
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Max-Flow Min-Cut Date: 11/5/24

19.1 Introduction

We are given a directed graph G = (V,E) with positive capacities on the edges, c : E → R+. This
setup is sometimes called a flow network. We will slightly abuse notation and let c(u, v) = 0 if
(u, v) ̸∈ E, since this will let us simplify the notation a bit. We will also usually have two special
vertices, s and t. For reasons that will become clear, we usually call s the source and t the sink.
We will be concerned today with two different but very related concepts: flows and cuts. We’ll talk
a bit about algorithms, but most of the real algorithmic analysis will happen next lecture.

19.2 Flows

Flows are a pretty intuitive concept: a flow from s to t is basically a way of sending “stuff” from s
to t. Famous examples include sewer systems, railroad networks, and many others. More formally,
an (s, t)-flow is a function f : E → R≥0 such that∑

u:(u,v)∈E

f(u, v) =
∑

u:(v,u)∈E

f(v, u) (19.2.1)

for all vertices v ∈ V \ {s, t}. We might sometimes abuse notation and say that f(u, v) = 0 if
(u, v) ̸∈ E. These equalities are known as flow conservation: at every vertex other than the source
and the destination, the total flow in is equal to the total flow out.

The value of the flow, which is sometimes denoted by |f |, is the “total amount of stuff” that we’re
sending from the source to the sink. Since the flow conservation constraints imply that flow in =
flow out at all intermediate nodes, the total amount of stuff that we’re sending is equal to the total
amount of stuff leaving the source, which is equal to the total amount of stuff entering the sink. So

|f | =
∑

u:(s,u)∈E

f(s, u)−
∑

u:(u,s)∈E

f(u, s) =
∑

u:(u,t)∈E

f(u, t)−
∑

u:(t,u)∈E

f(t, u)

Of course, our flows have to live within the given capacities. So we also have capacity constraints
on our flow:

f(u, v) ≤ c(u, v) (19.2.2)

for all (u, v) ∈ E. A flow which satisfies the capacity constraints is sometimes called a feasible flow.
If f(u, v) = c(u, v) then we say that f saturates edge e, and if f(e) = 0 we say that f avoids edge
e. Let’s see an example:

1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

amount of material that can be transported from s to t; the minimum cut problem asks for the
minimum damage needed to separate s from t.

��.� Flows
An (s , t)-flow (or just a flow if the source and target are clear from context) is a function
f : E! R�0 that satisfies the following conservation constraint at every vertex v except possibly
s and t: X

u

f (u�v) =
X

w

f (v�w).

In English, the total flow into v is equal to the total flow out of v. To keep the notation simple,
we define f (u�v) = 0 if there is no edge u�v in the graph. The value of the flow f , denoted | f |,
is the total net flow out of the source vertex s:

| f | :=
X

w

f (s�w)�
X

u

f (u�s).

It’s not hard to prove that | f | is also equal to the total net flow into the target vertex t, as
follows. To simplify notation, let @ f (v) denote the total net flow out of any vertex v:

@ f (v) :=
X

u

f (u�v)�
X

w

f (v�w).

The conservation constraint implies that @ f (v) = 0 or every vertex v except s and t, so
X

v

@ f (v) = @ f (s) + @ f (t).

On the other hand, any flow that leaves one vertex must enter another vertex, so we must haveP
v @ f (v) = 0. It follows immediately that | f |= @ f (s) = �@ f (t).

Now suppose we have another function c : E! R�0 that assigns a non-negative capacity c(e)
to each edge e. We say that a flow f is feasible (with respect to c) if f (e) c(e) for every edge e.
Most of the time we will consider only flows that are feasible with respect to some fixed capacity
function c. We say that a flow f saturates edge e if f (e) = c(e), and avoids edge e if f (e) = 0.
The maximum flow problem is to compute a feasible (s, t)-flow in a given directed graph, with
a given capacity function, whose value is as large as possible.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

��.� Cuts
An (s , t)-cut (or just cut if the source and target are clear from context) is a partition of the
vertices into disjoint subsets S and T—meaning S [T = V and S \ T = ?—where s 2 S and
t 2 T .

�

We are going to be talking about algorithms for computing the maximum flow, i.e., a flow f which
maximizes |f |.

