
Lecture 16: All-Pairs Shortest Paths

Michael Dinitz

October 24, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 16: APSP October 24, 2024 1 / 14



Announcements

▸ Mid-Semester feedback on Courselore!▸ No lecture notes

Michael Dinitz Lecture 16: APSP October 24, 2024 2 / 14



Introduction

Setup:▸ Directed graph G = (V ,E)▸ Length ℓ(x,y) on each edge (x,y) ∈ E▸ Length of path P is ℓ(P) = ∑(x,y)∈P ℓ(x,y)▸ d(x,y) =minx→y paths P ℓ(P)
Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V▸ No negative weights: n runs of Dijkstra, time O(n(m + n logn))▸ Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn2)
Can we do better? Particularly for negative edge weights?▸ Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:▸ Directed graph G = (V ,E)▸ Length ℓ(x,y) on each edge (x,y) ∈ E▸ Length of path P is ℓ(P) = ∑(x,y)∈P ℓ(x,y)▸ d(x,y) =minx→y paths P ℓ(P)
Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution:

single-source from each v ∈ V▸ No negative weights: n runs of Dijkstra, time O(n(m + n logn))▸ Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn2)
Can we do better? Particularly for negative edge weights?▸ Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:▸ Directed graph G = (V ,E)▸ Length ℓ(x,y) on each edge (x,y) ∈ E▸ Length of path P is ℓ(P) = ∑(x,y)∈P ℓ(x,y)▸ d(x,y) =minx→y paths P ℓ(P)
Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V

▸ No negative weights: n runs of Dijkstra, time O(n(m + n logn))▸ Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn2)
Can we do better? Particularly for negative edge weights?▸ Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:▸ Directed graph G = (V ,E)▸ Length ℓ(x,y) on each edge (x,y) ∈ E▸ Length of path P is ℓ(P) = ∑(x,y)∈P ℓ(x,y)▸ d(x,y) =minx→y paths P ℓ(P)
Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V▸ No negative weights: n runs of Dijkstra, time O(n(m + n logn))▸ Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn2)

Can we do better? Particularly for negative edge weights?▸ Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Introduction

Setup:▸ Directed graph G = (V ,E)▸ Length ℓ(x,y) on each edge (x,y) ∈ E▸ Length of path P is ℓ(P) = ∑(x,y)∈P ℓ(x,y)▸ d(x,y) =minx→y paths P ℓ(P)
Last time: All distances from source node v ∈ V .

Today: Distances between all pairs of nodes!

Obvious solution: single-source from each v ∈ V▸ No negative weights: n runs of Dijkstra, time O(n(m + n logn))▸ Negative weights: n runs of Bellman-Ford, time O(nmn) = O(mn2)
Can we do better? Particularly for negative edge weights?▸ Main goal today: Negative weights as fast as possible.

Michael Dinitz Lecture 16: APSP October 24, 2024 3 / 14



Floyd-Warshall Algorithm

Michael Dinitz Lecture 16: APSP October 24, 2024 4 / 14



Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V = {1,2, . . . ,n} and ℓ(i , j) =∞ if (i , j) /∈ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:▸ Intuition: “shortest path from u to v either goes through node n, or it doesn’t”▸ If it doesn’t: shortest uses only first nodes in {1,2, . . . ,n − 1}.▸ If it does: consists of a path P1 from u to n and a path P2 from n to v , neither of which
uses n (internally).▸ Subproblems: shortest path from u to v that only uses nodes in {1,2, . . .k} for all

u,v ,k .

Michael Dinitz Lecture 16: APSP October 24, 2024 5 / 14



Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V = {1,2, . . . ,n} and ℓ(i , j) =∞ if (i , j) /∈ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:▸ Intuition: “shortest path from u to v either goes through node n, or it doesn’t”▸ If it doesn’t: shortest uses only first nodes in {1,2, . . . ,n − 1}.▸ If it does: consists of a path P1 from u to n and a path P2 from n to v , neither of which
uses n (internally).

▸ Subproblems: shortest path from u to v that only uses nodes in {1,2, . . .k} for all
u,v ,k .

