFS(G ) {
list → head = NULL;
t = 0;
for all v ∈ V {

start(v) = 0;
finish(v) = 0;

}
while ∃v ∈ V with start(v) = 0 {

DFS(v);
}

}

DFS(v) {
t = t + 1;
start(v) = t;
for each edge (v ,u) ∈ A[v] {

if start(u) == 0 then DFS(u);
}
t = t + 1;
finish(v) = t;
temp = list → head ;
list → head = v ;
list → head → next = temp;

}

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 6 / 18



Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G ) has no back edges.

Proof.

Only if (⇒): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (⇐): contrapositive. If G has a directed cycle C :

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u
▸ (v ,u) a back edge

 

ki n Kai Koti ska

Y

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 7 / 18



Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G ) has no back edges.

Proof.

Only if (⇒): contrapositive. If G has a back edge:

Directed cycle! Not a DAG.

If (⇐): contrapositive. If G has a directed cycle C :

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u
▸ (v ,u) a back edge

 

ki n Kai Koti ska

Y

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 7 / 18



Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G ) has no back edges.

Proof.

Only if (⇒): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (⇐): contrapositive. If G has a directed cycle C :

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u
▸ (v ,u) a back edge

 

ki n Kai Koti ska

Y

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 7 / 18



Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G ) has no back edges.

Proof.

Only if (⇒): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (⇐): contrapositive. If G has a directed cycle C :

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u
▸ (v ,u) a back edge

 

ki n Kai Koti ska

Y

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 7 / 18



Characterizing DAGs

Theorem

A directed graph G is a DAG if and only if DFS(G ) has no back edges.

Proof.

Only if (⇒): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (⇐): contrapositive. If G has a directed cycle C :

▸ Let u ∈ C with minimum start value, v predecessor in cycle

▸ All nodes in C reachable from u Ô⇒ all nodes in C descendants of u
▸ (v ,u) a back edge

 

ki n Kai Koti ska

Y

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 7 / 18



Topological Sort Analysis

Correctness:

Since G a DAG, never see back edge

Ô⇒ Every edge (v ,u) out of v a forward or cross edge

Ô⇒ finish(u) < finish(v)
Ô⇒ u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 8 / 18



Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

Ô⇒ Every edge (v ,u) out of v a forward or cross edge

Ô⇒ finish(u) < finish(v)
Ô⇒ u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 8 / 18



Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

Ô⇒ Every edge (v ,u) out of v a forward or cross edge

Ô⇒ finish(u) < finish(v)
Ô⇒ u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 8 / 18



Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

Ô⇒ Every edge (v ,u) out of v a forward or cross edge

Ô⇒ finish(u) < finish(v)
Ô⇒ u already in list when v added to beginning

Running Time:

Same as DFS! O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 8 / 18



Topological Sort Analysis

Correctness: Since G a DAG, never see back edge

Ô⇒ Every edge (v ,u) out of v a forward or cross edge

Ô⇒ finish(u) < finish(v)
Ô⇒ u already in list when v added to beginning

Running Time: Same as DFS! O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 8 / 18



Strongly Connected Components (SCC)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 9 / 18



Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V ,E) a directed graph.

Definition

C ⊆ V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v ∈ C , u can reach v and vice versa (bireachable).

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence
relation: if u and v are bireachable, and v and
w are bireachable, then u and w are
bireachable.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 10 / 18



Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V ,E) a directed graph.

Definition

C ⊆ V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v ∈ C , u can reach v and vice versa (bireachable).

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence
relation: if u and v are bireachable, and v and
w are bireachable, then u and w are
bireachable.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 10 / 18



Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V ,E) a directed graph.

Definition

C ⊆ V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v ∈ C , u can reach v and vice versa (bireachable).

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence
relation: if u and v are bireachable, and v and
w are bireachable, then u and w are
bireachable.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 10 / 18



Definitions

Another application of DFS. “Kosaraju’s Algorithm”: Developed by Rao Kosaraju, professor
emeritus at JHU CS!

G = (V ,E) a directed graph.

Definition

C ⊆ V is a strongly connected component (SCC) if it is a maximal subset such that for all
u,v ∈ C , u can reach v and vice versa (bireachable).

