
Lecture 15: Single-Source Shortest Paths

Michael Dinitz

October 15, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 15: SSSP October 15, 2024 1 / 17

 



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E (equivalent: ` ∶ E → R)
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Today: source v ∈ V , want to compute shortest path from v to every u ∈ V
� d(u) = d(v ,u) for all u ∈ V
� Representation: “shortest path tree” out of v .

� Often only care about distances – can reconstruct tree from distances.

Michael Dinitz Lecture 15: SSSP October 15, 2024 2 / 17



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E (equivalent: ` ∶ E → R)
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Today: source v ∈ V , want to compute shortest path from v to every u ∈ V
� d(u) = d(v ,u) for all u ∈ V
� Representation: “shortest path tree” out of v .

� Often only care about distances – can reconstruct tree from distances.

Michael Dinitz Lecture 15: SSSP October 15, 2024 2 / 17

rain



Bellman-Ford

Michael Dinitz Lecture 15: SSSP October 15, 2024 3 / 17



Dynamic Programming Approach

Subproblems:

� OPT(u, i): shortest path from v to u that uses at most i hops (edges)

� If no such path, set to “infinitely long” fake path.

� For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =
�������������

0 if u = v ,k = 0
∞ if u ≠ v ,k = 0

minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

otherwise

Michael Dinitz Lecture 15: SSSP October 15, 2024 4 / 17

FIFIES



Dynamic Programming Approach

Subproblems:

� OPT(u, i): shortest path from v to u that uses at most i hops (edges)

� If no such path, set to “infinitely long” fake path.

� For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =
�������������

0 if u = v ,k = 0
∞ if u ≠ v ,k = 0

minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

otherwise

Michael Dinitz Lecture 15: SSSP October 15, 2024 4 / 17



Dynamic Programming Approach

Subproblems:

� OPT(u, i): shortest path from v to u that uses at most i hops (edges)

� If no such path, set to “infinitely long” fake path.

� For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

`(OPT(u,k)) =
�������������

0 if u = v ,k = 0
∞ if u ≠ v ,k = 0
minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) otherwise

Michael Dinitz Lecture 15: SSSP October 15, 2024 4 / 17

inf ecorial flail



Proof of Optimal Substructure

Induction on k .

k = 0 ∶ ✓. So let k ≥ 1.

≤: Let x = argminw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))
�⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
�⇒ `(OPT(u,k)) ≤minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

≥: Let z be node before u in OPT(u,k), and let P
′ be the first k − 1 edges of OPT(u,k).

Then

`(OPT(u,k)) = `(P ′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

Michael Dinitz Lecture 15: SSSP October 15, 2024 5 / 17



Proof of Optimal Substructure

Induction on k .

k = 0 ∶ ✓. So let k ≥ 1.
≤: Let x = argminw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))
�⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
�⇒ `(OPT(u,k)) ≤minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

≥: Let z be node before u in OPT(u,k), and let P
′ be the first k − 1 edges of OPT(u,k).

Then

`(OPT(u,k)) = `(P ′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

Michael Dinitz Lecture 15: SSSP October 15, 2024 5 / 17

Mmm



Proof of Optimal Substructure

Induction on k .

k = 0 ∶ ✓. So let k ≥ 1.
≤: Let x = argminw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))
�⇒ OPT(x,k − 1) ○ (x,u) is a v → u path with at most k edges, length
`(OPT(x,k − 1)) + `(x,u))
�⇒ `(OPT(u,k)) ≤minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

≥: Let z be node before u in OPT(u,k), and let P
′ be the first k − 1 edges of OPT(u,k).

