Lecture 16: All-Pairs Shortest Paths
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Announcements

» Mid-Semester feedback on Courselore!

> No lecture notes
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Introduction

Setup:

» Directed graph G = (V, E)
Length £(x,y) on each edge (x,y) € E
Length of path P is £(P) = ¥ (x.y)ep £(X,¥)
d(X, y) = rnirlx—»y paths PE(P)

v

v

v

Last time: All distances from source node v € V.

Today: Distances between all pairs of nodes!
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Introduction

Setup:
» Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (x,y)ep £(X,¥)
> d(X, _Y) = rnirlx—»y paths PE(P)

Last time: All distances from source node v € V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v € V
> No negative weights: n runs of Dijkstra, time O(n(m + nlogn))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)
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Introduction

Setup:
» Directed graph G = (V, E)
» Length £(x,y) on each edge (x,y) € E
> Length of path P is £(P) = ¥ (x,y)ep £(X,¥)
> d(X, _Y) = rnirlx—»y paths PE(P)

Last time: All distances from source node v € V.

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v € V
> No negative weights: n runs of Dijkstra, time O(n(m + nlogn))
» Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn?)

Can we do better? Particularly for negative edge weights?
» Main goal today: Negative weights as fast as possible.
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Floyd-Warshall Algorithm
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
New subproblems:

» Intuition: “shortest path from u to v either goes through node n, or it doesn’t”
> If it doesn’t: shortest uses only first nodes in {1,2,...,n-1}.

> If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).
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Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V ={1,2,...,n} and £(i,j) = oo if (i,j) ¢ E

Bellman-Ford subproblems: length of shortest path with at most some number of edges
New subproblems:

» Intuition: “shortest path from u to v either goes through node n, or it doesn’t”
> If it doesn’t: shortest uses only first nodes in {1,2,...,n-1}.
> If it does: consists of a path P; from u to n and a path P, from n to v, neither of which
uses n (internally).

» Subproblems: shortest path from u to v that only uses nodes in {1,2,...k} for all
u,v, k.
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u,v.

d’.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute d'.j.‘ for all i,j, k € [n].
» Return d’.}’ forall i,je V.
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ifk=0
d =
ij { if k>1
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Formalizing Subproblems

u — v path P: “intermediate nodes” are all nodes in P other than u,v.

d’.jf: distance from i to j using only i — j paths with intermediate vertices in {1,2,...,k}.
» Goal: compute d'.j.‘ for all i,j,k € [n].
» Return d’.}’ forall i,je V.

e [eG.d) if k=0
07| min(dit, di L dl) ifk21
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Optimal Substructure

Theorem
For all'i,j,k € [n]:
gk {E(i,j) ifk=0
y min(dl.jf‘l, d,.’,‘(‘1 + dlg.‘l) ifk>1
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Optimal Substructure

Theorem

For all'i,j,k € [n]:

gk {E(i,j) ifk=0
i | min(dfl, dit+ di) ifk21

Ifk=0: v
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Optimal Substructure
Theorem
For all'i,j,k € [n]:

- {E(i,j) ifk=0

i~ | min(dit, di L dlY) ifk>1

If k=0: v

If k>1: prove < and >
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Optimal Substructure

Theorem
For all'i,j,k € [n]:

dk - £(i,j) ifk=0
y min(d,.jf‘l, d,.’l‘(‘1 + dlg.‘l) ifk>1
Ifk=0: v
If k>1: prove < and >
<
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Optimal Substructure
Theorem
For all'i,j,k € [n]:
gk {E(i,j) ifk=0
i~ |\ min(dk-l, dkt+ dlY) ifk>1

If k=0: v

If k>1: prove < and >
<: Two feasible solutions
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Optimal Substructure

Theorem
For all'i,j,k € [n]:
gk {E(i,j) ifk=0
y min(dl.jf_l, d,.’,‘(‘1 + dlg.‘l) ifk>1

If k=0: v

If k>1: prove < and >

<: Two feasible solutions

>: Let P be shortest i — j path with all intermediate nodes in [k]
» If k not an intermediate node of P:
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Optimal Substructure

Theorem
For all'i,j,k € [n]:
gk {E(i,j) ifk=0
y min(dl.jf_l, d,.’,‘(‘1 + dlg.‘l) ifk>1

