Lecture 19: Max-Flow Min-Cut

Michael Dinitz

November 5, 2024 601.433/633 Introduction to Algorithms

Introduction

Flow Network:

- Directed graph G = (V, E)
- Capacities $c: E \to \mathbb{R}_{\geq 0}$ (simplify notation: c(x, y) = 0 if $(x, y) \notin E$)
- Source $s \in V$, sink $t \in V$

Today: flows and cuts

- Flow: "sending stuff" from *s* to *t*
- Cut: separating t from s

Turn out to be very related!

Today: some algorithms but not efficient. Mostly structure. Better algorithms Thursday.

Intuition: send "stuff" from \boldsymbol{s} to \boldsymbol{t}

▶ Water in a city water system, traffic along roads, trains along tracks, ...

Intuition: send "stuff" from \boldsymbol{s} to \boldsymbol{t}

▶ Water in a city water system, traffic along roads, trains along tracks, ...

Definition

An (s, t)-flow is a function $f : E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E}f(u,v)=\sum_{u:(v,u)\in E}f(v,u)$$

for all $\mathbf{v} \in \mathbf{V} \setminus \{s, t\}$. This constraint is known as *flow conservation*.

Intuition: send "stuff" from \boldsymbol{s} to \boldsymbol{t}

▶ Water in a city water system, traffic along roads, trains along tracks, ...

Definition

An (s, t)-flow is a function $f : E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E}f(u,v)=\sum_{u:(v,u)\in E}f(v,u)$$

for all $\mathbf{v} \in \mathbf{V} \setminus \{s, t\}$. This constraint is known as *flow conservation*.

Value of flow |f|: "total amount of stuff sent from *s* to *t*"

Intuition: send "stuff" from \boldsymbol{s} to \boldsymbol{t}

▶ Water in a city water system, traffic along roads, trains along tracks, ...

Definition

An (s, t)-flow is a function $f : E \to \mathbb{R}_{\geq 0}$ such that

$$\sum_{u:(u,v)\in E}f(u,v)=\sum_{u:(v,u)\in E}f(v,u)$$

for all $\mathbf{v} \in \mathbf{V} \setminus \{s, t\}$. This constraint is known as *flow conservation*.

Value of flow |f|: "total amount of stuff sent from *s* to *t*"

$$|f| = \sum_{u:(s,u)\in E} f(s,u) - \sum_{u:(u,s)\in E} f(u,s) = \sum_{u:(u,t)\in E} f(u,t) - \sum_{u:(t,u)\in E} f(t,u)$$

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- An (*s*, *t*)-flow satisfying capacity constraints is a *feasible* flow.
- If f(e) = c(e) then f saturates e.
- If f(e) = 0 then f avoids e.

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- An (*s*, *t*)-flow satisfying capacity constraints is a *feasible* flow.
- If f(e) = c(e) then f saturates e.
- If f(e) = 0 then f avoids e.

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- An (*s*, *t*)-flow satisfying capacity constraints is a *feasible* flow.
- If f(e) = c(e) then f saturates e.
- If f(e) = 0 then f avoids e.

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

Problem we'll talk about: find feasible flow of maximum value (max flow)

Michael Dinitz

Lecture 19: Max-Flow Min-Cut

Definition

An (s, t)-cut is a partition of V into (S, \overline{S}) such that $s \in S$, $t \notin S$

Definition

- An (s, t)-cut is a partition of V into (S, \overline{S}) such that $s \in S$, $t \notin S$
- The *capacity* of an (s, t)-cut (S, \overline{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)$$

Definition

- An (s, t)-cut is a partition of V into (S, \overline{S}) such that $s \in S$, $t \notin S$
- The *capacity* of an (s, t)-cut (S, \overline{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)$$

Definition

- An (s, t)-cut is a partition of V into (S, \overline{S}) such that $s \in S$, $t \notin S$
- The *capacity* of an (s, t)-cut (S, \overline{S}) is

$$cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)$$

Problem we'll talk about: find (s, t)-cut of minimum capacity (min cut)

Theorem

Let f be a feasible (s, t)-flow, and let (S, \overline{S}) be an (s, t)-cut. Then $|f| \leq cap(S, \overline{S})$.