Michael Dinitz Lecture 16: APSP October 24, 2024 5 / 14



Floyd-Warshall: A Different Dynamic Programming Approach

To simplify notation, let V = {1,2, . . . ,n} and ℓ(i , j) =∞ if (i , j) /∈ E
Bellman-Ford subproblems: length of shortest path with at most some number of edges

New subproblems:▸ Intuition: “shortest path from u to v either goes through node n, or it doesn’t”▸ If it doesn’t: shortest uses only first nodes in {1,2, . . . ,n − 1}.▸ If it does: consists of a path P1 from u to n and a path P2 from n to v , neither of which
uses n (internally).▸ Subproblems: shortest path from u to v that only uses nodes in {1,2, . . .k} for all

u,v ,k .

Michael Dinitz Lecture 16: APSP October 24, 2024 5 / 14



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
▸ Goal: compute d k

ij for all i , j ,k ∈ [n].▸ Return dn
ij for all i , j ∈ V .

d k
ij =
⎧⎪⎪⎨⎪⎪⎩

ℓ(i , j)

if k = 0

min(d k−1
ij ,d k−1

ik + d k−1
kj )

if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
▸ Goal: compute d k

ij for all i , j ,k ∈ [n].▸ Return dn
ij for all i , j ∈ V .

d k
ij =
⎧⎪⎪⎨⎪⎪⎩

ℓ(i , j)

if k = 0

min(d k−1
ij ,d k−1

ik + d k−1
kj )

if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
▸ Goal: compute d k

ij for all i , j ,k ∈ [n].▸ Return dn
ij for all i , j ∈ V .

d k
ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0

min(d k−1
ij ,d k−1

ik + d k−1
kj )

if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14



Formalizing Subproblems

u → v path P: “intermediate nodes” are all nodes in P other than u,v .

d k
ij : distance from i to j using only i → j paths with intermediate vertices in {1,2, . . . ,k}.
▸ Goal: compute d k

ij for all i , j ,k ∈ [n].▸ Return dn
ij for all i , j ∈ V .

d k
ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1

Michael Dinitz Lecture 16: APSP October 24, 2024 6 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1

If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ij ≤ ℓ(P) = d k
ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓

If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒
min(d k−1

ij ,d k−1
ik + d k−1

kj ) ≤ d k−1
ij ≤ ℓ(P) = d k

ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥

≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒
min(d k−1

ij ,d k−1
ik + d k−1

kj ) ≤ d k−1
ij ≤ ℓ(P) = d k

ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤:

Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒
min(d k−1

ij ,d k−1
ik + d k−1

kj ) ≤ d k−1
ij ≤ ℓ(P) = d k

ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions

≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒
min(d k−1

ij ,d k−1
ik + d k−1

kj ) ≤ d k−1
ij ≤ ℓ(P) = d k

ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P:

P has all intermediate nodes in [k − 1] Ô⇒
min(d k−1

ij ,d k−1
ik + d k−1

kj ) ≤ d k−1
ij ≤ ℓ(P) = d k

ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ij ≤ ℓ(P) = d k
ij

▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ij ≤ ℓ(P) = d k
ij▸ If k is an intermediate node of P:

divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Optimal Substructure

Theorem

For all i , j ,k ∈ [n]:
d k

ij =
⎧⎪⎪⎨⎪⎪⎩
ℓ(i , j) if k = 0
min(d k−1

ij ,d k−1
ik + d k−1

kj ) if k ≥ 1
If k = 0: ✓
If k ≥ 1: prove ≤ and ≥≤: Two feasible solutions≥: Let P be shortest i → j path with all intermediate nodes in [k]▸ If k not an intermediate node of P: P has all intermediate nodes in [k − 1] Ô⇒

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ij ≤ ℓ(P) = d k
ij▸ If k is an intermediate node of P: divide P into P1 (subpath from i to k) and P2

(subpath from k to j )

min(d k−1
ij ,d k−1

ik + d k−1
kj ) ≤ d k−1

ik + d k−1
kj ≤ ℓ(P1) + ℓ(P2) = ℓ(P) = d k

ij

Michael Dinitz Lecture 16: APSP October 24, 2024 7 / 14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i , j ,0] = ℓ(i , j) for all i , j ∈ [n]
for(k = 1 to n)

for(i = 1 to n)
for(j = 1 to n)

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1])

Correctness: obvious for k = 0. For k ≥ 1:
M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1]) (def of algorithm)

=min(d k−1
ij ,d k−1

ik + d k−1
kj ) (induction)

= d k
ij (optimal substructure)

Running Time: O(n3)

Michael Dinitz Lecture 16: APSP October 24, 2024 8 / 14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i , j ,0] = ℓ(i , j) for all i , j ∈ [n]
for(k = 1 to n)

for(i = 1 to n)
for(j = 1 to n)