If k=0: v

If k>1: prove < and >

<: Two feasible solutions

>: Let P be shortest i — j path with all intermediate nodes in [k]

» If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
min(di™, dic™t + dit) < di Tt < £(P) = dif
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Optimal Substructure

Theorem
For all'i,j,k € [n]:
gk {E(i,j) ifk=0
y min(dl.jf_l, d,.’,‘(‘1 + dlg.‘l) ifk>1

If k=0: v
If k>1: prove < and >
<: Two feasible solutions
>: Let P be shortest i — j path with all intermediate nodes in [k]
» If k not an intermediate node of P: P has all intermediate nodes in [k-1] =
s (k-1 gk-1 . gk-1 k-1 = dk
mm(d’.j s dy— + dp ) < d; < L(P) = d;
» If k is an intermediate node of P:
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Optimal Substructure

Theorem
For all'i,j,k € [n]:

min(dk, dk+ di1) ifk>1

If k=0: v

If k>1: prove < and >

<
2

: Two feasible solutions

. Let P be shortest i — j path with all intermediate nodes in [k]
» If k not an intermediate node of P: P has all intermediate nodes in [k-1] =

e gk-1 k-1, k-1 k-1 = dk
mm(d’.j s dy— + dp )sdl.j <L(P) =d;

» If k is an intermediate node of P: divide P into P; (subpath from i to k) and P,

(subpath from k to j)

min(df™!, dit + dih) < diTH e diT < £(Py) + £(Py) = €(P) = df

Michael Dinitz

Lecture 16: APSP

October 24, 2024

7/14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
Mli,j, k] =min(M[i,j, k-1], M[i, k,k -1] + M[k, j, k - 1])
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
Mli,j, k] =min(M[i,j, k-1], M[i, k,k -1] + M[k, j, k - 1])

Correctness: obvious for k =0. For k> 1:

Mli,j, k] =min(M[i,j,k-1],M[i,k,k-1]+ M[k,j, k-1]) (def of algorithm)
= min(dl.f_l, dl.';('l + d,’:j_l (induction)
= d,.j.‘ (optimal substructure)
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Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

Mli,j,0] = £(i,j) for all i,j € [n]
for(k =1 to n)
for(i =1 to n)
for(j =1 to n)
Mli,j, k] =min(M[i,j, k-1], M[i, k,k -1] + M[k, j, k - 1])

Correctness: obvious for k =0. For k> 1:

Mli,j, k] =min(M[i,j,k-1],M[i,k,k-1]+ M[k,j, k-1]) (def of algorithm)
= min(dl.f_l, dl.';('l + d,’:j_l (induction)
= d,.j.‘ (optimal substructure)

Running Time: O(n%)
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Fun Fact

Search...

a I‘<1V > ¢s > arXiv:1904.01210

Computer Science > Data Structures and Algorithms

[Submitted on 2 Apr 2019]

Incorrect implementations of the Floyd--Warshall algorithm give correct solutions after three
repeats

Ikumi Hide, Soh Kumabe, Takanori Maehara

The Floyd--Warshall algorithm is a well-known algorithm for the all-pairs shortest path problem that is simply implemented by triply nested loops. In this study, we show
that the incorrect impl ions of the Floyd--! shall algorithm that misorder the triply nested loops give correct solutions if these are repeated three times.

Subjects: Data Structures and Algorithms (cs.DS)
Citeas: arXiv:1904.01210 [cs.DS]
(or arXiv:1904.01210v1 [cs.DS] for this version)
https://doi.org/10.48550/arXiv.1904.01210 o

Submission history

From: Takanori Maehara [view email]
[v1] Tue, 2 Apr 2019 04:39:28 UTC (4 KB)
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Johnson's Algorithm
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?log n), better than Floyd-Warshall
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —ax be smallest length (most negative). Add « to every edge.

» Does this work?
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —ax be smallest length (most negative). Add « to every edge.
» Does this work? No!

e 7 Z”G
» New length of path P is £(P) + «|P|, so original / 5
. L. e o (- et ot (%
shortest path might no longer be shortest path if it has N 5
many edges. - 1

-~
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —ax be smallest length (most negative). Add « to every edge.
» Does this work? No!