19.3 Cuts

An (s, t)-cut is a partition of the vertices into two sets (S, S̄) (recall that S̄ = V \ S) where
s ∈ S, t ∈ S̄. Much of the times we will simply talk about the cut S, since S̄ is implied by S. The
capacity of a cut (S, S̄) is the total capacity of the edges from S to S̄:

cap(S, S̄) =
∑

(u,v)∈E:u∈S,v∈S̄

c(u, v) =
∑
u∈S

∑
v∈S̄

c(u, v). (19.3.3)

Note that the capacity does not take into account the capacity of edges from S̄ to S. There are
other, essentially equivalent definitions of cuts in terms of edge sets, but we’re going to mostly stick
with this definition.

Let’s see another quick example:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

If we have a capacity function c : E! R�0, the capacity of a cut is the sum of the capacities
of the edges that start in S and end in T :

kS, Tk :=
X
v2S

X
w2T

c(v�w).

(Again, if v�w is not an edge in the graph, we assume c(v�w) = 0.) Notice that the definition is
asymmetric; edges that start in T and end in S are unimportant. The minimum cut problem is
to compute an (s, t)-cut whose capacity is as large as possible.

s t

20

10

10

5

10

15

10

20

15

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Intuitively, the minimum cut is the cheapest way to disrupt all flow from s to t. Indeed, it
is not hard to show that the value of any feasible (s , t)-flow is at most the capacity of any
(s , t)-cut. Choose your favorite flow f and your favorite cut (S, T), and then follow the bouncing
inequalities:

| f |=
X

w

f (s�w)�
X

u

f (u�s) by definition

=
X
v2S

✓X
w

f (v�w)�
X

u

f (u�v)

◆
by the conservation constraint

=
X
v2S

ÇX
w2T

f (v�w)�
X
u2T

f (u�v)

å
removing duplicate edges


X
v2S

X
w2T

f (v�w) since f (u�v)� 0


X
v2S

X
w2T

c(v�w) since f (u�v) c(v�w)

= kS, Tk by definition

Our derivation actually implies the following stronger observation: | f | = kS, Tk if and only if
f saturates every edge from S to T and avoids every edge from T to S. Moreover, if we have
a flow f and a cut (S, T) that satisfies this equality condition, f must be a maximum flow, and
(S, T) must be a minimum cut.

��.� The Maxflow Mincut Theorem
Surprisingly, for any weighted directed graph, there is always a flow f and a cut (S, T) that
satisfy the equality condition. This is the famous max-flow min-cut theorem, first proved by Lester
Ford (of shortest path fame) and Delbert Ferguson in ���� and independently by Peter Elias,
Amiel Feinstein, and and Claude Shannon (of information theory fame) in ����.

�

We will mostly be concerned with the minimum cut problem, where we try to compute the cut of
minimum capacity.

2

19.4 Max-Flow Min-Cut

It’s not hard to see that the minimum cut is at least the maximum flow. Slightly more generally, it’s
not hard to see that the value of any (s, t)-flow is at most the capacity of any (s, t) cut. Intuitively,
this is because if we have a cut of some capacity α, then since any flow has to “cross” the cut, it is
only possible to send α flow. Let’s prove this a bit more formally.

Lemma 19.4.1 Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then |f | ≤ cap(S, S̄).

Proof:

|f | =
∑
v

f(s, v)−
∑
v

f(v, s) (definition)

=
∑
u∈S

(∑
v

f(u, v)−
∑
v

f(v, u)

)
(flow conservation constraints)

=
∑
u∈S

∑
v∈S̄

f(u, v)−
∑
v∈S̄

f(v, u)

 (remove terms which cancel)

≤
∑
u∈S

∑
v∈S̄

f(u, v) (flow is nonnegative)

≤
∑
u∈S

∑
v∈S̄

c(u, v) (flow is feasible)

= cap(S, S̄)

This proof actually implies something a little stronger, which we’ll use later:

Corollary 19.4.2 Let f be a feasible (s, t)-flow and let (S, S̄) be an (s, t)-cut. If f saturates every
edge from S to S̄ and avoids every edge from S̄ to S, then |f | = cap(S, S̄) and f is a maximum
flow and (S, S̄) is a minimum cut.

What is not as easy to see is that this upper bound is actually tight: the maximum flow has value
equal to the capacity of the minimum cut. This is known as the Max-Flow Min-Cut theorem:

Theorem 19.4.3 In any flow network with source s and sink t, the value of the maximum flow is
equal to the capacity of the minimum cut.

