
Lecture 16: All-Pairs Shortest Paths

Michael Dinitz

October 24, 2024

601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 16: APSP October 24, 2024 1 / 14

 



Announcements

� Mid-Semester feedback on Courselore!

� No lecture notes

Michael Dinitz Lecture 16: APSP October 24, 2024 2 / 14



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V
� No negative weights: n runs of Dijkstra, time O(n(m + n logn))
� Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn

2)

Can we do better? Particularly for negative edge weights?

� Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution:

single-source from each v ∈ V
� No negative weights: n runs of Dijkstra, time O(n(m + n logn))
� Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn

2)

Can we do better? Particularly for negative edge weights?

� Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V

� No negative weights: n runs of Dijkstra, time O(n(m + n logn))
� Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn

2)

Can we do better? Particularly for negative edge weights?

� Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V
� No negative weights: n runs of Dijkstra, time O(n(m + n logn))
� Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn

2)

Can we do better? Particularly for negative edge weights?

� Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:

� Directed graph G = (V ,E)
� Length `(x,y) on each edge (x,y) ∈ E
� Length of path P is `(P) = ∑(x,y)∈P `(x,y)
� d(x,y) =minx→y paths P `(P)

Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V
� No negative weights: n runs of Dijkstra, time O(n(m + n logn))
� Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn

2)

Can we do better? Particularly for negative edge weights?

� Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Floyd-Warshall Algorithm

Michael Dinitz Lecture 16: APSP October 24, 2024 4 / 14



Floyd-Warshall: A Di↵erent Dynamic Programming Approach

To simplify notation, let V = {1,2, . . . ,n} and `(i , j) =∞ if (i , j) �∈ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

� Intuition: “shortest path from u to v either goes through node n, or it doesn’t”

� If it doesn’t: shortest uses only first nodes in {1,2, . . . ,n − 1}.
� If it does: consists of a path P1 from u to n and a path P2 from n to v , neither of which

uses n (internally).

� Subproblems: shortest path from u to v that only uses nodes in {1,2, . . .k} for all

u,v ,k .

Michael Dinitz Lecture 16: APSP October 24, 2024 5 / 14



Floyd-Warshall: A Di↵erent Dynamic Programming Approach

To simplify notation, let V = {1,2, . . . ,n} and `(i , j) =∞ if (i , j) �∈ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

� Intuition: “shortest path from u to v either goes through node n, or it doesn’t”

� If it doesn’t: shortest uses only first nodes in {1,2, . . . ,n − 1}.
� If it does: consists of a path P1 from u to n and a path P2 from n to v , neither of which

uses n (internally).

� Subproblems: shortest path from u to v that only uses nodes in {1,2, . . .k} for all

u,v ,k .

Michael Dinitz Lecture 16: APSP October 24, 2024 5 / 14

main



Floyd-Warshall: A Di↵erent Dynamic Programming Approach

To simplify notation, let V = {1,2, . . . ,n} and `(i , j) =∞ if (i , j) �∈ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:

� Intuition: “shortest path from u to v either goes through node n, or it doesn’t”

� If it doesn’t: shortest uses only first nodes in {1,2, . . . ,n − 1}.
� If it does: consists of a path P1 from u to n and a path P2 from n to v , neither of which

uses n (internally).

� Subproblems: shortest path from u to v that only uses nodes in {1,2, . . .k} for all

u,v ,k .

Michael Dinitz Lecture 16: APSP October 24, 2024 5 / 14



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d
k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
� Goal: compute d

k
ij for all i , j ,k ∈ [n].

� Return d
n
ij for all i , j ∈ V .

d
k
ij =
�������

`(i , j)

if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj )

if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d
k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
� Goal: compute d

k
ij for all i , j ,k ∈ [n].

� Return d
n
ij for all i , j ∈ V .

d
k
ij =
�������

`(i , j)

if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj )

if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14

I



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d
k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
� Goal: compute d

k
ij for all i , j ,k ∈ [n].

� Return d
n
ij for all i , j ∈ V .

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj )

if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14

di if di dies t we hide k

dii did if di does he a.de Is



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d
k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
� Goal: compute d

k
ij for all i , j ,k ∈ [n].

� Return d
n
ij for all i , j ∈ V .

