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17.1 Introduction

Today we’re talking about Minimum Spanning Trees (MSTs). For this problem we are given an
undirected, connected graph G = (V,E) and edge weights w : E → R≥0. A spanning tree is a set
of edges T ⊆ E such that T is a tree on V (the graph (V, T ) is connected and acyclic). Note that
the connectivity requirement implies that every node is incident on at least one edge of T , since
otherwise there would be a connected component consisting of just one node. Our goal is to find a
spanning tree T ⊆ E with minimum total weight w(T ) =

∑
e∈T w(e). In other words, if T is the

set of all spanning trees, we want to find a spanning tree T ∈ T such that w(T ) = minT ′∈T w(T ′).

This is a classic, fundamental, and important problem in graph algorithms. Is is the fundamental
problem in a class of problems known as network design problems, which is the focus of much of my
research. It has a number of obvious applications, e.g., building a network of minimum cost that
allows every pair of nodes to communicate. But it is also a surprisingly useful primitive, which
comes up in a variety of somewhat surprising places. As we’ll see, it’s also one of the simplest
examples of some standard proof techniques and algorithmic techniques. In particular, it is one of
the most famous places where greedy algorithms work well.

Today we’ll discuss the two most famous MST algorithms, as well as some extensions. Both of
them are greedy algorithms, but they work in slightly different ways.

17.2 Generic Greedy

Before we talk about particular algorithms, let’s give a generic greedy algorithm. Both of the
algorithms we’ll talk about are special cases of this generic algorithm. First, we need a definition.

Definition 17.2.1 Suppose that A is a subset of some minimum spanning tree. If A ∪ {{u, v}} is
also a subset of a minimum spanning tree, then we say that {u, v} is safe for A.

Now consider the following algorithm, which we’ll call Generic-MST:

A← ∅ ;
wh i l e (A i s not a spanning t r e e ) {

f i nd an edge {u, v} that i s s a f e f o r A ;
A← A ∪ {{u, v}}

}
re turn A ;

It is obvious that this algorithm returns an MST, but this can be formally proved by induction.

Theorem 17.2.2 Generic-MST returns an MST.

Proof: Let’s prove that A is always a subset of an MST. This is true initially since A = ∅. Now
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suppose it is true after the ith iteration of the while loop. Then by the definition of a safe edge,
it is true after the (i+ 1)st iteration of the while loop. Hence A is always a subset of an MST, so
when Generic-MST returns A it is an MST (since it is not a spanning tree which is a subset of an
MST, and is thus an MST).

Of course, the tricky thing is figuring out how to find a safe edge. The first thing to do is make a
simple observation about the structure of trees (minimum or otherwise).

Lemma 17.2.3 Let (V, T ) be a spanning tree, and let u, v ∈ V . Let P denote the path between u
and v in T . If {u, v} ̸∈ T , then T ′ = T ∪ {{u, v}} \ {{x, y}} is a spanning tree for any {x, y} ∈ P .

Proof: We need to prove that T ′ is connected and acyclic. Clearly T ∪ {{u, v}} has exactly one
cycle, consisting of P together with {u, v}. Removing {x, y} breaks this cycle. Hence T ′ is acyclic.
To see that it is connected, note that removing {x, y} breaks the tree into exactly two connected
components, and that u is in one component and v is in the other. Hence adding {u, v} connects
these two components, so T ′ is connected. Thus T ′ is a spanning tree.

Now let’s use this to analyze safe edges. Intuitively, we need some way of certifying than an edge
is part of an MST. It turns out that one way of doing this is to analyze cuts. We’ll talk a lot more
about cuts next week, but today is the beginning.

A cut (S, V \ S) is just a partition of V into two pieces. Sometimes we’ll abbreviate this notation
to (S, S̄) or just to S if the context is clear. Note that S does not have to be connected, small, or
anything else – any partition of the vertices into two pieces is a cut. An edge e = {u, v} crosses
the cut (S, S̄) if one endpoint of e is in S and the other is not in S.

Definition 17.2.4 Given a set of edges A, a cut (S, S̄) respects A if no edge in A crosses (S, S̄).

Definition 17.2.5 We say that an edge e is a light edge crossing a cut (S, S̄) if it crosses the cut
and has the minimum weight of any edge crossing the cut.

