Lecture 16: All-Pairs Shortest Paths
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Announcements

» Mid-Semester feedback on Courselore!

» No lecture notes
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Introduction
Setup:
> Directed graph G = (V, E)
> Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (4 ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!
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> Directed graph G = (V, E)
> Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (4 ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v € V
» No negative weights: n runs of Dijkstra, time O(n(m + nlogn))
> Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)
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Introduction

Setup:
> Directed graph G = (V, E)
> Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (4 ,yep £(X,Y)
> d(x,y) =ming,y paths p £(P)

Last time: All distances from source node v e V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v € V
» No negative weights: n runs of Dijkstra, time O(n(m + nlogn))
> Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)

Can we do better? Particularly for negative edge weights?
» Main goal today: Negative weights as fast as possible.
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Floyd-Warshall Algorithm
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) =00 if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) =00 if (i,j) ¢ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:
> Intuition: “shortest path from u to v either goes through node n, or it doesn't"

> If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.
> If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) =00 if (i,j) ¢ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:
> Intuition: “shortest path from u to v either goes through node n, or it doesn't"

> If it doesn't: shortest uses only first nodes in {1,2,...,n-1}.
> If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).

> Subproblems: shortest path from u to v that only uses nodes in {1,2,...k} for all
u,v, k.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d’.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
> Goal: compute dl.jf for all i,j, k € [n].

> Return dl.;' foralli,je V.

Michael Dinitz Lecture 16: APSP October 24, 2024 6/14



Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d’.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...

> Goal: compute dl.jf for all i,j, k € [n].

> Return dl.;' foralli,je V.

Michael Dinitz

d.’f={
7]

Lecture 16: APSP

a

/

;

if k=0
if k>1

October 24, 2024

k).

6/14



Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d’.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.

> Goal: compute dl.jf for all i,j, k € [n].

> Return dl.;' foralli,je V.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u, v.

d’.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
> Goal: compute dl.jf for all i,j, k € [n].

> Return dl.;' foralli,je V.

i | min(dkt,dikt e diSt) if k> 1
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Optimal Substructure

Theorem
For all i,j,k € [n]:
dk_{ﬁ(i’j) ifk=0
T min(dy™h diTt A ifk>1
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Optimal Substructure

Theorem
For all i,j,k € [n]:

£(i,j) ifk=0
ds =
Y min(d'.jf‘l, dl.'l‘("1 + dlg.‘l) ifk>1

If k=0: v
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Optimal Substructure

Theorem

For all i,j,k € [n]:

ko {E(i,j) ifk=0
Y min(d'.jf‘l, dl.'l‘("1 + dlg.‘l) ifk>1

If k=0: v

If k> 1: prove < and >
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Optimal Substructure

Theorem
For all i,j,k € [n]:
gk _ £(i,j) ifk=0
Y min(d’.jf"l, dl.'l‘("1 + dlz.‘l) ifk>1 )
If k=0: v ?\ k
(c
If k> 1: prove < and > fomb ['/ CI"-' ﬂ‘-\‘(t‘\' £.. f[,
<: Two feasible solutions ryé /{
le-\ “'( '2.
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Optimal Substructure

Theorem
For all i,j,k € [n]:

£(i,j) ifk=0
ds =
Y min(d'.jf‘l, dl.'l‘(‘1 + dlg."l) ifk>1

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]

» |f k not an intermediate node of P:
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Optimal Substructure

Theorem
For all i,j,k € [n]:
dk_{f("’f) ifk=0
T min(dy™h diTt A ifk>1

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]
> If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(d™, dy~t + diS) < dfH < £(P) = dS
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Optimal Substructure

Theorem
For all i,j,k € [n]:

£(i,j) ifk=0
ds =
Y min(d'.jf‘l, dl.'l‘("1 + dlg.‘l) ifk>1

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]
> If k not an intermediate node of P: P has all intermediate noc};s in[k-1] =
min(d™, dy~t + diS) < dfH < £(P) = dS

dj " d v < S
> If k is an intermediate node of P: W/
‘ Fl f2
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Optimal Substructure

Theorem
For all i,j,k € [n]:
dk_{f("’f) ifk=0
T min(dy™h diTt A ifk>1

If k=0: v

If k> 1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]
> If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(d™, dy~t + diS) < dfH < £(P) = dS
> If k is an intermediate node of P: divide P into P; (subpath from i to k) and P,
(subpath from k to j)

min(d ™, dit + A < diTt A < £(Py) +£(Py) = £(P) = df
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] =£(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
M[iajak] = min(M[ivjak_l]aM[iakak_1] i M[kajak_]-])
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] =£(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
M[iajak] = min(M[ivjak_l]aM[iakak_1] i M[kajak_]-])

Correctness: obvious for k =0. For k> 1;

Mli,j, k] =min(M[i,j,k-1],M[i, k,k-1]+ M[k,j, k-1]) (def of algorithm)
= min(dijf_l, d,.l,‘(_1 + dlz._l) (induction)
= d¥ (optimal substructure)
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

MLi,j, 8] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)

Mli, j, kT = min(M[i, j, k<11, M[i, k, k<T] + M[k, j, k=)

Correctness: obvious for k =0. For k> 1;

Mli,j, k] =min(M[i,j,k-1],M[i, k,k-1]+ M[k,j, k-1]) (def of algorithm)
= min(dijf_l, d,.',‘(_1 + dlz._l) (induction)
= d¥ (optimal substructure)

ij
Running Time: O(n?)
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Fun Fact

Search...

