Lecture 17: Minimum Spanning Trees

Michael Dinitz

October 29, 2024 601.433/633 Introduction to Algorithms

Introduction

Definition

A *spanning tree* of an undirected graph G = (V, E) is a set of edges $T \subseteq E$ such that (V, T) is connected and acyclic.

Definition

Minimum Spanning Tree problem (MST):

- ► Input:
 - Undirected graph G = (V, E)
 - ▶ Edge weights $w : E \to \mathbb{R}_{>0}$
- Output: Spanning tree minimizing $w(T) = \sum_{e \in T} w(e)$.

Foundational problem in network design. Tons of applications.

Today: one "recipe", two different algorithms from recipe. Main idea: greedy.

Examples

Generic Algorithm

Definition

Suppose that \mathbf{A} is subset of *some* MST. If $\mathbf{A} \cup \{e\}$ is also a subset of some MST, then \mathbf{e} is *safe* for \mathbf{A} .

Definition

Suppose that \mathbf{A} is subset of some MST. If $\mathbf{A} \cup \{e\}$ is also a subset of some MST, then \mathbf{e} is safe for \mathbf{A} .

```
Generic-MST {
A = \emptyset
while(A not a spanning tree) {
find an edge e safe for A
A = A \cup \{e\}
}
return A
```

Definition

Suppose that A is subset of some MST. If $A \cup \{e\}$ is also a subset of some MST, then e is safe for A.

```
Generic-MST {
A = \emptyset
while(A not a spanning tree) {
find an edge e safe for A
A = A \cup \{e\}
}
return A
```

Theorem

Generic-MST is correct: it always returns an MST.

Definition

Suppose that A is subset of some MST. If $A \cup \{e\}$ is also a subset of some MST, then e is safe for A.

```
Generic-MST {
    A = Ø
    while(A not a spanning tree) {
        find an edge e safe for A
        A = A ∪ {e}
    }
    return A
}
```

Theorem

Generic-MST is correct: it always returns an MST.

Proof.

Induction.

Claim: **A** always a subset of some MST.

Base case: ✓

Inductive step: ✓

Definition

Suppose that A is subset of some MST. If $A \cup \{e\}$ is also a subset of some MST, then e is safe for A.

```
Generic-MST {
A = \emptyset
while(A not a spanning tree) {
find an edge e safe for A
A = A \cup \{e\}
}
return A
```

Theorem

Generic-MST is correct: it always returns an MST.

Proof.

Induction.

Claim: **A** always a subset of some MST.

Base case: ✓

Inductive step: ✓

But how to find a safe edge? And which one to add?

Lemma

Let T be a spanning tree, let $u, v \in V$, and let P be the u - v path in T. If $\{u, v\} \notin T$, then $T' = (T \cup \{\{u, v\}\}) \setminus \{e\}$ is a spanning tree for all $e \in P$.

Definition

A $\operatorname{cut}(S, V \setminus S)$ (or (S, \overline{S}) or just S) is a partition of V into two parts. Edge e crosses cut (S, \overline{S}) if e has one endpoint in S and one endpoint in \overline{S} .

Definition

A $cut(S, V \setminus S)$ (or (S, \overline{S}) or just S) is a partition of V into two parts. Edge e crosses cut (S, \overline{S}) if e has one endpoint in S and one endpoint in \overline{S} .

Definition

Cut (S, \bar{S}) respects $A \subseteq E$ if no edge in A crosses (S, \bar{S})

7/16

Definition

A $cut(S, V \setminus S)$ (or (S, \overline{S}) or just S) is a partition of V into two parts. Edge e crosses cut (S, \overline{S}) if e has one endpoint in S and one endpoint in \overline{S} .

Definition

Cut (S, \bar{S}) respects $A \subseteq E$ if no edge in A crosses (S, \bar{S})

Definition

e is a light edge for (S, \bar{S}) if e crosses (S, \bar{S}) and $w(e) = \min_{e' \text{ crossing } (S, \bar{S})} w(e')$

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S, \overline{S}) . Then e is safe for A.

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$.

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S, \overline{S}) . Then e is safe for A.

Need to show there is an MST containing $\mathbf{A} \cup \{\mathbf{e}\}$. If $\mathbf{e} \in \mathbf{T}$: \checkmark

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S, \overline{S}) . Then e is safe for A.

Need to show there is an MST containing $\mathbf{A} \cup \{e\}$. If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S, \overline{S}) . Then e is safe for A.

Need to show there is an MST containing $\mathbf{A} \cup \{e\}$.

If $e \in T$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x, y\}\}$$

 \implies T' a spanning tree by first lemma

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S, \overline{S}) . Then e is safe for A.

Need to show there is an MST containing $\mathbf{A} \cup \{e\}$. If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x, y\}\}$$

 \implies T' a spanning tree by first lemma

$$\{x,y\} \notin A$$
, since (S,\bar{S}) respects A

$$\implies A \cup \{e\} \subseteq T'$$

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{e\}$. If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x, y\}\}$$

 \implies T' a spanning tree by first lemma

$$\{x,y\} \notin A$$
, since (S,\bar{S}) respects A

$$\implies$$
 $A \cup \{e\} \subseteq T'$

$$w(T') = w(T) + w(e) - w(x,y) \leq w(T)$$

Theorem

Let $\mathbf{A} \subseteq \mathbf{E}$ be a subset of some MST \mathbf{T} , let $(\mathbf{S}, \overline{\mathbf{S}})$ be a cut respecting \mathbf{A} , and let $\mathbf{e} = \{\mathbf{u}, \mathbf{v}\}$ be a light edge for $(\mathbf{S}, \overline{\mathbf{S}})$. Then \mathbf{e} is safe for \mathbf{A} .