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Fact: There is a unique partition of V into
SCCs

Proof: Bireachability is an equivalence
relation: if u and v are bireachable, and v and
w are bireachable, then u and w are
bireachable.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 10 / 18



SCC Problem

Problem: Given G , compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what’s reachable from where

▸ Running time: O(n(m + n))

Can we do better? O(m + n)?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 11 / 18



SCC Problem

Problem: Given G , compute SCCs (partition V into the SCCs)

Trivial Algorithm:

DFS/BFS from every node, keep track of what’s reachable from where

▸ Running time: O(n(m + n))

Can we do better? O(m + n)?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 11 / 18



SCC Problem

Problem: Given G , compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what’s reachable from where

▸ Running time: O(n(m + n))

Can we do better? O(m + n)?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 11 / 18



SCC Problem

Problem: Given G , compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what’s reachable from where

▸ Running time: O(n(m + n))

Can we do better? O(m + n)?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 11 / 18



SCC Problem

Problem: Given G , compute SCCs (partition V into the SCCs)

Trivial Algorithm: DFS/BFS from every node, keep track of what’s reachable from where

▸ Running time: O(n(m + n))

Can we do better? O(m + n)?

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 11 / 18



Graph of SCCs

Definition: Let Ĝ be graph of SCCs:

▸ Vertex v(C) for each SCC C
▸ Edge (v(C),v(C ′)) if ∃ u ∈ C ,v ∈ C ′ such that (u,v) ∈ E

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 12 / 18



Graph of SCCs

Definition: Let Ĝ be graph of SCCs:

▸ Vertex v(C) for each SCC C
▸ Edge (v(C),v(C ′)) if ∃ u ∈ C ,v ∈ C ′ such that (u,v) ∈ E

Runningtime
i

OCamth

1 4 4 7

Strongly Connected Components Scs

Kosaraju's Algorithm

Pet C EV is a strongly connected coupon t

if maximal subset s t

V w e C u ca reach u a d ice versa

go 700

Fact hive directed graph h there is a

unique partition of into SCC

PI Reachability is an equivalence relation

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 12 / 18



Graph of SCCs: Structure

Theorem

Ĝ is a DAG.

Proof.

Suppose Ĝ not a DAG. Then there is a directed cycle H .

Ô⇒ ⋃C ∶v(C)∈H C is an SCC

Ô⇒ v(C) not an SCC for v(C) ∈ H

Contradiction!

Prohley Given 6 compete Scc

Trivial Alg Do DFSCBfg from each a de

keep track of h t's reachake from
where
0cm Cantu

Det Let be graph of sacs
vertex UCC for each SCC C
edge ucc ucc'll if I net vet

un cC

The is a DAG

E

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 13 / 18



Graph of SCCs: Structure

Theorem

Ĝ is a DAG.

Proof.

Suppose Ĝ not a DAG. Then there is a directed cycle H .

Ô⇒ ⋃C ∶v(C)∈H C is an SCC

Ô⇒ v(C) not an SCC for v(C) ∈ H

Contradiction!

Prohley Given 6 compete Scc

Trivial Alg Do DFSCBfg from each a de

keep track of h t's reachake from
where
0cm Cantu

Det Let be graph of sacs
vertex UCC for each SCC C
edge ucc ucc'll if I net vet

un cC

The is a DAG

E

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 13 / 18



Graph of SCCs: Structure

Theorem

Ĝ is a DAG.

Proof.

Suppose Ĝ not a DAG. Then there is a directed cycle H .

Ô⇒ ⋃C ∶v(C)∈H C is an SCC

Ô⇒ v(C) not an SCC for v(C) ∈ H

Contradiction!

Prohley Given 6 compete Scc

Trivial Alg Do DFSCBfg from each a de

keep track of h t's reachake from
where
0cm Cantu

Det Let be graph of sacs
vertex UCC for each SCC C
edge ucc ucc'll if I net vet

un cC

The is a DAG

E

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 13 / 18



Graph of SCCs: Structure

Theorem

Ĝ is a DAG.

Proof.

Suppose Ĝ not a DAG. Then there is a directed cycle H .

Ô⇒ ⋃C ∶v(C)∈H C is an SCC

Ô⇒ v(C) not an SCC for v(C) ∈ H

Contradiction!

Prohley Given 6 compete Scc

Trivial Alg Do DFSCBfg from each a de

keep track of h t's reachake from
where
0cm Cantu

Det Let be graph of sacs
vertex UCC for each SCC C
edge ucc ucc'll if I net vet

un cC

The is a DAG

E

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 13 / 18



Graph of SCCs: Structure

Theorem

Ĝ is a DAG.