Note that since weights are not necessarily distinct, there can be many light edges for each cut.

Now the following theorem will allow us to find safe edges.

Theorem 17.2.6 Let A ⊆ E be a subset of some MST, let (S, S̄) be a cut respecting A, and let
e = {u, v} be a light edge crossing (S, S̄). Then e is safe for A.

Proof: Let T be an MST that includes A. If T includes e then we are done. Otherwise, consider
the path P in T between u and v. Since {u, v} crosses (S, S̄), we know that u and v are on different
sides of the cut. Hence there is some edge e′ = {x, y} ∈ P where x ∈ S and y ∈ S̄.

Consider T ′ = T ∪ {e} \ {e′}. We claim that T ′ is an MST containing A ∪ {e}, which would imply
that {u, v} is safe for A and hence would prove the theorem. First, Lemma 17.2.3 implies that T ′ is
still a spanning tree. Since (S, S̄) respects A, we know that e′ ̸∈ A and hence T ′ contains A ∪ {e}.
So T ′ is a spanning tree containing A ∪ {e} and hence we just need to show that T’ is a minimum
spanning tree. Since e is a light edge for (S, S̄) and e′ crosses (S, S̄), we know that w(e) ≤ w(e′).
Thus w(T ′) = w(T ) − w(e′) + w(e) ≤ w(T ). Since T is an MST, this implies that T ′ is also an
MST (and in fact that w(e′) = w(e)).
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17.3 Prim’s Algorithm

The first true algorithm that we’ll talk about is Prim’s Algorithm. In Prim’s algorithm we start
with a node and grow an MST out of it. Because of this approach, the algorithm actually looks a lot
like Dijkstra’s shortest-path algorithm, but instead of computing a shortest-path tree it computes
an MST.

We start with an arbitrary node u and include it in S. We then find the lowest-weight edge incident
on u, and add this to A. We then repeat, always adding the minimum-weight edge that has exactly
one endpoint in S to A. In other words, we grow a tree out of u, by always adding the edge of
minimum weight with exactly one endpoint already in the tree. Slightly more formally, Prim’s
algorithm is the following:

A← ∅ ;
Let u be an a rb i t r a r y node , and l e t S ← {u} ;
wh i l e (A i s not a spanning t r e e ) {

Find an edge {u, v} with u ∈ S and v ̸∈ S that i s l i g h t f o r (S, S̄) ;
A← A ∪ {{u, v}} ;
S ← S ∪ {v} ;

}
re turn A ;

As always, we’ll want to do two things: prove correctness and running time. Let’s first do correct-
ness.

Theorem 17.3.1 Prim’s algorithm correctly computes an MST.

Proof: Using Theorem 17.2.2, we just need to prove that the edge that Prim’s algorithm adds
is always safe for A, since that will imply that Prim’s is just a particular instantiation of Generic-
MST. But this is obvious from Theorem 17.2.6. We just need to prove that (S, S̄) always respects
A, which is obvious since A is always a connected component with vertices S.

For the running time, like Dijkstra, it depends on exactly what data structures we use and exactly
how we implement the key operation (finding a light edge). If we do this in the trivial way, then
each iteration might take time O(m), so the total running time is only O(mn). But we can do
much better than this if we are more careful in how we keep track of the edges and vertices.

Theorem 17.3.2 Prim’s algorithm can be implemented to run in O(m+ n log n) time.

Proof: We will associate a key C(v) with every vertex v ∈ V , and will also associate another
node P (v) (think of this as the parent of v in the MST, rooted at u). Initially we will set C(u) = 0,
for each neighbor v of u we will set C(v) = w({u, v}) and P (v) = u, and for every other node v we
will set C(v) = ∞ and P (v) = NULL. We will put all nodes other than u into a min-heap using
their keys C(v) as their priorities. The set S will be the vertices which are not in the queue.

Now in each iteration we will do an Extract-Min from the heap to get the node v with minimum
C(v) that is still left in the heap. We will then add {v, P (v)} to A. Then for every edge {v, x} ∈ E,
if x is in the heap then we will check if w({v, x}) < C(x), and if so, we will do a Decrease-Key to
set C(x) = w({v, x}) and will set P (x) = v.
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Note that when we change the algorithm to run this way, the total running time just becomes the
time to do at most n Inserts, at most m Decrease-Keys, and at most n Extract-Mins. Using a
Fibonacci heap, this becomes O(m+ n log n).

