Lecture 17: Minimum Spanning Trees

Michael Dinitz

October 29, 2024 601.433/633 Introduction to Algorithms

Introduction

Definition

A spanning tree of an undirected graph $G = (V, E)$ is a set of edges $T \subseteq E$ such that (V, T) is connected and acyclic.

Definition

Minimum Spanning Tree problem (MST):

- **▸** Input:
	- \blacktriangleright Undirected graph $G = (V, E)$
	- **▸** Edge weights w **∶** E **→** R**≥**⁰
- **▶** Output: Spanning tree minimizing $w(T) = \sum_{e \in T} w(e)$.

Foundational problem in network design. Tons of applications.

Today: one "recipe", two different algorithms from recipe. Main idea: greedy.

Examples

Generic Algorithm

Definition

Suppose that A is subset of some MST. If A **∪ {**e**}** is also a subset of some MST, then e is safe for A.

Definition

Suppose that \boldsymbol{A} is subset of *some* MST. If A **∪ {**e**}** is also a subset of some MST, then e is safe for A.

```
Generic-MST {
   A = \emptysetwhile(\bm{A} not a spanning tree) {
      find an edge e safe for A
      A = A ∪ {e}}
   return A
}
```
Definition

Suppose that \boldsymbol{A} is subset of *some* MST. If A **∪ {**e**}** is also a subset of some MST, then e is safe for \boldsymbol{A} .

Theorem

Generic-MST is correct: it always returns an MST.

```
Generic-MST {
   A = \emptysetwhile(\bm{A} not a spanning tree) {
      find an edge e safe for A
      A = A ∪ {e}}
   return A
}
```
Definition

Suppose that \boldsymbol{A} is subset of *some* MST. If A **∪ {**e**}** is also a subset of some MST, then e is safe for \boldsymbol{A} .

Generic-MST { $A = \emptyset$ while(\bm{A} not a spanning tree) { find an edge e safe for A $A = A ∪ {e}$ } return A }

Theorem

Generic-MST is correct: it always returns an MST.

Proof.

Induction.

Claim: A always a subset of some MST. Base case: **✓** Inductive step: **✓**

Definition

Suppose that \boldsymbol{A} is subset of *some* MST. If A **∪ {**e**}** is also a subset of some MST, then e is safe for A.

Generic-MST { $A = \emptyset$ while(\bm{A} not a spanning tree) { find an edge e safe for A $A = A ∪ {e}$ } return A }

Theorem

Generic-MST is correct: it always returns an MST.

Proof.

Induction.

Claim: A always a subset of some MST. Base case: **✓** Inductive step: **✓**

But how to find a safe edge? And which one to add?

Structural Properties Ω under the Ω under the Ω then Ω then Ω a
a spanning tree f all EEP (1991)
A spanning tree f all EEP (1991)

Lemma

Let **T** be a spanning tree, let $u, v \in V$, and let **P** be the $u - v$ path in **T**. If $\{u, v\} \notin T$, then $T' = (T \cup \{\{u, v\}\}) \setminus \{e\}$ is a spanning tree for all $e \in P$.

Structural Properties

Definition

A cut $(S, V \setminus S)$ (or (S, \bar{S}) or just S) is a partition of **V** into two parts. Edge **e** crosses cut (S, \bar{S}) if **e** has one endpoint in \boldsymbol{S} and one endpoint in $\boldsymbol{\bar{S}}$. the endpoint in S and end endpoint in

Structural Properties

Definition

A cut $(S, V \setminus S)$ (or (S, \bar{S}) or just S) is a partition Cut (S, \bar{S}) of V into two parts. Edge e crosses cut (S, \bar{S}) if e has one endpoint in S and one endpoint in \bar{S} . the endpoint in S and end endpoint in

Definition

 $\begin{array}{|c|c|c|c|c|}\n\hline \end{array}$ Cut $(\mathcal{S}, \mathcal{\bar{S}})$ respects $\mathcal{A} \subseteq \mathcal{E}$ if no edge $\left| \begin{array}{c} \text{in } A \text{ crosses } (S,\bar{S}) \end{array} \right|$

Structural Properties

Definition

A cut $(S, V \setminus S)$ (or (S, \bar{S}) or just S) is a partition Cut (S, \bar{S}) of V into two parts. Edge e crosses cut (S, \bar{S}) if e has one endpoint in S and one endpoint in \bar{S} . the endpoint in S and end endpoint in

Definition

 $\begin{array}{|c|c|c|c|c|}\n\hline \end{array}$ Cut $(\mathcal{S}, \mathcal{\bar{S}})$ respects $\mathcal{A} \subseteq \mathcal{E}$ if no edge $\left| \begin{array}{c} \text{in } A \text{ crosses } (S,\bar{S}) \end{array} \right|$

Definition

e is a *light edge* for (S, \bar{S}) if e crosses (S, \bar{S}) and $w(e)$ = min_{e' crossing $(s, \bar{s}) w(e')$}

in A crosses 5,55
in A crosses 5,55
in A crosses 5,55

<u>2 wie minne m</u>

Reti ^e is ^a light edge for 4,5 if

ie'll

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then e is safe for **A**.