Proof.

Suppose Ĝ not a DAG. Then there is a directed cycle H .

Ô⇒ ⋃C ∶v(C)∈H C is an SCC

Ô⇒ v(C) not an SCC for v(C) ∈ H

Contradiction!

Prohley Given 6 compete Scc

Trivial Alg Do DFSCBfg from each a de

keep track of h t's reachake from
where
0cm Cantu

Det Let be graph of sacs
vertex UCC for each SCC C
edge ucc ucc'll if I net vet

un cC

The is a DAG

E

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 13 / 18



Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ Claim: At least one sink SCC exists

▸ Proof: Final SCC in topological sort of Ĝ must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C !

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 14 / 18



Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ Claim: At least one sink SCC exists

▸ Proof: Final SCC in topological sort of Ĝ must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C !

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 14 / 18



Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ Claim: At least one sink SCC exists

▸ Proof: Final SCC in topological sort of Ĝ must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C !

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 14 / 18



Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ Claim: At least one sink SCC exists

▸ Proof: Final SCC in topological sort of Ĝ must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C !

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 14 / 18



Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ Claim: At least one sink SCC exists

▸ Proof: Final SCC in topological sort of Ĝ must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C !

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 14 / 18



Sink SCC

Since Ĝ a DAG, has a topological sort

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Definition: SCC C is a sink SCC if no outgoing edges

▸ Claim: At least one sink SCC exists

▸ Proof: Final SCC in topological sort of Ĝ must be a sink.

What happens if we run DFS(v) where v in a sink SCC?

▸ See exactly nodes in C !

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 14 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1:

all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2:

all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



SCCs and DFS

Run DFS(G ), and let finish(C) =maxv∈C finish(v)

Lemma

Let C1,C2 distinct SCCs s.t. (v(C1),v(C2)) ∈ E(Ĝ). Then finish(C1) > finish(C2).

Proof.

I 0 0
2

Let xe GUCL he first node encountered

by DFS

If xc.cz

If xc.ci

f node with largest finishing time in a

soiree 5 no incoming edges

want n.de in sink SCC

Let x ∈ C1 ∪C2 be first node encountered by DFS

▸ If x ∈ C1: all of C2 reachable from x , so DFS(x)
does not complete until all of C2 finished

▸ If x ∈ C2: all of C2 reachable from x but nothing
from C1, so all of C2 finishes before any node in C1

starts

So node of max finishing time in a source SCC (no incoming edges in Ĝ ).

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 15 / 18



Useful Corollary

Run DFS(G ), and let finish(C) =maxv∈C finish(v).

Corollary

Let C be collection of all SCCs of G , and let C′ ⊆ C . Let G ′ = G ∖ (⋃C∈C′ C). Then the node
v = argmaxu∈⋃C∈C∖C′ Cfinish(u) is in an SCC of G that is a source SCC of G ′.

Proof.

Clearly SCCs of G ′ are precisely C ∖ C′:

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Lemma Ô⇒ node remaining with max finish time in a source SCC of what remains.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 16 / 18



Useful Corollary

Run DFS(G ), and let finish(C) =maxv∈C finish(v).

Corollary

Let C be collection of all SCCs of G , and let C′ ⊆ C . Let G ′ = G ∖ (⋃C∈C′ C). Then the node
v = argmaxu∈⋃C∈C∖C′ Cfinish(u) is in an SCC of G that is a source SCC of G ′.

Proof.

Clearly SCCs of G ′ are precisely C ∖ C′:

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Lemma Ô⇒ node remaining with max finish time in a source SCC of what remains.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 16 / 18



Useful Corollary

Run DFS(G ), and let finish(C) =maxv∈C finish(v).

Corollary

Let C be collection of all SCCs of G , and let C′ ⊆ C . Let G ′ = G ∖ (⋃C∈C′ C). Then the node
v = argmaxu∈⋃C∈C∖C′ Cfinish(u) is in an SCC of G that is a source SCC of G ′.

Proof.

Clearly SCCs of G ′ are precisely C ∖ C′:

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Lemma Ô⇒ node remaining with max finish time in a source SCC of what remains.

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 16 / 18



Kosaraju’s Algorithm

So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time: O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Kosaraju’s Algorithm
So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges).

