Lecture 14: Basic Graph Algorithms II

Michael Dinitz

October 10, 2024 601.433/633 Introduction to Algorithms

Last time: BFS and DFS

Today: Topological Sort, Strongly Connected Components

▸ Both very classical and important uses of DFS!

Edge Types

DFS naturally gives a spanning forest: edge (v, u) if DFS (v) calls DFS (u)

Forward Edges: **(**v, u**)** such that u descendent of v (includes tree edges) $start(v) < start(u) <$ finish $(u) <$ finish (v)

Back Edges: (v, u) such that u an ancestor of v $start(u) < start(v) < finish(v) < finish(u)$

Cross Edges: (v, u) such that u neither a descendent nor an ancestor of **v**

 $start(u) < finish(u) < start(v) < finish(v)$

Topological Sort

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A *topological sort* v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form **(**vⁱ , ^v^j **)** with ⁱ **<** ^j.

finishing times from a depth-first search are shown next to each vertex. **(b)** The same graph shown

Definition

A directed graph **G** is a *Directed Acyclic Graph (DAG)* if it has no directed cycles.

Definition

A *topological sort* v_1, v_2, \ldots, v_n of a DAG is an ordering of the vertices such that all edges are of the form **(**vⁱ , ^v^j **)** with ⁱ **<** ^j.

finishing times from a depth-first search are shown next to each vertex. **(b)** The same graph shown

Q: Can we always topological sort a DAG? How fast?

Michael Dinitz **Example 2018** [Lecture 14: Basic Graph Algorithms II](#page-0-0) and Dinital Dinital 2024 5/18

Topological Sort

Algorithm (informal): Run DFS(G). When DFS(v) returns, put v at beginning of list

Topological Sort

Algorithm (informal): Run DFS(\boldsymbol{G}). When DFS(\boldsymbol{v}) returns, put \boldsymbol{v} at beginning of list

```
DFS(G) {
   list \rightarrow head = NULLt = 0;
   for all v \in V {
      start(v) = 0;
       finish(v) = 0;
   }
   while \exists v \in V with start(v) = 0 {
      DFS(v);
   }
}
```

```
DFS(v) {
   t = t + 1;
   start(v) = t;
   for each edge (v, u) \in A[v] {
       if start(u) == 0 then DFS(u);
    }
   t = t + 1;
   finish(v) = t;
   temp = list \rightarrow head;
   list \rightarrow head = v;
   list \rightarrow head \rightarrow next = temp}
```
Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (\Rightarrow) : contrapositive. If G has a back edge:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (**⇒**): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (**⇒**): contrapositive. If G has a back edge: Directed cycle! Not a DAG.

If (\Leftarrow) : contrapositive. If **G** has a directed cycle **C**:

Theorem

A directed graph G is a DAG if and only if DFS(G) has no back edges.

Proof.

Only if (**⇒**): contrapositive. If G has a back edge: Directed cycle! Not a DAG. ki ⁿ Kai Koti ska

If (\Leftarrow) : contrapositive. If **G** has a directed cycle **C**:

- **▸** Let ^u **[∈]** ^C with minimum start value, ^v predecessor in cycle
- **▶** All nodes in C reachable from $u \implies$ all nodes in C descendants of u
- **▸ (**v, u**)** a back edge

Correctness:

Correctness: Since G a DAG, never see back edge

Correctness: Since G a DAG, never see back edge

- **Ô⇒** Every edge **(**v, u**)** out of v a forward or cross edge
- \implies finish (u) < finish (v)

 \implies **µ** already in list when **v** added to beginning

Correctness: Since G a DAG, never see back edge

- **Ô⇒** Every edge **(**v, u**)** out of v a forward or cross edge
- \implies finish (u) < finish (v)

 \implies **µ** already in list when **v** added to beginning

Running Time:

Correctness: Since G a DAG, never see back edge

- **Ô⇒** Every edge **(**v, u**)** out of v a forward or cross edge
- \implies finish (u) < finish (v)

 \implies **µ** already in list when **v** added to beginning

Running Time: Same as DFS! $O(m + n)$

Strongly Connected Components (SCC)

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor emeritus at JHU CS!

 $G = (V, E)$ a directed graph.

Definition

^C **[⊆]** ^V is a strongly connected component (SCC) if it is a maximal subset such that for all u, v ∈ C, u can reach v and vice versa (bireachable).