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1])
Correctness: obvious for k = 0. For k ≥ 1:

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1]) (def of algorithm)

=min(d k−1
ij ,d k−1

ik + d k−1
kj ) (induction)

= d k
ij (optimal substructure)

Running Time: O(n3)

Michael Dinitz Lecture 16: APSP October 24, 2024 8 / 14



Floyd-Warshall Algorithm

Usually bottom-up, since so simple:

M[i , j ,0] = ℓ(i , j) for all i , j ∈ [n]
for(k = 1 to n)

for(i = 1 to n)
for(j = 1 to n)

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1])
Correctness: obvious for k = 0. For k ≥ 1:

M[i , j ,k] =min(M[i , j ,k − 1],M[i ,k,k − 1] +M[k, j ,k − 1]) (def of algorithm)

=min(d k−1
ij ,d k−1

ik + d k−1
kj ) (induction)

= d k
ij (optimal substructure)

Running Time: O(n3)
Michael Dinitz Lecture 16: APSP October 24, 2024 8 / 14



Fun Fact

Michael Dinitz Lecture 16: APSP October 24, 2024 9 / 14



Johnson’s Algorithm

Michael Dinitz Lecture 16: APSP October 24, 2024 10 / 14



Reweighting

Different Approach: Can we “fix” negative weights so Dijkstra from every node works?▸ Time would be O(n(m + n logn)) = O(mn + n2 logn), better than Floyd-Warshall

First attempt: Let −α be smallest length (most negative). Add α to every edge.▸ Does this work? No!

▸ New length of path P is ℓ(P) +α∣P ∣, so original
shortest path might no longer be shortest path if it has
many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be
shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under
lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ℓ̂ such that:▸ Path P a shortest path under lengths ℓ if and only P a shortest path under lengths ℓ̂▸ ℓ̂(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Different Approach: Can we “fix” negative weights so Dijkstra from every node works?▸ Time would be O(n(m + n logn)) = O(mn + n2 logn), better than Floyd-Warshall

First attempt: Let −α be smallest length (most negative). Add α to every edge.▸ Does this work?

No!

▸ New length of path P is ℓ(P) +α∣P ∣, so original
shortest path might no longer be shortest path if it has
many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be
shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under
lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ℓ̂ such that:▸ Path P a shortest path under lengths ℓ if and only P a shortest path under lengths ℓ̂▸ ℓ̂(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Different Approach: Can we “fix” negative weights so Dijkstra from every node works?▸ Time would be O(n(m + n logn)) = O(mn + n2 logn), better than Floyd-Warshall

First attempt: Let −α be smallest length (most negative). Add α to every edge.▸ Does this work? No!

▸ New length of path P is ℓ(P) +α∣P ∣, so original
shortest path might no longer be shortest path if it has
many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be
shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under
lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ℓ̂ such that:▸ Path P a shortest path under lengths ℓ if and only P a shortest path under lengths ℓ̂▸ ℓ̂(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Different Approach: Can we “fix” negative weights so Dijkstra from every node works?▸ Time would be O(n(m + n logn)) = O(mn + n2 logn), better than Floyd-Warshall

First attempt: Let −α be smallest length (most negative). Add α to every edge.▸ Does this work? No!

▸ New length of path P is ℓ(P) +α∣P ∣, so original
shortest path might no longer be shortest path if it has
many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be
shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under
lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ℓ̂ such that:▸ Path P a shortest path under lengths ℓ if and only P a shortest path under lengths ℓ̂▸ ℓ̂(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Different Approach: Can we “fix” negative weights so Dijkstra from every node works?▸ Time would be O(n(m + n logn)) = O(mn + n2 logn), better than Floyd-Warshall

First attempt: Let −α be smallest length (most negative). Add α to every edge.▸ Does this work? No!

▸ New length of path P is ℓ(P) +α∣P ∣, so original
shortest path might no longer be shortest path if it has
many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be
shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under
lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ℓ̂ such that:

▸ Path P a shortest path under lengths ℓ if and only P a shortest path under lengths ℓ̂▸ ℓ̂(u,v) ≥ 0 for all (u,v) ∈ E

Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Reweighting

Different Approach: Can we “fix” negative weights so Dijkstra from every node works?▸ Time would be O(n(m + n logn)) = O(mn + n2 logn), better than Floyd-Warshall

First attempt: Let −α be smallest length (most negative). Add α to every edge.▸ Does this work? No!