3 I'(\lv > ¢s > arXiv:1904.01210

Computer Science > Data Structures and Algorithms

[Submitted on 2 Apr 2019]

Incorrect implementations of the Floyd--Warshall algorithm give correct solutions after three
repeats

Ikumi Hide, Soh Kumabe, Takanori Maehara

The Floyd--Warshall algorithm is a well-known algorithm for the all-pairs shortest path problem that is simply implemented by triply nested loops. In this study, we show
that the incorrect implementations of the Floyd--Warshall algorithm that misorder the triply nested loops give correct solutions if these are repeated three times.

Subjects: Data Structures and Algorithms (cs.DS)

Cite as:  arXiv:1904.01210 [cs.DS]
(or arXiv:1904.01210v1 [cs.DS] for this version)
https://doi.org/10.48550/arXiv.1904.01210 6

Submission history

From: Takanori Maehara [view email]
[v1l] Tue, 2 Apr 2019 04:39:28 UTC (4 KB)
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Johnson's Algorithm
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Reweighting

Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall
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Reweighting

Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work?
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Reweighting
Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work? No!

e p—tLoo
> New length of path P is £(P) + «|P)|, so original / w
. P Lee ol (- et le\ (O
shortest path might no longer be shortest path if it has L ¢ S
many edges. : 1
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Reweighting

Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.
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Some other kind of reweighting? Need new lengths £ such that:
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Reweighting
Different Approach: Can we “fix’ negative weights so Dijkstra from every node works?

» Time would be O(n(m + nlog n)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —a be smallest length (most negative). Add « to every edge.

» Does this work? No!

e Hp—Loo
» New length of path P is £(P) +al|P)|, so original s w
. P Lee ol (- et le\ (O
shortest path might no longer be shortest path if it has L ¢ S

many edges. 1

-~

Some other kind of reweighting? Need new lengths £ such that:
» Path P a shortest path under lengths £ if and only P a shortest path under lengths £
» £(u,v) >0 for all (u,v)eE
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Vertex Reweighting

Neat observation: put weights at vertices!
> Let h: V - R be node weights.

> Let £p(u,v) =£€(u,v) + h(u) - h(v) “—\/‘Hw
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Vertex Reweighting

Neat observation: put weights at vertices!
> Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.
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Vertex Reweighting

Neat observation: put weights at vertices!
> Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1
eh(P) = Z(:)ﬁh(via Visl) = Z(:] (£(vi, vir1) + h(v;) - h(vi.1))
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Vertex Reweighting

Neat observation: put weights at vertices!
> Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)
Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1

eh(P) = Z(:)ﬁh(via Visl) = ;} (£(viy vis1) + h(v;) - h(vi.1))
k-1
= h(vo) - h(vk) + Z(:) £(viy vis1) (telescoping)
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Vertex Reweighting

Neat observation: put weights at vertices!
> Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1
lh(P) = Z(:)ﬁh(via Visl) = Z(:] (L(vi, vis1) + h(vi) - h(vi.1))
k-1
= h(vg) - h(vi) + Z(:) £(vi, vii1) (telescoping)

=£(P) + h(vo) - h(vy)
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Vertex Reweighting

Neat observation: put weights at vertices!
> Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)
Let P =(vg, vy,...,Vx) be arbitrary (not necessarily shortest) path.

k-1 k-1

Lh(P) = Z(:)Kh(via Visl) = Z{:} (£(vi, vis1) + h(v;) = h(vi,1))
1
= h(vp) - h(vi) {+ ) £(Vvi,s vis1) (telescoping)
N\

h(vg) — h(v) added to every vy — v, path, so shortest path from vy to v still shortest path!
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
> Run Bellman-Ford from s, then for all u € V set h(u) to be d(s, u)
> Note h(u) <0 forall ue V
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
> Run Bellman-Ford from s, then for all u € V set h(u) to be d(s, u)
> Note h(u) <0 forall ue V

Want to show that £,(u, v) > 0 for all edges (u,v).
> Triangle inequality: h(v) =d(s,v) <d(s,u) +€(u,v) = h(u) + £(u, v)

c[(iﬁ o L
@‘\)e(m? y\‘s
)

S (0
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
> Run Bellman-Ford from s, then for all u € V set h(u) to be d(s, u)
> Note h(u) <0 forall ue V

Want to show that £,(u, v) > 0 for all edges (u,v).
> Triangle inequality: &) = d(s,v)}d&s}u_tﬁ(u, v) = h(u) + £(uyv)

Ly (u, v)¢=‘ L(u,v)+h(u)-h(v) > €(u,v)+h(u) - (h(u) +£(u,v))=0
deF
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Johnson's Algorithm

0

L)
~7

-

> Add vertex s to graph, edge (s, u) for all u e V with £(s,u) =0

> Run Bellman-Ford from s, set h(u) = d(s,u) “v-5 (e~)fb¢ [4.\ OCrn)

> Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,v eV

> If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,v eV )i
' /

OC“('V‘\('? “))

Correctness: From previous discussion. 6(\7
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Johnson's Algorithm

> Add vertex s to graph, edge (s, u) for all u e V with £(s,u) =0

> Run Bellman-Ford from s, set h(u) = d(s, u)

> Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,v eV
> If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,v eV

Correctness: From previous discussion.

Running Time:
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Johnson's Algorithm

> Add vertex s to graph, edge (s, u) for all u e V with £(s,u) =0

> Run Bellman-Ford from s, set h(u) = d(s, u)

> Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,v eV
> If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,v eV

Correctness: From previous discussion.

Running Time: O(n) + O(mn) + O(n(m + nlog n)) = O(mn + n?log n)
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