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor
emeritus at JHU CS! emeritus at JHU CS!

^G **⁼ (**^V ,E**)** a directed graph. $\bm{G} = (\bm{V}, \bm{E})$ a directed graph.

Definition $\mathcal{V}(\mathbf{C}) = \mathcal{V}(\mathbf{C})$ where $\mathcal{V}(\mathbf{C}) = \mathcal{V}(\mathbf{C})$

^C **[⊆]** ^V is a strongly connected component (SCC) if it is a maximal subset such that for all u, v ∈ C, u can reach v and vice versa (bireachable).

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor
emeritus at JHU CS! emeritus at JHU CS!

^G **⁼ (**^V ,E**)** a directed graph. $\bm{G} = (\bm{V}, \bm{E})$ a directed graph.

Definition $\mathcal{V}(\mathbf{C}) = \mathcal{V}(\mathbf{C})$ where $\mathcal{V}(\mathbf{C}) = \mathcal{V}(\mathbf{C})$

^C **[⊆]** ^V is a strongly connected component (SCC) if it is a maximal subset such that for all u, v ∈ C, u can reach v and vice versa (bireachable).

Fact: There is a *unique* partition of V into SCCs

Another application of DFS. "Kosaraju's Algorithm": Developed by Rao Kosaraju, professor
emeritus at JHU CS! emeritus at JHU CS!

^G **⁼ (**^V ,E**)** a directed graph. $\bm{G} = (\bm{V}, \bm{E})$ a directed graph.

Definition $\mathcal{V}(\mathbf{C}) = \mathcal{V}(\mathbf{C})$ where $\mathcal{V}(\mathbf{C}) = \mathcal{V}(\mathbf{C})$

^C **[⊆]** ^V is a strongly connected component (SCC) if it is a maximal subset such that for all u, v ∈ C, u can reach v and vice versa (bireachable).

Fact: There is a *unique* partition of V into SCCs

Proof: Bireachability is an equivalence relation: if $\boldsymbol{\mu}$ and $\boldsymbol{\nu}$ are bireachable, and $\boldsymbol{\nu}$ and w are bireachable, then u and w are bireachable.

Trivial Algorithm:

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where

Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where \triangleright Running time: $O(n(m+n))$

- **Problem:** Given G , compute SCCs (partition V into the SCCs)
- Trivial Algorithm: DFS/BFS from every node, keep track of what's reachable from where \blacktriangleright Running time: $O(n(m+n))$

Can we do better? $O(m + n)$?

Graph of SCCs

Definition: Let \hat{G} be graph of SCCs:

- **▸** Vertex v**(**C**)** for each SCC C
- **▸** Edge **(**v**(**C**)**, v**(**C **′))** if **[∃]** ^u **[∈]** ^C, ^v **[∈]** ^C **′** such that **(**u, ^v**) [∈]** ^E

Graph of SCCs

Definition: Let $\bm{\hat{G}}$ be graph of SCCs:

- **▸** Vertex v**(**C**)** for each SCC C
- **▸** Edge **(**v**(**C**)**, v**(**C **′))** if **[∃]** ^u **[∈]** ^C, ^v **[∈]** ^C **′** such that **(**u, ^v**) [∈]** ^E

Theorem

 \hat{G} is a DAG.

Theorem

 \hat{G} is a DAG.

Proof.

Suppose \hat{G} not a DAG. Then there is a directed cycle $H.$

edge ucc ucc'll if I net vet

Theorem

 \hat{G} is a DAG.

Proof.

Suppose \hat{G} not a DAG. Then there is a directed cycle $H.$

Ô⇒ [⋃]C**∶**v**(**C**)∈**^H ^C is an SCC

edge ucc ucc'll if I net vet

Theorem

 \hat{G} is a DAG.

Proof.

Suppose \hat{G} not a DAG. Then there is a directed cycle $H.$

- **Ô⇒ [⋃]**C**∶**v**(**C**)∈**^H ^C is an SCC
- \implies **v**(**C**) not an SCC for **v**(**C**) \in H

edge ucc ucc'll if I net vet

Theorem

 \hat{G} is a DAG.

Proof.

