Lecture 15: Single-Source Shortest Paths

Michael Dinitz

October 15, 2024 601.433/633 Introduction to Algorithms

Introduction

Setup:

- ▶ Directed graph G = (V, E)
- ▶ Length $\ell(x,y)$ on each edge $(x,y) \in E$ (equivalent: $\ell: E \to \mathbb{R}$)
- ▶ Length of path P is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- $b d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Introduction

Setup:

- Directed graph G = (V, E)
- ▶ Length $\ell(x, y)$ on each edge $(x, y) \in E$ (equivalent: $\ell : E \to \mathbb{R}$)
- ▶ Length of path **P** is $\ell(P) = \sum_{(x,y) \in P} \ell(x,y)$
- $d(x,y) = \min_{x \to y \text{ paths } P} \ell(P)$

Today: source $v \in V$, want to compute shortest path from v to every $u \in V$

- d(u) = d(v, u) for all $u \in V$
- ▶ Representation: "shortest path tree" out of **v**.
- ▶ Often only care about distances can reconstruct tree from distances.

2/17 Lecture 15: SSSP October 15, 2024

Bellman-Ford

3/17

Dynamic Programming Approach

Subproblems:

- ▶ OPT(u,i): shortest path from v to u that uses at most i hops (edges)
- ▶ If no such path, set to "infinitely long" fake path.
- ▶ For simplicity, create loop (edge to and from the same node) at every node, length 0

Dynamic Programming Approach

Subproblems:

- ▶ OPT(u, i): shortest path from v to u that uses at most i hops (edges)
- ▶ If no such path, set to "infinitely long" fake path.
- ▶ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

$$\ell(OPT(u,k)) = \begin{cases} 0 & \text{if } u = v, k = 0 \\ \infty & \text{if } u \neq v, k = 0 \end{cases}$$

$$otherwise$$

Dynamic Programming Approach

Subproblems:

- ▶ OPT(u, i): shortest path from v to u that uses at most i hops (edges)
- ▶ If no such path, set to "infinitely long" fake path.
- ▶ For simplicity, create loop (edge to and from the same node) at every node, length 0

Theorem (Optimal Substructure)

$$\ell(OPT(u,k)) = \begin{cases} 0 & \text{if } u = v, k = 0 \\ \infty & \text{if } u \neq v, k = 0 \\ \min_{w:(w,u)\in E} (\ell(OPT(w,k-1)) + \ell(w,u)) & \text{otherwise} \end{cases}$$

Proof of Optimal Substructure

Induction on **k**.

$$k = 0 : \checkmark$$
. So let $k \ge 1$.

Proof of Optimal Substructure

Induction on **k**.

$$k = 0 : \checkmark$$
. So let $k \ge 1$.
 $\le :$ Let $x = \arg\min_{w:(w,u) \in E} (\ell(OPT(w,k-1)) + \ell(w,u))$
 $\Longrightarrow OPT(x,k-1) \circ (x,u)$ is a $v \to u$ path with at most k edges, length $\ell(OPT(x,k-1)) + \ell(x,u)$)
 $\Longrightarrow \ell(OPT(u,k)) \le \min_{w:(w,u) \in E} (\ell(OPT(w,k-1)) + \ell(w,u))$

Proof of Optimal Substructure

Induction on k.

$$k = 0 : \checkmark$$
. So let $k \ge 1$.

$$\leq$$
: Let $x = \arg\min_{w:(w,u)\in E} (\ell(OPT(w,k-1)) + \ell(w,u))$
 $\Longrightarrow OPT(x,k-1)\circ(x,u)$ is a $v\to u$ path with at most k edges, length $\ell(OPT(x,k-1)) + \ell(x,u))$
 $\Longrightarrow \ell(OPT(u,k)) \leq \min_{w:(w,u)\in E} (\ell(OPT(w,k-1)) + \ell(w,u))$