_ (e 7 196
» New length of path P is £(P) + «|P|, so original / ’w
. L. e o (- et ot (%
shortest path might no longer be shortest path if it has Ll _t’_7_,_5
many edges. 1

Some other kind of reweighting? Need new lengths £ such that:
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Reweighting

Different Approach: Can we “fix" negative weights so Dijkstra from every node works?
» Time would be O(n(m + nlogn)) = O(mn + n?log n), better than Floyd-Warshall

First attempt: Let —ax be smallest length (most negative). Add « to every edge.
» Does this work? No!

_ (e 7 196
» New length of path P is £(P) + «|P|, so original / @
. L. e o (- et ot (%
shortest path might no longer be shortest path if it has Ll _t’_7_,_5
many edges. 1

Some other kind of reweighting? Need new lengths £ such that:

» Path P a shortest path under lengths £ if and only P a shortest path under lengths ?
» (u,v) >0 for all (u,v)eE

Michael Dinitz Lecture 16: APSP October 24, 2024 11/14



Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(wvg, v1,...,Vk) be arbitrary (not necessarily shortest) path.
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(wvg, v1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1
Lh(P) = ;)ﬁh(vi, Vi) = Z{:} (£(vis vis1) + h(v;) = h(vis1))
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(wvg, v1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1
Eh(P) = ;)eh(vh Vi+1) = Z{) (Z(Vi’ |/i+1) + h(Vi) - h(Vi+1))
k-1
= h(v) - h(vi) + Z(:] £(vi, vis1) (telescoping)
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Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(wvg, v1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1
Eh(P) = ;)eh(vh Vi+1) = Z{) (Z(Vi’ |/i+1) + h(Vi) - h(Vi+1))
k-1
= h(v) - h(vi) + Z(:] £(vi, vis1) (telescoping)

= £(P) + h(vo) - h(v)

Michael Dinitz Lecture 16: APSP October 24, 2024 12/14



Vertex Reweighting

Neat observation: put weights at vertices!
» Let h: V - R be node weights.
> Let £p(u,v) =£€(u,v) + h(u) - h(v)

Let P =(wvg, v1,...,Vk) be arbitrary (not necessarily shortest) path.

k-1 k-1
Eh(P) = ;)eh(via Vi+1) = Z{) (Z(Vi’ Vi+1) + h(Vi) - h(Vi+1))
k-1
= h(v) - h(vi) + Z(:] £(vi, vis1) (telescoping)

— £(P) + h(vo) - h(v)
h(vy) - h(vy) added to every vy — v path, so shortest path from vy to v still shortest path!
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 /14



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0
» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s,u)
> Note h(u) <0 for all ue V
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0

» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s,u)
> Note h(u) <0 for all ue V

Want to show that £p,(u, v) > 0 for all edges (u, v).
» Triangle inequality: h(v) =d(s,v) <d(s,u) +€(u,v) = h(u) +£(u, v)
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Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s, v) for all v e V of length 0

» Run Bellman-Ford from s, then for all u € V set h(u) to be d(s,u)
> Note h(u) <0 for all ue V

Want to show that £p,(u, v) > 0 for all edges (u, v).
» Triangle inequality: h(v) =d(s,v) <d(s,u) +€(u,v) = h(u) +£(u, v)

Lp(u,v) =£(u,v)+h(u)-h(v)>£€(u,v)+h(u)-(h(u) +£(u,v))=0
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Johnson's Algorithm

v

Add vertex s to graph, edge (s, u) for all ue V with £(s,u) =0
Run Bellman-Ford from s, set h(u) = d(s, u)

v

» Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,ve V
If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,ve V

v

Correctness: From previous discussion.
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Johnson's Algorithm

v

Add vertex s to graph, edge (s, u) for all ue V with £(s,u) =0
Run Bellman-Ford from s, set h(u) = d(s, u)

v

» Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,ve V
If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,ve V

v

Correctness: From previous discussion.

Running Time:
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Johnson's Algorithm

v

Add vertex s to graph, edge (s, u) for all ue V with £(s,u) =0
Run Bellman-Ford from s, set h(u) = d(s, u)

v

» Remove s, run Dijkstra from every node u € V to get dp(u,v) for all u,ve V
If want distances, set d(u,v) = dp(u,v) - h(u) + h(v) for all u,ve V

v

Correctness: From previous discussion.

Running Time: O(n) + O(mn) + O(n(m+ nlogn)) = O(mn + n?log n)
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