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then **e** is safe for **A**.

Need to show there is an MST containing $A \cup \{e\}$.

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then **e** is safe for **A**.

Need to show there is an MST containing $A \cup \{e\}$. If e **∈** T: **✓**

Theorem

Let $A \subseteq E$ be a subset of some MST T, let (S, \overline{S}) be a cut respecting A, and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then **e** is safe for **A**.

Need to show there is an MST containing $A \cup \{e\}$. If e **∈** T: **✓** Otherwise:

Theorem

Let $A \subseteq E$ be a subset of some MST T , let (S, \bar{S}) be a cut respecting A , and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then e is safe for **A**. $\overline{}$

Need to show there is an MST containing $A \cup \{e\}$. If e **∈** T: **✓** Otherwise:

Let $T' = (T \cup \{e\}) \setminus \{\{x, y\}\}\$ \implies \mathcal{T}' a spanning tree by first lemma

Theorem

Let $A \subseteq E$ be a subset of some MST T , let (S, \bar{S}) be a cut respecting A , and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then e is safe for **A**. $\overline{}$

Need to show there is an MST containing $A \cup \{e\}$. If e **∈** T: **✓** Otherwise:

Let $T' = (T \cup \{e\}) \setminus \{\{x, y\}\}\$ \implies \mathcal{T}' a spanning tree by first lemma $\{x, y\} \notin A$, since (S, \bar{S}) respects A \implies **A** \cup {**e**} \subseteq **T**'

Theorem

Let $A \subseteq E$ be a subset of some MST T , let (S, \bar{S}) be a cut respecting A , and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then e is safe for **A**. $\overline{}$

Need to show there is an MST containing $A \cup \{e\}$. If e **∈** T: **✓** Otherwise:

Let $T' = (T \cup \{e\}) \setminus \{\{x, y\}\}\$ \implies \mathcal{T}' a spanning tree by first lemma $\{x, y\} \notin A$, since (S, \bar{S}) respects A \implies **A** \cup {**e**} \subseteq **T**'

$$
w(T') = w(T) + w(e) - w(x,y) \leq w(T)
$$

Theorem

Let $A \subseteq E$ be a subset of some MST T , let (S, \bar{S}) be a cut respecting A , and let $e = \{u, v\}$ be a light edge for (S,\bar{S}) . Then e is safe for **A**. $\overline{}$

Need to show there is an MST containing $A \cup \{e\}$. If e **∈** T: **✓** Otherwise:

Let $T' = (T \cup \{e\}) \setminus \{\{x, y\}\}\$ \implies \mathcal{T}' a spanning tree by first lemma $\{x, y\} \notin A$, since (S, \bar{S}) respects A \implies **A** \cup {**e**} \subseteq **T**'

$$
w(T') = w(T) + w(e) - w(x, y) \le w(T)
$$

\n
$$
\implies T' \text{ an MST containing } A \cup \{e\}
$$

Prim's Algorithm

Prim's Algorithm

Idea: start at arbitrary node \boldsymbol{u} . Greedily grow MST out of \boldsymbol{u} .

```
A = \emptysetLet \boldsymbol{u} be an arbitrary node, and let \boldsymbol{S} = {\boldsymbol{u}}while(\boldsymbol{A} is not a spanning tree) {
     Find an edge \{x, y\} with x \in S and y \notin S that is light for (S, \overline{S})A \leftarrow A \cup \{\{x, y\}\}\S \leftarrow S \cup \{y\}}
return A
```
Prim's Algorithm

Idea: start at arbitrary node \boldsymbol{u} . Greedily grow MST out of \boldsymbol{u} .

```
A = \emptysetLet \boldsymbol{u} be an arbitrary node, and let \boldsymbol{S} = {\boldsymbol{u}}while(\boldsymbol{A} is not a spanning tree) {
     Find an edge \{x, y\} with x \in S and y \notin S that is light for (S, \overline{S})A \leftarrow A \cup \{\{x, y\}\}\S \leftarrow S \cup \{y\}}
return A
```


Theorem

Prim's algorithm returns an MST.

Theorem

Prim's algorithm returns an MST.

Proof.

Just Generic-MST!

Theorem

Prim's algorithm returns an MST.

Proof.

Just Generic-MST!

- \triangleright (S, \bar{S}) always respects **A** (induction).
- \triangleright If edge **e** added then light for (S,\bar{S})
- **▸** Hence e safe for A by main structural theorem.

Trivial analysis:

- **►** Every spanning tree has $n-1$ edges \implies $n-1$ iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing $(S,\bar{S}) \implies$ O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Trivial analysis:

- **►** Every spanning tree has $n-1$ edges \implies $n-1$ iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing $(S,\bar{S}) \implies$ O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

Trivial analysis:

- **▸** Every spanning tree has n **−** 1 edges **Ô⇒** n **−** 1 iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing $(S,\bar{S}) \implies$ O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

 \triangleright Need to be able to get minimum-weight edge across (S, \overline{S})

Trivial analysis:

- **►** Every spanning tree has $n-1$ edges \implies $n-1$ iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing $(S,\bar{S}) \implies$ O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

 \triangleright Need to be able to get minimum-weight edge across (S, \overline{S}) Heap of vertices in \bar{S} . Key of **v** is min-weight edge from **v** to **S**.