Theorem

Let f be a feasible (s, t)-flow, and let (S, \overline{S}) be an (s, t)-cut. Then $|f| \leq cap(S, \overline{S})$.

$$|f| = \sum_{\mathbf{v} \in \mathbf{V}} f(s, \mathbf{v}) - \sum_{\mathbf{v} \in \mathbf{V}} f(\mathbf{v}, s)$$
(definition)

Theorem

Let f be a feasible (s, t)-flow, and let (S, \overline{S}) be an (s, t)-cut. Then $|f| \leq cap(S, \overline{S})$.

$$f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$

(definition)

(flow conservation constraints)

Theorem

Let f be a feasible (s, t)-flow, and let (S, \overline{S}) be an (s, t)-cut. Then $|f| \leq cap(S, \overline{S})$.

$$f| = \sum_{\mathbf{v}\in \mathbf{V}} f(s, \mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v}, s)$$
$$= \sum_{u\in S} \left(\sum_{\mathbf{v}\in \mathbf{V}} f(u, \mathbf{v}) - \sum_{\mathbf{v}\in \mathbf{V}} f(\mathbf{v}, u) \right)$$
$$= \sum_{u\in S} \left(\sum_{\mathbf{v}\in \bar{S}} f(u, \mathbf{v}) - \sum_{\mathbf{v}\in \bar{S}} f(\mathbf{v}, u) \right)$$

(definition)

(flow conservation constraints)

(remove terms which cancel)

Theorem

Let f be a feasible (s, t)-flow, and let (S, \overline{S}) be an (s, t)-cut. Then $|f| \leq cap(S, \overline{S})$.

$$f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$

= $\sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$
= $\sum_{u \in S} \left(\sum_{v \in \overline{S}} f(u, v) - \sum_{v \in \overline{S}} f(v, u) \right)$
 $\leq \sum_{u \in S} \sum_{v \in \overline{S}} f(u, v)$

(definition)

(flow conservation constraints)

(remove terms which cancel)

(flow is nonnegative)

Theorem

Let f be a feasible (s, t)-flow, and let (S, \overline{S}) be an (s, t)-cut. Then $|f| \leq cap(S, \overline{S})$.

$$f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)$$
(definition)
$$= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)$$
(flow conservation constraints)
$$= \sum_{u \in S} \left(\sum_{v \in \bar{S}} f(u, v) - \sum_{v \in \bar{S}} f(v, u) \right)$$
(remove terms which cancel)
$$\leq \sum_{u \in S} \sum_{v \in \bar{S}} f(u, v)$$
(flow is nonnegative)
$$\leq \sum_{u \in S} \sum_{v \in \bar{S}} c(u, v) = cap(S, \bar{S})$$
(flow is feasible)

Max-Flow Min-Cut

Corollary

If **f** avoids every $\overline{S} \to S$ edge and saturates every $S \to \overline{S}$ edge, then **f** is a maximum flow and (S, \overline{S}) is a minimum cut.

Max-Flow Min-Cut

Corollary

If **f** avoids every $\overline{S} \to S$ edge and saturates every $S \to \overline{S}$ edge, then **f** is a maximum flow and (S, \overline{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t)-flow = capacity of min (s, t)-cut.

Max-Flow Min-Cut

Corollary

If **f** avoids every $\overline{S} \to S$ edge and saturates every $S \to \overline{S}$ edge, then **f** is a maximum flow and (S, \overline{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t)-flow = capacity of min (s, t)-cut.

Spend rest of today proving this.

- Many different valid proofs.
- We'll see a classical proof which will naturally lead to algorithms for these problems.