 \geq : Let z be node before u in OPT(u, k), and let P' be the first k-1 edges of OPT(u, k). Then

$$\ell(OPT(u,k)) = \ell(P') + \ell(z,u) \ge \ell(OPT(z,k-1)) + \ell(z,u)$$

$$\ge \min_{w:(w,u)\in E} (\ell(OPT(w,k-1)) + \ell(w,u))$$

Obvious dynamic program!

```
M[u,0] = \infty for all u \in V, u \neq v

M[v,0] = 0

for(k = 1 \text{ to } n - 1) {

for(u \in V) {

M[u,k] = \min_{w:(w,u)\in E} (M[w,k-1] + \ell(w,u))

}
```

Obvious dynamic program!

```
M[u,0] = \infty for all u \in V, u \neq v

M[v,0] = 0

for (k = 1 \text{ to } n - 1) {

for (u \in V) {

M[u,k] = \min_{w:(w,u) \in E} (M[w,k-1] + \ell(w,u))

}
```

Running Time:

Obvious dynamic program!

```
M[u,0] = \infty for all u \in V, u \neq v

M[v,0] = 0

for (k = 1 \text{ to } n - 1) {

for (u \in V) {

M[u,k] = \min_{w:(w,u) \in E} (M[w,k-1] + \ell(w,u))

}
```

Running Time:

▶ Obvious: $O(n^3)$

Obvious dynamic program!

```
M[u,0] = \infty for all u \in V, u \neq v

M[v,0] = 0

for(k = 1 \text{ to } n-1) {

for(u \in V) {

M[u,k] = \min_{w:(w,u)\in E}(M[w,k-1] + \ell(w,u))

}
```

Running Time:

- Obvious: $O(n^3)$
- ► Smarter: *O*(*mn*)

Bellman-Ford: Correctness

Theorem

After algorithm completes, $M[u,k] = \ell(OPT(u,k))$ for all $k \le n-1$ and $u \in V$.

Bellman-Ford: Correctness

Theorem

After algorithm completes, $M[u,k] = \ell(OPT(u,k))$ for all $k \le n-1$ and $u \in V$.

Proof.

Induction on k. Obviously true for k = 0.

7 / 17

Bellman-Ford: Correctness

Theorem

After algorithm completes, $M[u,k] = \ell(OPT(u,k))$ for all $k \le n-1$ and $u \in V$.

Proof.

Induction on k. Obviously true for k = 0.

$$\begin{split} M[u,k] &= \min_{w:(w,u)\in E} (M[w,k-1]) + \ell(w,u)) \\ &= \min_{w:(w,u)\in E} (\ell(OPT(w,k-1)) + \ell(w,u)) \\ &= \ell(OPT(u,k)) \end{split} \qquad \text{(induction)}$$

Suppose weights are negative. Does the problem make sense?

8 / 17

Suppose weights are negative. Does the problem make sense?

▶ Negative-weight cycle: not really!

Suppose weights are negative. Does the problem make sense?

Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- ▶ No negative-weight cycle: everything we did before is fine!

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- ▶ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle:

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- ▶ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Suppose weights are negative. Does the problem make sense?

- Negative-weight cycle: not really! Go around cycle forever, make distances arbitrarily negative
- ▶ No negative-weight cycle: everything we did before is fine!

Detecting negative-weight cycle: One more round of Bellman-Ford!

Fun fact: best-known algorithm with negative (real) edge weights until this year!

Jeremy Fineman. Single-Source Shortest Paths with Negative Real Weights in $\tilde{O}(mn^{8/9})$ Time. STOC '24

Common primitive in shortest path algorithms

- ▶ Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm

Common primitive in shortest path algorithms

- ▶ Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm

 $\hat{d}(u)$: upper bound on d(u)

▶ Initially: $\hat{d}(v) = 0$, $\hat{d}(u) = \infty$ for all $u \neq v$

9 / 17

Common primitive in shortest path algorithms

- Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm
- $\hat{d}(u)$: upper bound on d(u)
 - ▶ Initially: $\hat{d}(v) = 0$, $\hat{d}(u) = \infty$ for all $u \neq v$

Intuition for relax(x, y): can we improve $\hat{d}(y)$ by going through x?