▸ New length of path P is ℓ(P) +α∣P ∣, so original
shortest path might no longer be shortest path if it has
many edges.

Reweighting

Di↵erent Approach: Can we “fix” negative weights so Dijkstra from every node works?

� Time would be O(n(m + n log n)) = O(mn + n2 log n), better than Floyd-Warshall

First attempt: Let −↵ be smallest length (most negative). Add ↵ to every edge.

� Does this work?

No!

� New length of path P is `(P) +↵�P�, so original shortest path might no longer be
shortest path if it has many edges.

Some other kind of reweighting? Need new lengths ˆ̀ such that:

� Path P a shortest path under lengths ` if and only i↵ P a shortest path under
lengths ˆ̀

� ˆ̀(u,v) ≥ 0 for all (u,v) ∈ E

Zoo

i

Some other kind of reweighting? Need new lengths ℓ̂ such that:▸ Path P a shortest path under lengths ℓ if and only P a shortest path under lengths ℓ̂▸ ℓ̂(u,v) ≥ 0 for all (u,v) ∈ E
Michael Dinitz Lecture 16: APSP October 24, 2024 11 / 14



Vertex Reweighting

Neat observation: put weights at vertices!▸ Let h ∶ V → R be node weights.▸ Let ℓh(u,v) = ℓ(u,v) + h(u) − h(v)

Let P = ⟨v0,v1, . . . ,vk⟩ be arbitrary (not necessarily shortest) path.

ℓh(P) = k−1∑
i=0 ℓh(vi ,vi+1) = k−1∑

i=0 (ℓ(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) + k−1∑
i=0 ℓ(vi ,vi+1) (telescoping)

= ℓ(P) + h(v0) − h(vk)
h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!▸ Let h ∶ V → R be node weights.▸ Let ℓh(u,v) = ℓ(u,v) + h(u) − h(v)
Let P = ⟨v0,v1, . . . ,vk⟩ be arbitrary (not necessarily shortest) path.

ℓh(P) = k−1∑
i=0 ℓh(vi ,vi+1) = k−1∑

i=0 (ℓ(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) + k−1∑
i=0 ℓ(vi ,vi+1) (telescoping)

= ℓ(P) + h(v0) − h(vk)
h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!▸ Let h ∶ V → R be node weights.▸ Let ℓh(u,v) = ℓ(u,v) + h(u) − h(v)
Let P = ⟨v0,v1, . . . ,vk⟩ be arbitrary (not necessarily shortest) path.

ℓh(P) = k−1∑
i=0 ℓh(vi ,vi+1) = k−1∑

i=0 (ℓ(vi ,vi+1) + h(vi ) − h(vi+1))

= h(v0) − h(vk) + k−1∑
i=0 ℓ(vi ,vi+1) (telescoping)

= ℓ(P) + h(v0) − h(vk)
h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!▸ Let h ∶ V → R be node weights.▸ Let ℓh(u,v) = ℓ(u,v) + h(u) − h(v)
Let P = ⟨v0,v1, . . . ,vk⟩ be arbitrary (not necessarily shortest) path.

ℓh(P) = k−1∑
i=0 ℓh(vi ,vi+1) = k−1∑

i=0 (ℓ(vi ,vi+1) + h(vi ) − h(vi+1))
= h(v0) − h(vk) + k−1∑

i=0 ℓ(vi ,vi+1) (telescoping)

= ℓ(P) + h(v0) − h(vk)
h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!▸ Let h ∶ V → R be node weights.▸ Let ℓh(u,v) = ℓ(u,v) + h(u) − h(v)
Let P = ⟨v0,v1, . . . ,vk⟩ be arbitrary (not necessarily shortest) path.

ℓh(P) = k−1∑
i=0 ℓh(vi ,vi+1) = k−1∑

i=0 (ℓ(vi ,vi+1) + h(vi ) − h(vi+1))
= h(v0) − h(vk) + k−1∑

i=0 ℓ(vi ,vi+1) (telescoping)

= ℓ(P) + h(v0) − h(vk)

h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Vertex Reweighting

Neat observation: put weights at vertices!▸ Let h ∶ V → R be node weights.▸ Let ℓh(u,v) = ℓ(u,v) + h(u) − h(v)
Let P = ⟨v0,v1, . . . ,vk⟩ be arbitrary (not necessarily shortest) path.

