Lecture 15: Single-Source Shortest Paths

Michael Dinitz

October 15, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 15: SSSP October 15, 2024 1/17

Introduction
Setup:
> Directed graph G = (V, E)
> Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
> Length of path P is £(P) = ¥ (4 ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)

Michael Dinitz Lecture 15: SSSP October 15, 2024 2/17

Introduction
Setup:
> Directed graph G = (V, E)
> Length £(x,y) on each edge (x,y) € E (equivalent: £: E - R)
> Length of path P is £(P) = ¥ (4 ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)

Today: source v € V, want to compute shortest path from v to every u e V
> d(u) =d(v,u) forall ueV
> Representation: “shortest path tree” out of v.

» Often only care about distances — can reconstruct tree from distances.

PR,

Michael Dinitz Lecture 15: SSSP October 15, 2024 2/17

Bellman-Ford

Michael Dinitz Lecture 15: SSSP October 15, 2024 3/17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Sy D > o
= ,

N—

\

Michael Dinitz Lecture 15: SSSP October 15, 2024 4 /17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)
0 ifu=v,k=0
L(OPT (u,k)) =400 ifu+v,k=0
\ otherwise

Michael Dinitz Lecture 15: SSSP October 15, 2024 4 /17

Dynamic Programming Approach

Subproblems:
» OPT (u,i): shortest path from v to u that uses at most i hops (edges)
> If no such path, set to “infinitely long” fake path.

> For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

.

0 ifu=v,k=0
L(OPT (u,k)) =400 ifu+v,k=0
 Miny.(w,u)ce (E(OPT (w, k -1)) + £(w,u)) otherwise

V/\/\/\,a’?h w::"' (((”T("v?)l—/(wﬁ))

W

Michael Dinitz Lecture 15: SSSP October 15, 2024 4 /17

Proof of Optimal Substructure
Induction on k.

k=0:v. Solet k>1.

Michael Dinitz Lecture 15: SSSP October 15, 2024 5/17

Proof of Optimal Substructure
Induction on k.

k=0:v". Solet k>1.
<: Let x =argmin,,. ., ,)ee(£(OPT (w,k -1)) + £(w, u))

= OPT(x,k-1)o(x,u) is a v > u path with at most k edges, length
L(OPT (x,k-1)) +£(x, u))
= L(OPT (u,k)) <miny., ,\ee(£(OPT(w,k-1)) +£(w,u))

L

1 9%

Michael Dinitz Lecture 15: SSSP October 15, 2024

5/17

Proof of Optimal Substructure
Induction on k.

k=0:v.Solet k>1.
< Let x =argmin,,.,, e (£(OPT(w,k-1)) +£(w,u))
= OPT(x,k-1)o(x,u) is a v - u path with at most k edges, length
L(OPT (x,k-1)) +£(x, u))
= L(OPT (u,k)) <miny., ,\ee(£(OPT(w,k-1)) +£(w,u))
>: Let z be node before u in OPT (u, k), and let P’ be the first k-1 edges of OPT (u, k).
Then

L(OPT (u,k)) =£(P") +£(z,u) 2£(OPT(z,k-1)) +£(z,u)
> min (L(OPT(w,k-1))+£(w,u))
w:(w,u)eE
A o7
; 2
Michael DinitzP Lecture 15: SSSP October 15, 2024 5/17

Bellman-Ford Algorithm

Obvious dynamic program!

oo forall ue V,u+v

[u, 0]
,0]=0

M
M]v

forlk =1ton-1){
for(ue V) {
\ Mlu, k] = minw:(w,u)eE(M[Wa k-1]+£(w,u))

}

Michael Dinitz Lecture 15: SSSP October 15, 2024 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

oo forall ue V,u+v

[u, 0]
,0]=0

M
M]v

forlk =1ton-1){
for(ue V) {
\ Mlu, k] = minw:(w,u)eE(M[Wa k-1]+£(w,u))

}

Running Time:

Michael Dinitz Lecture 15: SSSP October 15, 2024 6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M
M

}

[u,
[v,

forlk =1ton-1){

0]
0]

oo forall ue V,u+v

0

for(ue V) {

}

Mlu, k] = minw:(w,u)eE(M[Wa k-1]+£(w,u))

Running Time:
» Obvious: O(n3)

Michael Dinitz Lecture 15: SSSP

October 15, 2024

6/17

Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] = oo forall ue V,u+v
M][v,0] =0

for(k =1 to n-1) 0C-/

M, K] = miny (e (M{w, k- 1]+ £(w,u))) OCim/

}

Running Time:
» Obvious: O(n3)

> Smarter: O(mn)

Michael Dinitz Lecture 15: SSSP October 15, 2024 6/17

Bellman-Ford: Correctness

Theorem
After algorithm completes, M[u, k] = £(OPT (u, k)) for allk <n-1andue V. J

Michael Dinitz Lecture 15: SSSP October 15, 2024 7/17

Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u, k] = £(OPT (u, k)) for allk <n-1andue V.

Proof.

Induction on k. Obviously true for k = 0.

Michael Dinitz

Lecture 15: SSSP

October 15, 2024

7/17

Bellman-Ford: Correctness

Theorem
After algorithm completes, M[u, k] = £(OPT (u,k)) forallk<n-1andueV.