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓

If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥

≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤:

Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14

feasible frd.IT feaiket d



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P:

P has all intermediate nodes in [k − 1] �⇒
min(d k−1

ij ,d k−1
ik + d

k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P:

divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14

i



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:

d
k
ij =
�������

`(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥
≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]
� If k not an intermediate node of P: P has all intermediate nodes in [k − 1] �⇒

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ij ≤ `(P) = d

k
ij

� If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d
k−1
kj ) ≤ d

k−1
ik + d

k−1
kj ≤ `(P1) + `(P2) = `(P) = d

k
ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i , j ,0] = `(i , j) for all i , j ∈ [n]
for(k = 1 to n)

for(i = 1 to n)

for(j = 1 to n)

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1])

Correctness: obvious for k = 0. For k ≥ 1:

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1]) (def of algorithm)

=min(d k−1
ij ,d k−1

ik + d
k−1
kj ) (induction)

= d
k
ij (optimal substructure)

Running Time: O(n3)

Michael Dinitz Lecture 16: APSP October 24, 2024 8 / 14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i , j ,0] = `(i , j) for all i , j ∈ [n]
for(k = 1 to n)

for(i = 1 to n)

for(j = 1 to n)

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1])

Correctness: obvious for k = 0. For k ≥ 1:

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1]) (def of algorithm)

=min(d k−1
ij ,d k−1

ik + d
k−1
kj ) (induction)

= d
k
ij (optimal substructure)

Running Time: O(n3)

Michael Dinitz Lecture 16: APSP October 24, 2024 8 / 14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i , j ,0] = `(i , j) for all i , j ∈ [n]
for(k = 1 to n)

for(i = 1 to n)

for(j = 1 to n)

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1])

Correctness: obvious for k = 0. For k ≥ 1:

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1]) (def of algorithm)

=min(d k−1
ij ,d k−1

ik + d
k−1
kj ) (induction)

= d
k
ij (optimal substructure)

Running Time: O(n3)

Michael Dinitz Lecture 16: APSP October 24, 2024 8 / 14

i



Fun Fact

Michael Dinitz Lecture 16: APSP October 24, 2024 9 / 14



Johnson’s Algorithm

Michael Dinitz Lecture 16: APSP October 24, 2024 10 / 14



Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n logn)) = O(mn + n
2 logn), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work? No!

� New length of path P is `(P) +↵�P �, so original

shortest path might no longer be shortest path if it has

many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only P a shortest path under lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n logn)) = O(mn + n
2 logn), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P �, so original

shortest path might no longer be shortest path if it has

many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only P a shortest path under lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n logn)) = O(mn + n
2 logn), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work? No!

� New length of path P is `(P) +↵�P �, so original

shortest path might no longer be shortest path if it has

many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only P a shortest path under lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n logn)) = O(mn + n
2 logn), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work? No!

� New length of path P is `(P) +↵�P �, so original

shortest path might no longer be shortest path if it has

many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be

shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under

lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only P a shortest path under lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n logn)) = O(mn + n
2 logn), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work? No!

� New length of path P is `(P) +↵�P �, so original

shortest path might no longer be shortest path if it has

many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be

shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under

lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only P a shortest path under lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n logn)) = O(mn + n
2 logn), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work? No!

� New length of path P is `(P) +↵�P �, so original

shortest path might no longer be shortest path if it has

many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be

shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under

lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only P a shortest path under lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Vertex Reweighting

Neat observation: put weights at vertices!

� Let h ∶ V → R be node weights.

� Let `h(u,v) = `(u,v) + h(u) − h(v)

Let P = �v0,v1, . . . ,vk� be arbitrary (not necessarily shortest) path.

`h(P) =
k−1
�
i=0

`h(vi ,vi+1) =
k−1
�
i=0
(`(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) +
k−1
�
i=0

`(vi ,vi+1) (telescoping)

= `(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!

� Let h ∶ V → R be node weights.

� Let `h(u,v) = `(u,v) + h(u) − h(v)

Let P = �v0,v1, . . . ,vk� be arbitrary (not necessarily shortest) path.

`h(P) =
k−1
�
i=0

`h(vi ,vi+1) =
k−1
�
i=0
(`(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) +
k−1
�
i=0

`(vi ,vi+1) (telescoping)

= `(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!

� Let h ∶ V → R be node weights.

� Let `h(u,v) = `(u,v) + h(u) − h(v)

Let P = �v0,v1, . . . ,vk� be arbitrary (not necessarily shortest) path.

`h(P) =
k−1
�
i=0

`h(vi ,vi+1) =
k−1
�
i=0
(`(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) +
k−1
�
i=0

`(vi ,vi+1) (telescoping)

= `(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!

� Let h ∶ V → R be node weights.