Common primitive in shortest path algorithms

- Reinterpret Bellman-Ford via relaxations
- Use relaxations for Dijkstra's algorithm

$$\hat{d}(u)$$
: upper bound on $d(u)$

▶ Initially: $\hat{d}(v) = 0$, $\hat{d}(u) = \infty$ for all $u \neq v$

Intuition for relax(x, y): can we improve $\hat{d}(y)$ by going through x?

```
relax(x, y) {
    if (\hat{d}(y) > \hat{d}(x) + \ell(x, y)) {
    \hat{d}(y) = \hat{d}(x) + \ell(x, y)
    y.parent = x
    }
}
```

Bellman-Ford as Relaxations

```
 \begin{split} & \text{for}(\pmb{i} = \pmb{1} \text{ to } \pmb{n}) \; \{ \\ & \text{foreach}(\pmb{u} \in \pmb{V}) \; \{ \\ & \text{foreach}(\text{edge } (\pmb{x}, \pmb{u})) \; \{ \\ & \text{relax}(\pmb{x}, \pmb{u}) \\ & \} \\ & \} \\ & \} \\ \end{aligned}
```

Bellman-Ford as Relaxations

```
for(i = 1 to n) {
    foreach(u ∈ V) {
        foreach(edge (x, u)) {
            relax(x, u)
        }
    }
}
```

Not precisely the same: freezing/parallelism

Dijkstra's Algorithm

11 / 17

High Level

Intuition: "greedy starting at v"

▶ BFS but with edge lengths: use priority queue (heap) instead of queue!

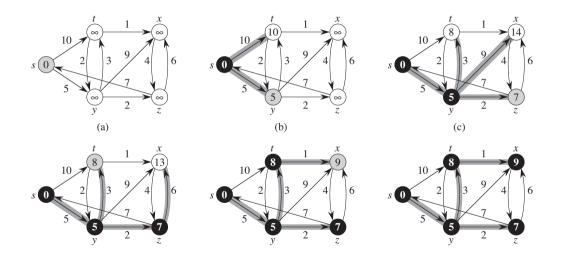
Pros: faster than Bellman-Ford (super fast with appropriate data structures)

Cons: Doesn't work with negative edge weights.

Dijkstra's Algorithm

```
\hat{d}(v) = 0
\hat{d}(u) = \infty for all u \neq v
while(not all nodes in T) {
    let u be node not in T with minimum \hat{d}(u)
    Add \boldsymbol{u} to \boldsymbol{T}
    foreach edge (u, x) with x \notin T {
        relax(u,x)
```

Dijkstra Example



Dijkstra Correctness

Theorem

Throughout the algorithm:

- 1. T is a shortest-path tree from v to the nodes in T, and
- 2. $\hat{d}(u) = d(u)$ for every $u \in T$.

Dijkstra Correctness

Theorem

Throughout the algorithm:

- 1. T is a shortest-path tree from v to the nodes in T, and
- 2. $\hat{d}(u) = d(u)$ for every $u \in T$.

Proof. Induction on |T| (iterations of algorithm)

Dijkstra Correctness

Theorem

Throughout the algorithm:

- 1. T is a shortest-path tree from v to the nodes in T, and
- 2. $\hat{d}(u) = d(u)$ for every $u \in T$.

Proof. Induction on |T| (iterations of algorithm)

Base Case: After first iteration (when |T| = 1), added v to T with $\hat{d}(v) = d(v) = 0$

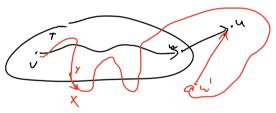
Lecture 15: SSSP October 15, 2024 15 / 17

Consider iteration when \boldsymbol{u} added to \boldsymbol{T} , let $\boldsymbol{w} = \boldsymbol{u}.\boldsymbol{parent}$

$$\implies \hat{d}(u) = \hat{d}(w) + \ell(w, u) = d(w) + \ell(w, u)$$
 (induction)

Consider iteration when u added to T, let w = u.parent

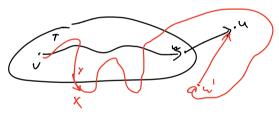
$$\implies \hat{d}(u) = \hat{d}(w) + \ell(w, u) = d(w) + \ell(w, u)$$
 (induction)



- Red path P actual shortest path, black path found by Dijkstra
- \mathbf{w}' predecessor of \mathbf{u} on \mathbf{P} . Can't be in \mathbf{T} .
 - If it was, would have $\hat{d}(w') = d(w')$ by induction, would have relaxed (w', u), so would have w' = u.parent
- x first node of **P** outside **T**, previous node **y**