Proof. |
Induction on k. Obviously true for k = 0.
Mlu, k] = .(min) E(M[w, k-1]) +£(w,u)) (algorithm)
=miny,.y 4)ee(L(OPT (w,k -1)) +£(w, u)) (induction)
=L(OPT (u,k)) (optimal substructure)

Michael Dinitz Lecture 15: SSSP October 15, 2024 7/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really!

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

> No negative-weight cycle: everything we did before is fine!

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
> No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
> No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

> Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative
> No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in é(mns/ %) Time.
STOC 24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

Michael Dinitz Lecture 15: SSSP October 15, 2024 9/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u)=oo forallu+v

Michael Dinitz Lecture 15: SSSP

October 15, 2024

9/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u)=oo forallu+v

Intuition for relax(x,y): can we improve c7(y) by going
through x?

Michael Dinitz Lecture 15: SSSP

October 15, 2024

9/17

Relaxations

Common primitive in shortest path algorithms
» Reinterpret Bellman-Ford via relaxations

» Use relaxations for Dijkstra’s algorithm

d(u): upper bound on d(u)
> Initially: d(v) =0, d(u)=oo forallu+v

Intuition for relax(x,y): can we improve c?(y) by going
through x?

Michael Dinitz Lecture 15: SSSP

relax(x, y) {
if(d(y) > d(x) +£(x,y)) {
d(y) = d(x) +£(x,y)
y.parent = X
h
i

October 15, 2024

9/17

Bellman-Ford as Relaxations

for(i =1 to n) {
foreach(u e V) {
foreach(edge (x,u)) {
relax(x, u)

Michael Dinitz Lecture 15: SSSP October 15, 2024 10/ 17

Bellman-Ford as Relaxations

for(i =1 to n) {
foreach(u € V) {
foreach(edge (x,u)) {
relax(x, u)
i

}
}

Not precisely the same: freezing/parallelism

Michael Dinitz Lecture 15: SSSP October 15, 2024 10/ 17

Dijkstra’s Algorithm

Michael Dinitz Lecture 15: SSSP October 15, 2024 11/17

High Level

Intuition: “greedy starting at v”

> BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn't work with negative edge weights.

Michael Dinitz Lecture 15: SSSP October 15, 2024 12 /17

Dijkstra’s Algorithm

V=%
d(v)=0

J(u) =oo forall u# v
while(not all nodes in T) {

Add uto T
foreach edge (u, x) with x ¢ T {
relax(u,x)
}
}

let u be node not in T with minimum d(u)

Michael Dinitz

Lecture 15: SSSP

October 15, 2024

13/17

Dijkstra Example

Michael Dinitz Lecture 15: SSSP October 15, 2024 14 /17

Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u)=d(u) foreveryueT.

Michael Dinitz Lecture 15: SSSP October 15, 2024 15 /17

Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u)=d(u) foreveryueT.

Proof. Induction on | T| (iterations of algorithm)

Michael Dinitz Lecture 15: SSSP October 15, 2024 15 /17

Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T, and
2. d(u)=d(u) foreveryueT.

Proof. Induction on | T| (iterations of algorithm)

Base Case: After first iteration (when |T|=1), added v to T with d(v) =d(v)=0 v

Michael Dinitz Lecture 15: SSSP October 15, 2024 15 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£&(w,u) = d(w) +£(w,u) (induction)
A A
!
Fq"'{. JJ}(l'u\cL(ola'o"\

Michael Dinitz Lecture 15: SSSP

October 15, 2024

16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£&(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w’ predecessor of u on P. Can’'t bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£&(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w’ predecessor of u on P. Can’'t bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

d(x) <d(y)+£(y,x)=d(y) +£(y,x) < £(P) = d(u) < d(u)

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 /17

Correctness: Inductive Step (Sketch)

Consider iteration when u added to T, let w = u.parent
— d(u) =d(w) +£&(w,u) = d(w) +£(w,u) (induction)

» Red path P actual shortest path, black path
found by Dijkstra
» w’ predecessor of u on P. Can’'t bein T.
> If it was, would have d(w’) = d(w’) by
induction, would have relaxed (w’, u), so
would have w' = u.parent

» x first node of P outside T, previous node y

d(x) <d(y) +£(y,x) = d(y) +£(y,x) <£&(P) = d(u) < d(u)
Contradiction! Algorithm would have chosen x next, not w.

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep c7(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep c7(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap!
> Insert n times
» Extract-Min n times

» Decrease-Key m times

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep c7(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap! Binary heap: O(log n) per operation (amortized)
» |nsert n times = O((m + n)log n) running time.

» Extract-Min n times

» Decrease-Key m times

Michael Dinitz Lecture 15: SSSP October 15, 2024

17 /17

Running Time

Algorithm needs to:
» Select node with minimum d value n times

» Decrease a d value at most once per relaxation == < m times.

Nothing fancy, keep c7(u) in adjacency list: selecting min d value takes O(n) time
— O(n? + m) = O(n?) total.

Keep d values in a heap! Binary heap: O(log n) per operation (amortized)
» |nsert n times = O((m + n)log n) running time.

» Extract-Min n times Fibonacci Heap:

S) .
Decrease-Key m times > Insert, Decrease-Key O(1) amortized
> Extract-Min O(log n) amortized

= O(m+ nlog n) running time

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 /17