Suppose \hat{G} not a DAG. Then there is a directed cycle $H.$

- **Ô⇒ [⋃]**C**∶**v**(**C**)∈**^H ^C is an SCC
- \implies **v**(**C**) not an SCC for **v**(**C**) \in H

Contradiction!

edge ucc ucc'll if I net vet

Since \hat{G} a DAG, has a topological sort

Since \hat{G} a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

▶ Claim: At least one sink SCC exists

Since \hat{G} a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- ▶ Claim: At least one sink SCC exists
- ▶ Proof: Final SCC in topological sort of *Ĝ* must be a sink.

Since \hat{G} a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- ▶ Claim: At least one sink SCC exists
- ▶ Proof: Final SCC in topological sort of *Ĝ* must be a sink.

What happens if we run $DFS(v)$ where v in a sink SCC?

Since \hat{G} a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- ▶ Claim: At least one sink SCC exists
- ▶ Proof: Final SCC in topological sort of *Ĝ* must be a sink.

What happens if we run $DFS(v)$ where v in a sink SCC?

▸ See exactly nodes in C!

Since \hat{G} a DAG, has a topological sort

Definition: SCC C is a sink SCC if no outgoing edges

- ▶ Claim: At least one sink SCC exists
- ▶ Proof: Final SCC in topological sort of *Ĝ* must be a sink.

What happens if we run $DFS(v)$ where v in a sink SCC ?

▸ See exactly nodes in C!

Strategy: find node in sink SCC, run DFS, remove nodes found, repeat

Run DFS(G), and let finish(C) = max_{ve} C finish(v)

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Run DFS(G), and let finish(C) = max_{ve} C finish(v)

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Run DFS(G), and let finish(C) = max_{ve} C finish(v)

Let xe GUCL he first node encountered

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Proof

Let $x \in C_1 \cup C_2$ be first node encountered by DFS **▸** If ^x **[∈]** ^C1:

Run DFS(G), and let \mathbf{f} inish(C) = max_{veC} finish(v)

Let xe GUCL he first node encountered

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Proof.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

► If $x \in C_1$: all of C_2 reachable from x , so DFS (x) does not complete until all of C_2 finished

Run DFS(G), and let \mathbf{f} inish(C) = max_{veC} finish(v)

Let xe GUCL he first node encountered

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Proof.

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- **►** If $x \in C_1$: all of C_2 reachable from x , so DFS (x) does not complete until all of C_2 finished
- **▸** If ^x **[∈]** ^C2:

Run DFS(G), and let finish(C) = max_{ve} C finish(v)

Let xe GUCL he first node encountered

Lemma

Let C_1, C_2 distinct SCCs s.t. $(v(C_1), v(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Proof

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- **►** If $x \in C_1$: all of C_2 reachable from x , so DFS (x) does not complete until all of C_2 finished
- **►** If $x \in C_2$: all of C_2 reachable from x but nothing from C_1 , so all of C_2 finishes before any node in C_1 starts

Run DFS(G), and let \mathbf{f} inish(C) = max_{veC} finish(v)

Lemma

Let C_1 , C_2 distinct SCCs s.t. $(\nu(C_1), \nu(C_2)) \in E(\hat{G})$. Then finish (C_1) > finish (C_2) .

Proof

Let $x \in C_1 \cup C_2$ be first node encountered by DFS

- **►** If $x \in C_1$: all of C_2 reachable from x , so DFS (x) does not complete until all of C_2 finished
- **►** If $x \in C_2$: all of C_2 reachable from x but nothing from C_1 , so all of C_2 finishes before any node in C_1 starts

So node of *max* finishing time in a *source* SCC (no incoming edges in \hat{G}).

Useful Corollary

Run DFS(G), and let **finish(C)** = max_{ve} **finish(v)**.

Corollary

Let **C** be collection of all SCCs of **G**, and let $C' \subseteq C$. Let $G' = G \setminus (\bigcup_{C \in C'} C)$. Then the node $v = \text{argmax}_{u \in U_{C \in C \setminus C'}} c \text{ finish}(u)$ is in an SCC of **G** that is a source SCC of **G**'.

Useful Corollary

Run DFS(G), and let **finish(C)** = max_{ve} **finish(v)**.

Corollary

Let **C** be collection of all SCCs of **G**, and let $C' \subseteq C$. Let $G' = G \setminus (\bigcup_{C \in C'} C)$. Then the node $v = \text{argmax}_{u \in U_{C \in C \setminus C'}} c \text{ finish}(u)$ is in an SCC of **G** that is a source SCC of **G**'.

Since ^a DAG has ^a topological sort

Proof.