ℓh(P) = k−1∑
i=0 ℓh(vi ,vi+1) = k−1∑

i=0 (ℓ(vi ,vi+1) + h(vi ) − h(vi+1))
= h(v0) − h(vk) + k−1∑

i=0 ℓ(vi ,vi+1) (telescoping)

= ℓ(P) + h(v0) − h(vk)
h(v0) − h(vk) added to every v0 → vk path, so shortest path from v0 to vk still shortest path!

Michael Dinitz Lecture 16: APSP October 24, 2024 12 / 14



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0

▸ Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)▸ Note h(u) ≤ 0 for all u ∈ V
Want to show that ℓh(u,v) ≥ 0 for all edges (u,v).▸ Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + ℓ(u,v) = h(u) + ℓ(u,v)

ℓh(u,v) = ℓ(u,v) + h(u) − h(v) ≥ ℓ(u,v) + h(u) − (h(u) + ℓ(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0▸ Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)▸ Note h(u) ≤ 0 for all u ∈ V

Want to show that ℓh(u,v) ≥ 0 for all edges (u,v).▸ Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + ℓ(u,v) = h(u) + ℓ(u,v)
ℓh(u,v) = ℓ(u,v) + h(u) − h(v) ≥ ℓ(u,v) + h(u) − (h(u) + ℓ(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0▸ Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)▸ Note h(u) ≤ 0 for all u ∈ V
Want to show that ℓh(u,v) ≥ 0 for all edges (u,v).▸ Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + ℓ(u,v) = h(u) + ℓ(u,v)

ℓh(u,v) = ℓ(u,v) + h(u) − h(v) ≥ ℓ(u,v) + h(u) − (h(u) + ℓ(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14



Making lengths nonnegative

So vertex reweighting preserves shortest paths. Find weights to make lengths nonnegative?

Add new node s to graph, edges (s,v) for all v ∈ V of length 0▸ Run Bellman-Ford from s, then for all u ∈ V set h(u) to be d(s,u)▸ Note h(u) ≤ 0 for all u ∈ V
Want to show that ℓh(u,v) ≥ 0 for all edges (u,v).▸ Triangle inequality: h(v) = d(s,v) ≤ d(s,u) + ℓ(u,v) = h(u) + ℓ(u,v)

ℓh(u,v) = ℓ(u,v) + h(u) − h(v) ≥ ℓ(u,v) + h(u) − (h(u) + ℓ(u,v)) = 0

Michael Dinitz Lecture 16: APSP October 24, 2024 13 / 14



Johnson’s Algorithm

▸ Add vertex s to graph, edge (s,u) for all u ∈ V with ℓ(s,u) = 0▸ Run Bellman-Ford from s, set h(u) = d(s,u)▸ Remove s, run Dijkstra from every node u ∈ V to get dh(u,v) for all u,v ∈ V▸ If want distances, set d(u,v) = dh(u,v) − h(u) + h(v) for all u,v ∈ V
Correctness: From previous discussion.

Running Time: O(n) +O(mn) +O(n(m + n logn)) = O(mn + n2 logn)

Michael Dinitz Lecture 16: APSP October 24, 2024 14 / 14



Johnson’s Algorithm

▸ Add vertex s to graph, edge (s,u) for all u ∈ V with ℓ(s,u) = 0▸ Run Bellman-Ford from s, set h(u) = d(s,u)▸ Remove s, run Dijkstra from every node u ∈ V to get dh(u,v) for all u,v ∈ V▸ If want distances, set d(u,v) = dh(u,v) − h(u) + h(v) for all u,v ∈ V
Correctness: From previous discussion.

Running Time:

O(n) +O(mn) +O(n(m + n logn)) = O(mn + n2 logn)

Michael Dinitz Lecture 16: APSP October 24, 2024 14 / 14



Johnson’s Algorithm

▸ Add vertex s to graph, edge (s,u) for all u ∈ V with ℓ(s,u) = 0▸ Run Bellman-Ford from s, set h(u) = d(s,u)▸ Remove s, run Dijkstra from every node u ∈ V to get dh(u,v) for all u,v ∈ V▸ If want distances, set d(u,v) = dh(u,v) − h(u) + h(v) for all u,v ∈ V
Correctness: From previous discussion.

Running Time: O(n) +O(mn) +O(n(m + n logn)) = O(mn + n2 logn)

Michael Dinitz Lecture 16: APSP October 24, 2024 14 / 14