Need to show there is an MST containing $\mathbf{A} \cup \{e\}$. If $\mathbf{e} \in \mathbf{T}$: \checkmark Otherwise:

Let
$$T' = (T \cup \{e\}) \setminus \{\{x, y\}\}$$

$$\implies$$
 T' a spanning tree by first lemma

$$\{x,y\} \notin A$$
, since (S,\bar{S}) respects A

$$\implies A \cup \{e\} \subseteq T'$$

$$w(T') = w(T) + w(e) - w(x, y) \le w(T)$$

$$\implies$$
 T' an MST containing $A \cup \{e\}$

8/16

Prim's Algorithm

Prim's Algorithm

Idea: start at arbitrary node u. Greedily grow MST out of u.

```
A = \emptyset
Let u be an arbitrary node, and let S = \{u\}
while(A is not a spanning tree) \{
Find an edge \{x,y\} with x \in S and y \notin S that is light for (S,\bar{S})
A \leftarrow A \cup \{\{x,y\}\}
S \leftarrow S \cup \{y\}
}
return A
```

Prim's Algorithm

Idea: start at arbitrary node u. Greedily grow MST out of u.

```
m{A} = m{\varnothing} Let m{u} be an arbitrary node, and let m{S} = \{ m{u} \} while(m{A} is not a spanning tree) \{ Find an edge \{ x,y \} with x \in m{S} and y \notin m{S} that is light for (m{S}, m{\bar{S}}) m{A} \leftarrow m{A} \cup \{ \{x,y \} \} m{S} \leftarrow m{S} \cup \{ y \} \} return m{A}
```


Correctness

Theorem

Prim's algorithm returns an MST.

11 / 16

Correctness

Theorem

Prim's algorithm returns an MST.

Proof.

Just Generic-MST!

11 / 16

Correctness

Theorem

Prim's algorithm returns an MST.

Proof.

Just Generic-MST!

- (S, \bar{S}) always respects **A** (induction).
- ▶ If edge e added then light for (S, \overline{S})
- ▶ Hence **e** safe for **A** by main structural theorem.

11 / 16

Michael Dinitz Lecture 17: MST October 29, 2021

Trivial analysis:

- Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \Longrightarrow O(m)$ time
- ► Total *O*(*mn*)

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \bar{S})

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \bar{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \bar{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

 \triangleright When new vertex y added to S, need to update keys of nodes adjacent to y

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \bar{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

- ▶ When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
 - ▶ Happens at most *m* times total

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \bar{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

- \blacktriangleright When new vertex y added to S, need to update keys of nodes adjacent to y
 - ▶ Happens at most *m* times total
- ▶ **n** Inserts, **n** Extract-Mins, **m** Decrease-Keys

Trivial analysis:

- ▶ Every spanning tree has n-1 edges $\implies n-1$ iterations
- In each iteration, look through all edges to find min-weight edge crossing $(S, \bar{S}) \implies O(m)$ time
- ► Total *O*(*mn*)

Like Dijkstra's algorithm, do better by using a data structure: heap!

▶ Need to be able to get minimum-weight edge across (S, \bar{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S.

- \blacktriangleright When new vertex y added to S, need to update keys of nodes adjacent to y
 - ► Happens at most *m* times total
- ▶ **n** Inserts, **n** Extract-Mins, **m** Decrease-Keys
- Like Dijkstra, $O(m \log n)$ using binary heap. $O(m + n \log n)$ with Fibonacci heap (only Extract-Min is logarithmic)

Kruskal's Algorithm

Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

```
A = Ø
Sort edges by weight (small to large)
For each edge e in this order {
   if A ∪ {e} has no cycles, A = A ∪ {e}
}
return A
```

 Michael Dinitz
 Lecture 17: MST
 October 29, 2021
 14 / 16

Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for A.

Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for A.

Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for A.

Consider cut (C, \overline{C}) . Respects A, and $\{u, v\}$ light for it.

Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when $\{u, v\}$ added, it was safe for A.

Consider cut (C, \bar{C}) . Respects A, and $\{u, v\}$ light for it. Main structural theorem $\implies \{u, v\}$ safe for A

Sorting edges: $O(m \log m) = O(m \log n)$

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already

connected.

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

Make-Sets:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

► Make-Sets: *n*

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: *n*
- ► Finds:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: *n*
- ▶ Finds: 2*m*

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: *n*
- ▶ Finds: 2*m*
- Unions:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- ▶ Make-Sets: *n*
- ▶ Finds: 2*m*
- ▶ Unions: *n* 1

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

- ▶ Make-Sets: *n*
- ▶ Finds: 2*m*
- ▶ Unions: n-1

 $O(m \log^* n)$ using union-by-rank + path compression

 $O(m + n \log n)$ using list data structure

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: \mathbf{m} iterations, DFS/BFS in each iteration to check if endpoints already connected.

 $O(m(m+n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of **A** are disjoint sets.

- ▶ Make-Sets: *n*
- ▶ Finds: 2*m*
- ▶ Unions: n-1

 $O(m \log^* n)$ using union-by-rank + path compression

 $O(m + n \log n)$ using list data structure

Sorting dominates! $O(m \log n)$ total.

 Michael Dinitz
 Lecture 17: MST
 October 29, 2021
 16 / 16