Clearly SCCs of G' are precisely $C \setminus C'$:

Useful Corollary

Run DFS(G), and let **finish(C)** = max_{ve} **finish(v)**.

Corollary

Let **C** be collection of all SCCs of **G**, and let $C' \subseteq C$. Let $G' = G \setminus (\bigcup_{C \in C'} C)$. Then the node $v = \text{argmax}_{u \in U_{C \in C \setminus C'}} c \text{ finish}(u)$ is in an SCC of **G** that is a source SCC of **G**'.

Since ^a DAG has ^a topological sort

Proof.

Clearly SCCs of G' are precisely $C \setminus C'$:

f s C a sink SCC ca sink SCC Ca outgoing edges and Lemma <u>→ node remaining with max finish time in a source SCC of what remains.</u>

1ps do DFS under the Lecture 14: Basic Graph Algorithms i Michael Dinitz [Lecture 14: Basic Graph Algorithms II](#page-0-0) October 10, 2024 16 / 18

So node with max finish time in a *source* SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges).

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges!

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges! **Definition:** G^T is G with all edges reversed.

▶ Source SCC in G^T is sink SCC in G

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges! **Definition:** G^T is G with all edges reversed.

▶ Source SCC in G^T is sink SCC in G

Kosaraju's Algorithm:

- **▶** DFS(**) to get finishing times and order** $π$ **on** $**V**$ **from** largest finishing time to smallest
- **▸** Set mark**(**v**) ⁼** False for all ^v **[∈]** ^V

\n- Forall
$$
v \in V
$$
 in order of $\pi \{$ if $mark(v) = False \{$ Run DFS(v), let **C** be all nodes found Return **C** as an SCC
\n

} }

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges! **Definition:** G^T is G with all edges reversed.

▶ Source SCC in G^T is sink SCC in G

Kosaraju's Algorithm:

- **▶** DFS(**) to get finishing times and order** $π$ **on** $**V**$ **from** largest finishing time to smallest
- **▸** Set mark**(**v**) ⁼** False for all ^v **[∈]** ^V

\n- Forall
$$
v \in V
$$
 in order of $\pi \{$ if $mark(v) = False \{$ Run DFS(v), let **C** be all nodes found Return **C** as an SCC
\n

Running Time:

} }

So node with max finish time in a source SCC (no incoming edges in \hat{G}). Want sink (no outgoing edges). Reverse all edges! **Definition:** G^T is G with all edges reversed.

▶ Source SCC in G^T is sink SCC in G

Kosaraju's Algorithm:

- **▶** DFS(**) to get finishing times and order** $π$ **on** $**V**$ **from** largest finishing time to smallest
- **▸** Set mark**(**v**) ⁼** False for all ^v **[∈]** ^V

\n- Forall
$$
v \in V
$$
 in order of $\pi \{$ if $mark(v) = False \{$ Run DFS(v), let **C** be all nodes found Return **C** as an SCC
\n

Running Time: $O(m + n)$

} }

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$
C_i \text{ is a sink SCC of } G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right), \text{ and an SCC of } G.
$$

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$
C_i \text{ is a sink SCC of } G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right), \text{ and an SCC of } G.
$$

Proof Sketch.

Induction on \bm{i} .

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$
C_i \text{ is a sink SCC of } G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right), \text{ and an SCC of } G.
$$

Proof Sketch.

Induction on i.

Base case: $i = 1$. By previous argument, largest finishing time in $G^T \implies$ in sink SCC of G \implies **C₁** is sink SCC of **G**

Let C_1, C_2, \ldots, C_k be sets identified by algorithm (in order)

Theorem

$$
C_i \text{ is a sink SCC of } G \setminus \left(\bigcup_{j=1}^{i-1} C_j\right), \text{ and an SCC of } G.
$$

Proof Sketch.

Induction on i.

Base case: $i = 1$. By previous argument, largest finishing time in $G^T \implies$ in sink SCC of G \implies **C₁** is sink SCC of **G**

Inductive case: Let ⁱ **>** ¹. Let ^v unmarked node with largest finishing time.

- **▸** By induction, subgraph of unmarked nodes is G minus i **−** 1 SCCs of G
- **▶** Corollary \Rightarrow v must be in sink SCC of unmarked nodes so get an SCC of unmarked nodes when run DFS
- **▸** Corollary **Ô⇒** SCC of original graph