We will spent the rest of the lecture proving this theorem. Note that Lemma 19.4.1 implies that
the value of the maximum flow is at most the capacity of the minimum cut.

While it is possible to prove this theorem structurally, we will give a proof which naturally leads to
an algorithm (albeit not a very fast algorithm). This approach is due to Ford and Fulkerson, and
the resulting algorithm is known as the Ford-Fulkerson algorithm. First, though, we’re going to do
a simple transformation which will make the notation a little easier. We want to assume that there
are no cycles of length 2 in the graph, i.e., that if (u, v) ∈ E then (v, u) ̸∈ E. This is definitely not
true in general, but it’s not hard to see that we can make it true without losing anything. To do
this, we will actually insert a new vertex. If both (u, v) and (v, u) are edges, we will add a new

3

node x and will replace the edge (v, u) with edge (v, x) and (x, u), each of which will have capacity
equal to c(v, u). It is not hard to see that this does not change the maximum flow or the minimum
cut (good exercise to do at home!).

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E! R�0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V ⇥ V ! R, called the
residual capacity, as follows:

c f (u�v) =

8
><
>:

c(u�v)� f (u�v) if u�v 2 E

f (v�u) if v�u 2 E

0 otherwise
.

Since f � 0 and f  c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph Gf = (V, Ef), where Ef is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph Gf .

Suppose there is no path from the source s to the target t in the residual graph Gf . Let S
be the set of vertices that are reachable from s in Gf , and let T = V \ S. The partition (S, T) is
clearly an (s, t)-cut. For every vertex u 2 S and v 2 T , we have

c f (u�v) = (c(u�v)� f (u�v)) + f (v�u) = 0,

which implies that c(u�v)� f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= kS, Tk. Moreover,
f is a maximum flow and (S, T) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in Gf . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount

�

Now let f be a feasible (s, t) flow. We can define what is called the residual capacities as follow:

cf (u, v) =


c(u, v)− f(u, v) if (u, v) ∈ E

f(v, u) if (v, u) ∈ E

0 otherwise

Let’s think about these residual capacities for a moment. First, note that since f(u, v) ≤ c(u, v)
and f(u, v) is nonnegative, all residual capacities are nonnegative. Second, note that there can be
a nonzero residual capacity even if there isn’t an edge (the second case of the equation). So we will
actually define the residual graph Gf = (V,Ef), where (u, v) ∈ Ef if cf (u, v) > 0. Note that in this
graph there might actually be cycles of length 2. For example:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E! R�0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V ⇥ V ! R, called the
residual capacity, as follows:

c f (u�v) =

8
><
>:

c(u�v)� f (u�v) if u�v 2 E

f (v�u) if v�u 2 E

0 otherwise
.

Since f � 0 and f  c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph Gf = (V, Ef), where Ef is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph Gf .

Suppose there is no path from the source s to the target t in the residual graph Gf . Let S
be the set of vertices that are reachable from s in Gf , and let T = V \ S. The partition (S, T) is
clearly an (s, t)-cut. For every vertex u 2 S and v 2 T , we have

c f (u�v) = (c(u�v)� f (u�v)) + f (v�u) = 0,

which implies that c(u�v)� f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= kS, Tk. Moreover,
f is a maximum flow and (S, T) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in Gf . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount

�

We can now prove Theorem 19.4.3 by using this residual graph and Corollary 19.4.2. We break
into two cases, and show that the theorem is true in the first case while the second case cannot
happen.

First, suppose that there is no path from s to t in the residual graph Gf . Let S be the vertices
reachable from s in Gf . Note that s ∈ S and t ̸∈ S, so (S, S̄) is an (s, t)-cut. For every u ∈ S and
v ∈ S̄ we know that cf (u, v) = 0 (or else v would be in S). If (u, v) ∈ E then this implies that
cf (u, v) = c(u, v)− f(u, v) = 0, and hence f(u, v) = c(u, v), so f saturates the edge (u, v). On the
other hand, if (v, u) ∈ E, then this implies that f(v, u) = 0, and hence f avoids the edge (v, u). So
f saturates every edge from S to S̄ and avoids every edge from S̄ to S. Thus by Corollary 19.4.2
we know that |f | = cap(S, S̄) and f is a maximum flow and (S, S̄) is a minimum cut. Hence the
maximum flow is equal to the minimum cut.