Then

`(OPT(u,k)) = `(P ′) + `(z,u) ≥ `(OPT(z,k − 1)) + `(z,u)
≥ min

w ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u))

Michael Dinitz Lecture 15: SSSP October 15, 2024 5 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V ,u ≠ v

M[v ,0] = 0
for(k = 1 to n − 1) {

for(u ∈ V ) {
M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))

}
}

Running Time:

� Obvious: O(n3)
� Smarter: O(mn)

Michael Dinitz Lecture 15: SSSP October 15, 2024 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V ,u ≠ v

M[v ,0] = 0
for(k = 1 to n − 1) {

for(u ∈ V ) {
M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))

}
}

Running Time:

� Obvious: O(n3)
� Smarter: O(mn)

Michael Dinitz Lecture 15: SSSP October 15, 2024 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V ,u ≠ v

M[v ,0] = 0
for(k = 1 to n − 1) {

for(u ∈ V ) {
M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))

}
}

Running Time:

� Obvious: O(n3)

� Smarter: O(mn)

Michael Dinitz Lecture 15: SSSP October 15, 2024 6 / 17



Bellman-Ford Algorithm

Obvious dynamic program!

M[u,0] =∞ for all u ∈ V ,u ≠ v

M[v ,0] = 0
for(k = 1 to n − 1) {

for(u ∈ V ) {
M[u,k] =minw ∶(w ,u)∈E(M[w ,k − 1] + `(w ,u))

}
}

Running Time:

� Obvious: O(n3)
� Smarter: O(mn)

Michael Dinitz Lecture 15: SSSP October 15, 2024 6 / 17

00cal
0cm



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V .

Proof.
Induction on k . Obviously true for k = 0.

M[u,k] = min
w ∶(w ,u)∈E(M[w ,k − 1]) + `(w ,u)) (algorithm)

=minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Michael Dinitz Lecture 15: SSSP October 15, 2024 7 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V .

Proof.
Induction on k . Obviously true for k = 0.

M[u,k] = min
w ∶(w ,u)∈E(M[w ,k − 1]) + `(w ,u)) (algorithm)

=minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Michael Dinitz Lecture 15: SSSP October 15, 2024 7 / 17



Bellman-Ford: Correctness

Theorem

After algorithm completes, M[u,k] = `(OPT(u,k)) for all k ≤ n − 1 and u ∈ V .

Proof.
Induction on k . Obviously true for k = 0.

M[u,k] = min
w ∶(w ,u)∈E(M[w ,k − 1]) + `(w ,u)) (algorithm)

=minw ∶(w ,u)∈E(`(OPT(w ,k − 1)) + `(w ,u)) (induction)

= `(OPT(u,k)) (optimal substructure)

Michael Dinitz Lecture 15: SSSP October 15, 2024 7 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really!

Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Negative Weights and Cycle

Suppose weights are negative. Does the problem make sense?

� Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily
negative

� No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in Õ(mn
8�9) Time.

STOC ’24

Michael Dinitz Lecture 15: SSSP October 15, 2024 8 / 17



Relaxations

Common primitive in shortest path algorithms

� Reinterpret Bellman-Ford via relaxations

� Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
� Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 15: SSSP October 15, 2024 9 / 17



Relaxations

Common primitive in shortest path algorithms

� Reinterpret Bellman-Ford via relaxations

� Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
� Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 15: SSSP October 15, 2024 9 / 17



Relaxations

Common primitive in shortest path algorithms

� Reinterpret Bellman-Ford via relaxations

� Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
� Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 15: SSSP October 15, 2024 9 / 17



Relaxations

Common primitive in shortest path algorithms

� Reinterpret Bellman-Ford via relaxations

� Use relaxations for Dijkstra’s algorithm

d̂(u): upper bound on d(u)
� Initially: d̂(v) = 0, d̂(u) =∞ for all u ≠ v

Intuition for relax(x,y): can we improve d̂(y) by going
through x?

relax(x,y) {
if(d̂(y) > d̂(x) + `(x,y)) {

d̂(y) = d̂(x) + `(x,y)
y.parent = x

}
}

Michael Dinitz Lecture 15: SSSP October 15, 2024 9 / 17



Bellman-Ford as Relaxations

for(i = 1 to n) {
foreach(u ∈ V ) {

foreach(edge (x,u)) {
relax(x,u)

}
}

}

Not precisely the same: freezing/parallelism

Michael Dinitz Lecture 15: SSSP October 15, 2024 10 / 17

Issa



Bellman-Ford as Relaxations

for(i = 1 to n) {
foreach(u ∈ V ) {

foreach(edge (x,u)) {
relax(x,u)

}
}

}

Not precisely the same: freezing/parallelism

Michael Dinitz Lecture 15: SSSP October 15, 2024 10 / 17



Dijkstra’s Algorithm

Michael Dinitz Lecture 15: SSSP October 15, 2024 11 / 17



High Level

Intuition: “greedy starting at v”

� BFS but with edge lengths: use priority queue (heap) instead of queue!

Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn’t work with negative edge weights.

Michael Dinitz Lecture 15: SSSP October 15, 2024 12 / 17



Dijkstra’s Algorithm

T = �
d̂(v) = 0
d̂(u) =∞ for all u ≠ v

while(not all nodes in T ) {
let u be node not in T with minimum d̂(u)
Add u to T

foreach edge (u,x) with x �∈ T {
relax(u,x)

}
}

Michael Dinitz Lecture 15: SSSP October 15, 2024 13 / 17



Dijkstra Example24.3 Dijkstra’s algorithm 659

0

∞ ∞

∞ ∞

0

∞

∞

1

2

10

5

(c)

10

5

0

8

5

14

7

0

8

5

13

7

0

8

5

9

7

0

5

9

7

8

6432 9

7
s

t x

y z

1

2

10

5

(f)

6432 9

7
s

t x

y z

1

2

10

5

(b)

6432 9

7
s

t x

y z

1

2

10

5

(e)

6432 9

7
s

t x

y z

1

2

10

5

(a)

6432 9

7
s

t x

y z

1

2

10

5

(d)

6432 9

7
s

t x

y z

Figure 24.6 The execution of Dijkstra’s algorithm. The source s is the leftmost vertex. The
shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values.
Black vertices are in the set S , and white vertices are in the min-priority queue Q D V ! S . (a) The
situation just before the first iteration of the while loop of lines 4–8. The shaded vertex has the mini-
mum d value and is chosen as vertex u in line 5. (b)–(f) The situation after each successive iteration
of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration.
The d values and predecessors shown in part (f) are the final values.

and added to S exactly once, so that the while loop of lines 4–8 iterates exactly jV j
times.

Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex
in V ! S to add to set S , we say that it uses a greedy strategy. Chapter 16 explains
greedy strategies in detail, but you need not have read that chapter to understand
Dijkstra’s algorithm. Greedy strategies do not always yield optimal results in gen-
eral, but as the following theorem and its corollary show, Dijkstra’s algorithm does
indeed compute shortest paths. The key is to show that each time it adds a vertex u
to set S , we have u:d D ı.s; u/.

Theorem 24.6 (Correctness of Dijkstra’s algorithm)
Dijkstra’s algorithm, run on a weighted, directed graph G D .V; E/ with non-
negative weight function w and source s, terminates with u:d D ı.s; u/ for all
vertices u 2 V .

Michael Dinitz Lecture 15: SSSP October 15, 2024 14 / 17



Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T , and

2. d̂(u) = d(u) for every u ∈ T .

Proof. Induction on �T � (iterations of algorithm)

Base Case: After first iteration (when �T � = 1), added v to T with d̂(v) = d(v) = 0 ✓

Michael Dinitz Lecture 15: SSSP October 15, 2024 15 / 17



Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T , and

2. d̂(u) = d(u) for every u ∈ T .

Proof. Induction on �T � (iterations of algorithm)

Base Case: After first iteration (when �T � = 1), added v to T with d̂(v) = d(v) = 0 ✓

Michael Dinitz Lecture 15: SSSP October 15, 2024 15 / 17



Dijkstra Correctness

Theorem
Throughout the algorithm:

1. T is a shortest-path tree from v to the nodes in T , and

2. d̂(u) = d(u) for every u ∈ T .