� Let `h(u,v) = `(u,v) + h(u) − h(v)

Let P = �v0,v1, . . . ,vk� be arbitrary (not necessarily shortest) path.

`h(P) =
k−1
�
i=0

`h(vi ,vi+1) =
k−1
�
i=0
(`(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) +
k−1
�
i=0

`(vi ,vi+1) (telescoping)

= `(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!

� Let h ∶ V → R be node weights.

� Let `h(u,v) = `(u,v) + h(u) − h(v)

Let P = �v0,v1, . . . ,vk� be arbitrary (not necessarily shortest) path.

`h(P) =
k−1
�
i=0

`h(vi ,vi+1) =
k−1
�
i=0
(`(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) +
k−1
�
i=0

`(vi ,vi+1) (telescoping)

= `(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!

� Let h ∶ V → R be node weights.

� Let `h(u,v) = `(u,v) + h(u) − h(v)

Let P = �v0,v1, . . . ,vk� be arbitrary (not necessarily shortest) path.

`h(P) =
k−1
�
i=0

`h(vi ,vi+1) =
k−1
�
i=0
(`(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) +
k−1
�
i=0

`(vi ,vi+1) (telescoping)

= `(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14

0
0



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0

� Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)
� Note h(u) ≤ 0 for all u ∈ V

Want to show that `h(u,v) ≥ 0 for all edges (u,v).
� Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + `(u,v) = h(u) + `(u,v)

`h(u,v) = `(u,v) + h(u) − h(v) ≥ `(u,v) + h(u) − (h(u) + `(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14

É



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0

� Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)
� Note h(u) ≤ 0 for all u ∈ V

Want to show that `h(u,v) ≥ 0 for all edges (u,v).
� Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + `(u,v) = h(u) + `(u,v)

`h(u,v) = `(u,v) + h(u) − h(v) ≥ `(u,v) + h(u) − (h(u) + `(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0

� Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)
� Note h(u) ≤ 0 for all u ∈ V

Want to show that `h(u,v) ≥ 0 for all edges (u,v).
� Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + `(u,v) = h(u) + `(u,v)

`h(u,v) = `(u,v) + h(u) − h(v) ≥ `(u,v) + h(u) − (h(u) + `(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14

em tis



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0

� Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)
� Note h(u) ≤ 0 for all u ∈ V

Want to show that `h(u,v) ≥ 0 for all edges (u,v).
� Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + `(u,v) = h(u) + `(u,v)

`h(u,v) = `(u,v) + h(u) − h(v) ≥ `(u,v) + h(u) − (h(u) + `(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14



Johnson’s Algorithm

� Add vertex s to graph, edge (s,u) for all u ∈ V with `(s,u) = 0

� Run Bellman-Ford from s, set h(u) = d(s,u)
� Remove s, run Dijkstra from every node u ∈ V to get dh(u,v) for all u,v ∈ V
� If want distances, set d(u,v) = dh(u,v) − h(u) + h(v) for all u,v ∈ V

Correctness: From previous discussion.

Running Time: O(n) +O(mn) +O(n(m + n logn)) = O(mn + n
2 logn)

Michael Dinitz Lecture 16: APSP October 24, 2024 14 / 14

O n

jing lengths la O an

okay
OCalmtnl.sn



Johnson’s Algorithm

� Add vertex s to graph, edge (s,u) for all u ∈ V with `(s,u) = 0

� Run Bellman-Ford from s, set h(u) = d(s,u)
� Remove s, run Dijkstra from every node u ∈ V to get dh(u,v) for all u,v ∈ V
� If want distances, set d(u,v) = dh(u,v) − h(u) + h(v) for all u,v ∈ V

Correctness: From previous discussion.

Running Time:

O(n) +O(mn) +O(n(m + n logn)) = O(mn + n
2 logn)

Michael Dinitz Lecture 16: APSP October 24, 2024 14 / 14



Johnson’s Algorithm

� Add vertex s to graph, edge (s,u) for all u ∈ V with `(s,u) = 0

� Run Bellman-Ford from s, set h(u) = d(s,u)
� Remove s, run Dijkstra from every node u ∈ V to get dh(u,v) for all u,v ∈ V
� If want distances, set d(u,v) = dh(u,v) − h(u) + h(v) for all u,v ∈ V

Correctness: From previous discussion.

Running Time: O(n) +O(mn) +O(n(m + n logn)) = O(mn + n
2 logn)

Michael Dinitz Lecture 16: APSP October 24, 2024 14 / 14