4

Now suppose that there is a path from s to t in Gf . We will try to derive a contradiction to show
that this cannot happen. Let this path be s = v0, v1, v2, . . . , vr = t, and call this path P . Without
loss of generality, we may assume that there are no cycles on this path (if there are cycles then
we can just find a shorter path without cycles). Such a path (from s to t in the residual graph) is
called an augmenting path. Let F = minr−1

i=0 cf (vi, vi+1). We are going to claim that we can “push”
F more flow from s to t, so f is not actually a maximum flow. This will prove Theorem 19.4.3.

Consider the new flow f ′ : E → R≥0 defined as follows:

f ′(u, v) =


f(u, v) + F if (u, v) in P

f(u, v)− F if (v, u) in P

f(u, v) otherwise

Let’s see a quick example:Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

s t

10

10

5

10

515 5

10

5

15

5

10

10

s t

10/20

5/10

5/10

5/5

10/10

5/15

0/10

10/20

0/15

An augmenting path in Gf with value F = 5 and the augmented flow f 0.

of flow that we can push through the augmenting path in Gf . We define a new flow function
f 0 : E! R as follows:

f 0(u�v) =

8
><
>:

f (u�v) + F if u�v is in the augmenting path
f (u�v)� F if v�u is in the augmenting path
f (u�v) otherwise

To prove that the flow f 0 is feasible with respect to the original capacities c, we need to verify
that f 0 � 0 and f 0  c. Consider an edge u�v in G. If u�v is in the augmenting path, then
f 0(u�v)> f (u�v)� 0 and

f 0(u�v) = f (u�v) + F by definition of f 0

 f (u�v) + c f (u�v) by definition of F

= f (u�v) + c(u�v)� f (u�v) by definition of c f

= c(u�v) Duh.

On the other hand, if the reversal v�u is in the augmenting path, then f 0(u�v) < f (u�v) 
c(u�v), which implies that

f 0(u�v) = f (u�v)� F by definition of f 0

� f (u�v)� c f (v�u) by definition of F

= f (u�v)� f (u�v) by definition of c f

= 0 Duh.

Finally, we observe that (without loss of generality) only the first edge in the augmenting path
leaves s, so | f 0|= | f |+ F > 0. In other words, f is not a maximum flow.

This completes the proof!

��.� Ford and Fulkerson’s augmenting-path algorithm
Ford and Fulkerson’s proof of the Maxflow-Mincut Theorem translates immediately to an
algorithm to compute maximum flows: Starting with the zero flow, repeatedly augment the flow
along any path from s to t in the residual graph, until there is no such path.

This algorithm has an important but straightforward corollary:

Integrality Theorem. If all capacities in a flow network are integers, then there is a maximum
flow such that the flow through every edge is an integer.

�

Note that P leaves the source s once and never comes back (since there are no cycles in P). Thus
|f ′| = |f | + F > |f |. So if we can show that f ′ is a feasible flow under the original capacities, we
will have a contradiction with our assumption that f is a maximum (s, t)-flow.

Let’s first show that flow conservation holds in f ′ at all nodes other than s and t. Consider some
node v. If P does not enter or leave v then f ′(u, v) = f(u, v) and f ′(v, u) = f(v, u) for all u,
so since flow conservation held under f , it also holds under f ′. Now consider some vi ∈ P with
vi ̸= s, t. Intuitively, since we pushed F new flow through P , whatever change happened to the
incoming flow to vi also happened to the outgoing flow. To prove this more formally, note that the
only edges with changed flow are the edge between vi and vi−1, and the edge between vi and vi+1.
So we just need to prove that the change in flow in these edges balances out. We’ll break into four
cases depending on the directions of the underlying edges.

1. (vi−1, vi) and (vi, vi+1). In this case the edges used by P are edges in G (not just in Gf).
Thus when using f ′ instead of f the total flow into vi goes up by F , but the total flow out of
vi also goes up by F , and hence flow conservation is maintained.

2. (vi−1, vi) and (vi+1, vi). In this case the edge leaving vi used by P is in Gf but not in G (the
reverse edge is in G). Thus f ′(vi−1, vi) = f(vi−1, vi) + F , and f ′(vi+1, vi) = f(vi+1, vi) − F .
So the total flow entering and leaving vi remains the same, so flow conservation is preserved.