Of course, we need to show that this modified algorithms is, in fact, Prim’s algorithm. We prove
by induction every edge we add was light for the cut (S, S̄). Note that in the first iteration we will
add the edge incident on u of minimum weight, and hence this edge is light for the cut S = {u}.
Now suppose that in some iteration we do an Extract-Min and get node v, with P (v) = y (so we
add {v, y} to A). If this is not a light edges for (S, S̄), then there is some edge {a, b} with a ∈ S
and b ̸∈ S with w({a, b}) < w({v, y}). But this means that when we added a to S we would have
set C(b) = w({a, b}), and hence C(b) is less than C(v) (since C(v) will be equal to w({v, y})). But
this is a contradiction, since when we did an Extract-Min we get v rather than b.

17.4 Kruskal’s Algorithm

The next algorithm we’ll consider is a bit different, despite also being a greedy algorithm (and an
instantiation of Generic-MST). Prim’s algorithm maintains a graph which is always a tree, and
stops when it is spanning. Kruskal’s algorithm does not maintain a tree, but instead maintains a
forest (a collection of trees), and stops when the forest becomes a single tree (note though that
some “trees” in the forest might just be single nodes). So it is in some ways the opposite of Prim’s
algorithm, and is a more “pure” greedy algorithm.

Kruskal’s algorithm is the following:

A← ∅ ;
Sort the edges by t h e i r weight ( from sma l l e s t to l a r g e s t ) ;
f o r each edge e in t h i s order {

I f A ∪ {e} has no cyc l e s , add e to A ;
}
re turn A ;

Let’s start by proving correctness.

Theorem 17.4.1 Kruskal’s algorithm correctly computes an MST.

Proof: We argue that this is a particular instantiation of Generic-MST. In particular, we claim
that every edge added is safe for the current A, and that when the algorithm returns it is in fact a
spanning tree. This suffices to prove that the set A it returns is an MST.

We first show that the final set A returned is a spanning tree. To see this, note that by construction
it has no cycles, so it is a forest. To see that it is a tree, suppose for contradiction that it is not, i.e. A
has more than one connected component. Since G is connected, there is some edge {u, v} ∈ E \A
such that u is in one connected component and v is in a different connected component. Thus
when Kruskal’s algorithm considers {u, v}, adding it would not cause a cycle and so {u, v} would
be added to A. This is a contradiction to the definition of {u.v}.
Now we need to show that if at some iteration Kruskal’s adds e to A, then e is safe for A. This
would imply that Kruskal’s is just an instantiation of Generic-MST, and so would imply correctness
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by Theorem 17.2.2. To prove this, consider some point in the algorithm where we add edge {u, v} to
A. Since we add it to A, we know that this doesn’t create any cycles, and hence u and v are in two
different connected components of (V,A). Suppose that u is in component C and v is in component
C ′. Consider the cut (C, C̄). This cut clearly respects A, and since Kruskal’s algorithm looks at the
edges in sorted order we know that {u, v} is a light edge for (C, C̄). Thus Theorem 17.2.6 implies
that {u, v} is safe for A.

What about the running time? Sorting takes O(m logm) = O(m log n). As we’ll see, this actually
turns out to be the dominant term. Once the edges are sorted, m times, we have to check whether
inserting an edge would cause a cycle to be created. In other words, we have to check whether the
two endpoints of an edge are in the same connected component. Instead of a heap like we used
for Prim, the important data structure here is Union-Find! We’ll have a set for each tree in F ,
when we add an edge we’ll need to do a Union, and when we test whether to add an edge we’ll
have to do two Finds. So we need to do n initial Make-Sets, 2m Finds, and n − 1 Unions. If we
use the simple list-based data structure, this gives running time of O(m + n log n). If we use the
fancier tree-based data structures with path compression and union by rank, we get running time
of O(m ·α(n)), where α(n) is the inverse-Ackermann function applied to n. This is an improvement
if m is extremely sparse, but for large m the simple list-based data structure actually performs
better since there are so many more Finds. But either way, the running time is dominated by the
cost of sorting.
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