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

- Doesn't change max-flow or min-cut
- ▶ Increases #edges by constant factor, # nodes to original # edges.

Residual

Let f be feasible (s, t)-flow. Define *residual capacities*:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual

Let f be feasible (s, t)-flow. Define *residual capacities*:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual

Let **f** be feasible (**s**, **t**)-flow. Define *residual capacities*:

$$c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \\ 0 & \text{otherwise} \end{cases}$$

Residual Graph: $G_f = (V, E_f)$ where $(u, v) \in E_f$ if $c_f(u, v) > 0$.

A flow f in a weighted graph G and the corresponding residual graph G_f .

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

•
$$(S, \overline{S})$$
 an (s, t) -cut. \checkmark

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

(S, \$\overline{S}\$) an (s, t)-cut. √
 c_f(a, b) =

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

(S, S̄) an (s, t)-cut. √
 c_f(a, b) = 0

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

►
$$(S, \overline{S})$$
 an (s, t) -cut. \checkmark
► $c_f(a, b) = 0$
 $\implies c(a, b) - f(a, b) = 0$
 $\implies c(a, b) = f(a, b)$

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

(S, S̄) an (s, t)-cut. ✓
 c_f(a, b) = 0

$$\implies c(a, b) - f(a, b) = 0$$
 $\implies c(a, b) - f(a, b) = 0$
 $\implies c(a, b) = f(a, b)$

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

(S, S̄) an (s, t)-cut. ✓
 c_f(a, b) = 0

$$\implies c(a, b) - f(a, b) = 0$$
 $\implies c(a, b) - f(a, b) = 0$
 $\implies c(a, b) = f(a, b)$

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let f be a max (s, t)-flow with residual graph G_f . Want to Show: There is a cut (S, \overline{S}) with $cap(S, \overline{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{ \text{vertices reachable from } s \text{ in } G_f \}$

f saturates $S \to \overline{S}$ edges, avoids $\overline{S} \to S$ edges $\implies cap(S, \overline{S}) = |f|$ by corollary

- Suppose \exists an $s \rightarrow t$ path P in G_f .
 - Called an *augmenting path*

Idea: show that we can "push" more flow along P, so f not a max flow. Contradiction, can't be in this case.

- Suppose \exists an $s \rightarrow t$ path P in G_f .
 - Called an *augmenting path*

Idea: show that we can "push" more flow along P, so f not a max flow. Contradiction, can't be in this case.

▶ Foreshadowing: augmenting path allows us to send more flow. Algorithm to increase flow!

Intuition

An augmenting path in G_f with value F = 5 and the augmented flow f'.

Let **P** be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$. Define new flow f': for all $(u, v) \in E$, let

$$f'(u, v) = \begin{cases} f(u, v) + F & \text{if } (u, v) \text{ in } P \\ f(u, v) - F & \text{if } (v, u) \text{ in } P \\ f(u, v) & \text{otherwise} \end{cases}$$

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$. Define new flow f': for all $(u, v) \in E$, let

$$f'(u, v) = \begin{cases} f(u, v) + F & \text{if } (u, v) \text{ in } P \\ f(u, v) - F & \text{if } (v, u) \text{ in } P \\ f(u, v) & \text{otherwise} \end{cases}$$

Claim: f' is a feasible (s, t)-flow with |f'| > |f|.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$. Define new flow f': for all $(u, v) \in E$, let

$$f'(u, v) = \begin{cases} f(u, v) + F & \text{if } (u, v) \text{ in } P \\ f(u, v) - F & \text{if } (v, u) \text{ in } P \\ f(u, v) & \text{otherwise} \end{cases}$$

Claim: f' is a feasible (s, t)-flow with |f'| > |f|.