5

3. (vi, vi−1) and (vi, vi+1). In this case the edge entering vi used by P is in Gf but not in G (the
reverse edge is in G). Thus, symmetric to the above case, when we push F flow along P to
get f ′ we are actually decreasing by F the amount of flow from vi to vi−1 and increasing by
F the amount of flow from vi to vi+1, so again flow conservation is preserved.

4. (vi, vi−1) and(vi+1, vi). In this case both edges used by P are actually reversed edges from
G. So when we switched from f to f ′ we decreased the amount of flow entering vi by F , and
also decreased the amount of flow leaving vi by F .

Now let’s show that 0 ≤ f ′(u, v) ≤ c(u, v) for all edges (u, v) ∈ E. Consider an edge (u, v) ∈ E. If
neither (u, v) nor (v, u) is in the augmenting path P , then 0 ≤ f ′(u, v) = f(u, v) ≤ c(u, v) (since f
is a feasible flow). Suppose that (u, v) is in P . Then f ′(u, v) = f(u, v) + F ≥ f(u, v) ≥ 0, and

f ′(u, v) = f(u, v) + F ≤ f(u, v) + cf (u, v) = f(u, v) + c(u, v)− f(u, v) = c(u, v).

On the other hand, suppose that (v, u) is in P . Then f ′(u, v) = f(u, v) − F ≤ f(u, v) ≤ c(u, v),
and

f ′(u, v) = f(u, v)− F ≥ f(u, v)− cf (v, u) = f(u, v)− f(u, v) = 0

Thus we have proved Theorem 19.4.3, the Max-Flow Min-Cut theorem.

19.5 Consequences: Algorithm and Integrality

There are a few interesting consequences of both Theorem 19.4.3 and of our proof of the Theorem.
Most importantly, it immediately implies an algorithm for computing a max flow and a min cut.
We start with zero flow (so Gf = G), find an augmenting path in Gf , and push as much flow as
we can along it. This flow now gives a new residual graph, and we just repeat this until there
is no longer a path from s to t in Gf . Once this happens, we know from Corollary 19.4.2 that
we have found a maximum flow, and from the proof of Theorem 19.4.3 we know that is we let S
be the nodes reachable from s in the final Gf , then (S, S̄) is a minimum cut. So even though we
didn’t phrase it algorithmically, our proof of Theorem 19.4.3 actually gives us an algorithm! This
is known as the Ford-Fulkerson algorithm.

Let’s see an example of running this algorithm. This is from the book, but there are an enormous
number of examples online – if you don’t understand the algorithm, I’d encourage you to look at
them.

6

We’ll spend most of next lecture actually analyzing the running time of this algorithm (and of
some variants), but before we do that, I want to point out a structural feature of this algorithm

7

which actually gives a very weak running time bound. Suppose that all of the capacities in our
network are integers. Then it is easy to see by induction that everything stays integral throughout
the running of the algorithm. So we actually have the following integrality theorem:

Theorem 19.5.1 If all capacities in a flow network are integers, then there is a maximum flow
such that the flow through every edge is an integer.

Moreover, in this case we also have an upper bound on the running time. If the maximum flow
possible is F and all capacities are integers, then in every iteration we push at least 1 unit of flow.
So there are at most F iterations. Each iteration simply requires finding a path from s to t in the
residual graph, which takes only O(m+ n) time by using DFS or BFS. Thus we get the following:

Theorem 19.5.2 If all capacities in a flow network are integers and the maximum flow value is
F , then the running time of Ford-Fulkerson is at most O(F (m+ n)).

Unfortunately this can be a large running time – it is not even polynomial in the size of the input.
And it can actually occur if we are not smart about how we pick augmenting paths. For example,
consider the following flow network, where X is some very large integer:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

If we first push 1 unit of flow along the path s−u− v− t, and then push one unit of flow along the
augmenting path s− v− u− t, etc., then in every iteration we will push exactly one unit of flow so
the number of iterations will be 2X. But the size of the input is at most O(1) + O(logX), so the
running time is exponential in the size of the input.

8

	Introduction
	Flows
	Cuts
	Max-Flow Min-Cut
	Consequences: Algorithm and Integrality