Proof. Induction on �T � (iterations of algorithm)

Base Case: After first iteration (when �T � = 1), added v to T with d̂(v) = d(v) = 0 ✓

Michael Dinitz Lecture 15: SSSP October 15, 2024 15 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent

�⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)

� Red path P actual shortest path, black path
found by Dijkstra� w
′ predecessor of u on P. Can’t be in T .� If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w

′ = u.parent

� x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)
Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 / 17

Pan t def induction



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent

�⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)
� Red path P actual shortest path, black path

found by Dijkstra� w
′ predecessor of u on P. Can’t be in T .� If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w

′ = u.parent

� x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)
Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent

�⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)
� Red path P actual shortest path, black path

found by Dijkstra� w
′ predecessor of u on P. Can’t be in T .� If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w

′ = u.parent

� x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)

Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 / 17



Correctness: Inductive Step (Sketch)

Consider iteration when u added to T , let w = u.parent

�⇒ d̂(u) = d̂(w) + `(w ,u) = d(w) + `(w ,u) (induction)
� Red path P actual shortest path, black path

found by Dijkstra� w
′ predecessor of u on P. Can’t be in T .� If it was, would have d̂(w ′) = d(w ′) by

induction, would have relaxed (w ′,u), so
would have w

′ = u.parent

� x first node of P outside T , previous node y

d̂(x) ≤ d̂(y) + `(y ,x) = d(y) + `(y ,x) < `(P) = d(u) ≤ d̂(u)
Contradiction! Algorithm would have chosen x next, not u.

Michael Dinitz Lecture 15: SSSP October 15, 2024 16 / 17



Running Time

Algorithm needs to:

� Select node with minimum d̂ value n times

� Decrease a d̂ value at most once per relaxation �⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time�⇒ O(n2 +m) = O(n2) total.
Keep d̂ values in a heap!

� Insert n times

� Extract-Min n times

� Decrease-Key m times

Binary heap: O(logn) per operation (amortized)�⇒ O((m + n) logn) running time.

Fibonacci Heap:

� Insert, Decrease-Key O(1) amortized

� Extract-Min O(logn) amortized

�⇒ O(m + n logn) running time

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 / 17



Running Time

Algorithm needs to:

� Select node with minimum d̂ value n times

� Decrease a d̂ value at most once per relaxation �⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time�⇒ O(n2 +m) = O(n2) total.

Keep d̂ values in a heap!

� Insert n times

� Extract-Min n times

� Decrease-Key m times

Binary heap: O(logn) per operation (amortized)�⇒ O((m + n) logn) running time.

Fibonacci Heap:

� Insert, Decrease-Key O(1) amortized

� Extract-Min O(logn) amortized

�⇒ O(m + n logn) running time

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 / 17



Running Time

Algorithm needs to:

� Select node with minimum d̂ value n times

� Decrease a d̂ value at most once per relaxation �⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time�⇒ O(n2 +m) = O(n2) total.
Keep d̂ values in a heap!

� Insert n times

� Extract-Min n times

� Decrease-Key m times

Binary heap: O(logn) per operation (amortized)�⇒ O((m + n) logn) running time.

Fibonacci Heap:

� Insert, Decrease-Key O(1) amortized

� Extract-Min O(logn) amortized

�⇒ O(m + n logn) running time

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 / 17



Running Time

Algorithm needs to:

� Select node with minimum d̂ value n times

� Decrease a d̂ value at most once per relaxation �⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time�⇒ O(n2 +m) = O(n2) total.
Keep d̂ values in a heap!

� Insert n times

� Extract-Min n times

� Decrease-Key m times

Binary heap: O(logn) per operation (amortized)�⇒ O((m + n) logn) running time.

Fibonacci Heap:

� Insert, Decrease-Key O(1) amortized

� Extract-Min O(logn) amortized

�⇒ O(m + n logn) running time

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 / 17



Running Time

Algorithm needs to:

� Select node with minimum d̂ value n times

� Decrease a d̂ value at most once per relaxation �⇒ ≤m times.

Nothing fancy, keep d̂(u) in adjacency list: selecting min d̂ value takes O(n) time�⇒ O(n2 +m) = O(n2) total.
Keep d̂ values in a heap!

� Insert n times

� Extract-Min n times

� Decrease-Key m times

Binary heap: O(logn) per operation (amortized)�⇒ O((m + n) logn) running time.

Fibonacci Heap:

� Insert, Decrease-Key O(1) amortized

� Extract-Min O(logn) amortized

�⇒ O(m + n logn) running time

Michael Dinitz Lecture 15: SSSP October 15, 2024 17 / 17