Trivial analysis:

- **►** Every spanning tree has $n-1$ edges \implies $n-1$ iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing $(S,\bar{S}) \implies$ O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

 \triangleright Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of **v** is min-weight edge from **v** to S.

► When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**

Trivial analysis:

- **►** Every spanning tree has $n-1$ edges \implies $n-1$ iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing (S, \bar{S}) \Longrightarrow O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

 \triangleright Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of **v** is min-weight edge from **v** to S.

- **►** When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
	- ▶ Happens at most *m* times total

Trivial analysis:

- **▸** Every spanning tree has n **−** 1 edges **Ô⇒** n **−** 1 iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing (S, \bar{S}) \Longrightarrow O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

 \triangleright Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of v is min-weight edge from v to S .

- **►** When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
	- **▶** Happens at most *m* times total
- **▶ n** Inserts, **n** Extract-Mins, **m** Decrease-Keys

Trivial analysis:

- **▸** Every spanning tree has n **−** 1 edges **Ô⇒** n **−** 1 iterations
- **▶** In each iteration, look through all edges to find min-weight edge crossing (S, \bar{S}) \Longrightarrow O**(**m**)** time
- \blacktriangleright Total $O(mn)$

Like Dijkstra's algorithm, do better by using a data structure: heap!

 \triangleright Need to be able to get minimum-weight edge across (S, \overline{S})

Heap of vertices in \bar{S} . Key of **v** is min-weight edge from **v** to **S**.

- **►** When new vertex **y** added to **S**, need to update keys of nodes adjacent to **y**
	- **▶** Happens at most *m* times total
- **▸** n Inserts, n Extract-Mins, m Decrease-Keys
- **▸** Like Dijkstra, O**(**m log n**)** using binary heap. O**(**m **+** n log n**)** with Fibonacci heap (only Extract-Min is logarithmic)

Kruskal's Algorithm

Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

Algorithm

Intuition: can we be even greedier than Prim's Algorithm?

```
A = \emptysetSort edges by weight (small to large)
For each edge e in this order {
   if A \cup \{e\} has no cycles, A = A \cup \{e\}}
return A
```
Theorem

Kruskal's algorithm computes an MST.

Want to show just Generic-MST: when **{**u, v**}** added, it was safe for A.

Theorem

Kruskal's algorithm computes an MST.
When you was safety when you was safety when you want to work PI LTS just Leneric MST

Want to show just Generic-MST: when $\{ \boldsymbol{\mathit{u}}, \boldsymbol{\mathit{v}} \}$ added, it was safe for \boldsymbol{A} .

Theorem

Kruskal's algorithm computes an MST. PI LTS just Leneric MST m WS i . \sim

Want to show just Generic-MST: when $\{ \boldsymbol{\mathit{u}}, \boldsymbol{\mathit{v}} \}$ added, it was safe for \boldsymbol{A} .

k ^v light for CC El Consider cut (C, \bar{C}) . Respects **A**, and $\{u, v\}$ light for it.

Theorem

Kruskal's algorithm computes an MST. PI LTS just Leneric MST m WS i . \sim

Want to show just Generic-MST: when $\{ \boldsymbol{\mathit{u}}, \boldsymbol{\mathit{v}} \}$ added, it was safe for \boldsymbol{A} .

 M ain structural theorem \implies $\{u, v\}$ safe for A Consider cut (C, \bar{C}) . Respects **A**, and $\{u, v\}$ light for it.

Sorting edges: $O(m \log m) = O(m \log n)$

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

▸ Make-Sets:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

▸ Make-Sets: n

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- **▸** Make-Sets: n
- **▸** Finds:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- **▸** Make-Sets: n
- **▸** Finds: 2m

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- **▸** Make-Sets: n
- **▸** Finds: 2m
- **▸** Unions:

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

- **▸** Make-Sets: n
- **▸** Finds: 2m
- **▸** Unions: n **−** 1

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

- **▸** Make-Sets: n
- **▸** Finds: 2m
- **▸** Unions: n **−** 1

 $O(m \log^* n)$ using union-by-rank $+$ path compression O**(**m **+** n log n**)** using list data structure

Sorting edges: $O(m \log m) = O(m \log n)$

Easy analysis: m iterations, DFS/BFS in each iteration to check if endpoints already connected.

▶ $O(m(m + n)) = O(m^2 + mn)$

Can we speak this up with data structures?

Union-Find! Connected components of A are disjoint sets.

- **▸** Make-Sets: n
- **▸** Finds: 2m
- **▸** Unions: n **−** 1

 $O(m \log^* n)$ using union-by-rank $+$ path compression O**(**m **+** n log n**)** using list data structure

Sorting dominates! O**(**m log n**)** total.