Reverse all edges!
Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time: O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Kosaraju’s Algorithm
So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges). Reverse all edges!

Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time: O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Kosaraju’s Algorithm
So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time: O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Kosaraju’s Algorithm
So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time: O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Kosaraju’s Algorithm
So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time:

O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Kosaraju’s Algorithm
So node with max finish time in a source SCC (no incoming edges in Ĝ ). Want sink (no
outgoing edges). Reverse all edges!
Definition: GT is G with all edges reversed.
▸ Source SCC in GT is sink SCC in G

Kosaraju’s Algorithm:

▸ DFS(GT ) to get finishing times and order π on V from
largest finishing time to smallest

▸ Set mark(v) = False for all v ∈ V
▸ Forall v ∈ V in order of π {

if mark(v) = False {
Run DFS(v), let C be all nodes found
Return C as an SCC

}
}

Running Time: O(m + n)

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 17 / 18



Correctness Sketch
Let C1,C2, . . . ,Ck be sets identified by algorithm (in order)

Theorem

Ci is a sink SCC of G ∖ (⋃i−1
j=1 Cj), and an SCC of G .

Proof Sketch.

Induction on i .

Base case: i = 1. By previous argument, largest finishing time in GT Ô⇒ in sink SCC of G
Ô⇒ C1 is sink SCC of G

Inductive case: Let i > 1. Let v unmarked node with largest finishing time.

▸ By induction, subgraph of unmarked nodes is G minus i − 1 SCCs of G
▸ Corollary Ô⇒ v must be in sink SCC of unmarked nodes so get an SCC of unmarked

nodes when run DFS

▸ Corollary Ô⇒ SCC of original graph

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 18 / 18



Correctness Sketch
Let C1,C2, . . . ,Ck be sets identified by algorithm (in order)

Theorem

Ci is a sink SCC of G ∖ (⋃i−1
j=1 Cj), and an SCC of G .

Proof Sketch.

Induction on i .

Since a DAG has a topological sort

c

0 0 0 0

f s C a sink SCC Ca outgoing edges

1ps do DFS u from u c C

Def finish c YEE finish u

Lemmy Run Dfsca Let Ci Ca distinct Scc
i t fulci Cz C ECE
Then finish Ci finish Cc

Base case: i = 1. By previous argument, largest finishing time in GT Ô⇒ in sink SCC of G
Ô⇒ C1 is sink SCC of G

Inductive case: Let i > 1. Let v unmarked node with largest finishing time.

▸ By induction, subgraph of unmarked nodes is G minus i − 1 SCCs of G
▸ Corollary Ô⇒ v must be in sink SCC of unmarked nodes so get an SCC of unmarked

nodes when run DFS

▸ Corollary Ô⇒ SCC of original graph

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 18 / 18



Correctness Sketch
Let C1,C2, . . . ,Ck be sets identified by algorithm (in order)

Theorem

Ci is a sink SCC of G ∖ (⋃i−1
j=1 Cj), and an SCC of G .

Proof Sketch.

Induction on i .

Base case: i = 1. By previous argument, largest finishing time in GT Ô⇒ in sink SCC of G
Ô⇒ C1 is sink SCC of G

Inductive case: Let i > 1. Let v unmarked node with largest finishing time.

▸ By induction, subgraph of unmarked nodes is G minus i − 1 SCCs of G
▸ Corollary Ô⇒ v must be in sink SCC of unmarked nodes so get an SCC of unmarked

nodes when run DFS

▸ Corollary Ô⇒ SCC of original graph

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 18 / 18



Correctness Sketch
Let C1,C2, . . . ,Ck be sets identified by algorithm (in order)

Theorem

Ci is a sink SCC of G ∖ (⋃i−1
j=1 Cj), and an SCC of G .

Proof Sketch.

Induction on i .

Base case: i = 1. By previous argument, largest finishing time in GT Ô⇒ in sink SCC of G
Ô⇒ C1 is sink SCC of G

Inductive case: Let i > 1. Let v unmarked node with largest finishing time.

▸ By induction, subgraph of unmarked nodes is G minus i − 1 SCCs of G
▸ Corollary Ô⇒ v must be in sink SCC of unmarked nodes so get an SCC of unmarked

nodes when run DFS

▸ Corollary Ô⇒ SCC of original graph

Michael Dinitz Lecture 14: Basic Graph Algorithms II October 10, 2024 18 / 18