Consider iteration when \boldsymbol{u} added to \boldsymbol{T} , let $\boldsymbol{w} = \boldsymbol{u}.\boldsymbol{parent}$

$$\implies \hat{d}(u) = \hat{d}(w) + \ell(w, u) = d(w) + \ell(w, u)$$
 (induction)

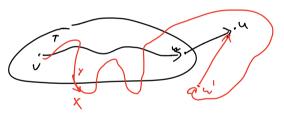


- Red path P actual shortest path, black path found by Dijkstra
- ightharpoonup w' predecessor of u on P. Can't be in T.
 - If it was, would have $\hat{d}(w') = d(w')$ by induction, would have relaxed (w', u), so would have w' = u.parent
- x first node of P outside T, previous node y

$$\hat{d}(x) \le \hat{d}(y) + \ell(y, x) = d(y) + \ell(y, x) < \ell(P) = d(u) \le \hat{d}(u)$$

Consider iteration when \boldsymbol{u} added to \boldsymbol{T} , let $\boldsymbol{w} = \boldsymbol{u}.\boldsymbol{parent}$

$$\implies \hat{d}(u) = \hat{d}(w) + \ell(w, u) = d(w) + \ell(w, u)$$
 (induction)



- Red path P actual shortest path, black path found by Dijkstra
- ightharpoonup w' predecessor of u on P. Can't be in T.
 - If it was, would have $\hat{d}(w') = d(w')$ by induction, would have relaxed (w', u), so would have w' = u.parent
- x first node of P outside T, previous node y

$$\hat{d}(x) \leq \hat{d}(y) + \ell(y,x) = d(y) + \ell(y,x) < \ell(P) = d(u) \leq \hat{d}(u)$$

Contradiction! Algorithm would have chosen x next, not u.

Algorithm needs to:

- Select node with minimum \hat{d} value n times
- ▶ Decrease a \hat{d} value at most once per relaxation $\implies \le m$ times.

Algorithm needs to:

- Select node with minimum \hat{d} value n times
- ▶ Decrease a \hat{d} value at most once per relaxation $\implies \le m$ times.

Nothing fancy, keep $\hat{d}(u)$ in adjacency list: selecting min \hat{d} value takes O(n) time $\implies O(n^2 + m) = O(n^2)$ total.

Algorithm needs to:

- Select node with minimum \hat{d} value n times
- ▶ Decrease a \hat{d} value at most once per relaxation $\implies \le m$ times.

Nothing fancy, keep $\hat{d}(u)$ in adjacency list: selecting min \hat{d} value takes O(n) time $\implies O(n^2 + m) = O(n^2)$ total.

Keep \hat{d} values in a heap!

- ▶ Insert *n* times
- Extract-Min n times
- Decrease-Key m times

Algorithm needs to:

- Select node with minimum \hat{d} value n times
- ▶ Decrease a \hat{d} value at most once per relaxation $\implies \le m$ times.

Nothing fancy, keep $\hat{d}(u)$ in adjacency list: selecting min \hat{d} value takes O(n) time $\implies O(n^2 + m) = O(n^2)$ total.

Keep \hat{d} values in a heap!

- ▶ Insert *n* times
- ► Extract-Min *n* times
- Decrease-Key m times

Binary heap: $O(\log n)$ per operation (amortized) $\implies O((m+n)\log n)$ running time.

Algorithm needs to:

- Select node with minimum \hat{d} value n times
- ▶ Decrease a \hat{d} value at most once per relaxation $\implies \le m$ times.

Nothing fancy, keep $\hat{d}(u)$ in adjacency list: selecting min \hat{d} value takes O(n) time $\implies O(n^2 + m) = O(n^2)$ total.

Keep \hat{d} values in a heap!

- ▶ Insert *n* times
- ► Extract-Min *n* times
- ▶ Decrease-Key *m* times

Binary heap: $O(\log n)$ per operation (amortized) $\implies O((m+n)\log n)$ running time.

Fibonacci Heap:

- ▶ Insert, Decrease-Key *O*(1) amortized
- ► Extract-Min $O(\log n)$ amortized
- $\implies O(m + n \log n)$ running time