Plan: prove (sketch) each subclaim individually

- ▶ |f'| > |f|
- ▶ **f**′ an (**s**, **t**)-flow (flow conservation)
- f' feasible (obeys capacities)

|f'| > |f|

Consider first edge of P (out of s), say (s, v_1)

- If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$

|f'| > |f|

Consider first edge of P (out of s), say (s, v_1)

• If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$

• If
$$(v_1, s) \in E$$
 then $f'(v_1, s) = f(v_1, s) - F$

f' obeys flow conservation

Consider some $u \in V \setminus \{s, t\}$.

f' obeys flow conservation

Consider some $\boldsymbol{u} \in \boldsymbol{V} \setminus \{\boldsymbol{s}, \boldsymbol{t}\}$.

• If $u \notin P$, no change in flow at $u \implies$ still balanced.

f' obeys flow conservation

Consider some $\boldsymbol{u} \in \boldsymbol{V} \setminus \{\boldsymbol{s}, \boldsymbol{t}\}$.

- If $u \notin P$, no change in flow at $u \implies$ still balanced.
- If $u \in P$, four possibilities:

Let $(u, v) \in E$

Let $(u, v) \in E$

• If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$

Let $(u, v) \in E$

• If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$

▶ If (*u*, *v*) ∈ *P*:

Let $(u, v) \in E$

- If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$
 - ▶ If (*u*, *v*) ∈ *P*:

$$f'(u, v) = f(u, v) + F$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

Let $(u, v) \in E$

- If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$
- If (u, v) ∈ P:
 If (v, u) ∈ P:

$$f'(u, v) = f(u, v) + F$$

$$\leq f(u, v) + c_f(u, v)$$

$$= f(u, v) + c(u, v) - f(u, v)$$

$$= c(u, v)$$

Let $(u, v) \in E$ • If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \le c(u, v)$ ▶ If (*v*, *u*) ∈ *P*: ▶ If (*u*, *v*) ∈ *P*: f'(u, v) = f(u, v) + Ff'(u,v) = f(u,v) - F $\leq f(u, v) + c_f(u, v)$ $\geq f(u, v) - c_f(v, u)$ = f(u, v) + c(u, v) - f(u, v)= f(u, v) - f(u, v)= c(u, v)= 0

Ford-Fulkerson Algorithm and Integrality

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0}
while(\exists s \rightarrow t path P in G_f) {
F = \min_{e \in P} c_f(e)
Push F flow along P to get new flow f'
f = f'
}
return f
```

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0}
while(\exists s \rightarrow t path P in G_f) {
F = \min_{e \in P} c_f(e)
Push F flow along P to get new flow f'
f = f'
}
return f or {v \in V : v reachable from s in G_f}
```

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0}
while(\exists s \rightarrow t path P in G_f) {
F = \min_{e \in P} c_f(e)
Push F flow along P to get new flow f'
f = f'
}
return f or {v \in V : v reachable from s in G_f}
```

Correctness: directly from previous proof

Example

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Proof.

Induction on iterations of the Ford-Fulkerson algorithm: initially true, stays true \implies true at end.

Theorem

If all capacities are integers and the max flow value is F, Ford-Fulkerson takes time at most O(F(m + n))

Theorem

If all capacities are integers and the max flow value is F, Ford-Fulkerson takes time at most O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Theorem

If all capacities are integers and the max flow value is F, Ford-Fulkerson takes time at most O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations.

Theorem

If all capacities are integers and the max flow value is F, Ford-Fulkerson takes time at most O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations. This example:

Running time: $\Omega(x)$

Theorem

If all capacities are integers and the max flow value is F, Ford-Fulkerson takes time at most O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations. This example:

- Running time: $\Omega(x)$
- Input size $O(\log x) + O(1)$

Theorem

If all capacities are integers and the max flow value is F, Ford-Fulkerson takes time at most O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

A bad example for the Ford-Fulkerson algorithm.

Running time $\geq \#$ iterations. This example:

- Running time: $\Omega(x)$
- Input size $O(\log x) + O(1)$

→ Exponential time!