
Lecture 19: Max-Flow Min-Cut

Michael Dinitz

November 5, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 1 / 21

Introduction

Flow Network:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0 (simplify notation: c(x,y) = 0 if (x,y) /∈ E)

▸ Source s ∈ V , sink t ∈ V

Today: flows and cuts

▸ Flow: “sending stuff” from s to t
▸ Cut: separating t from s

Turn out to be very related!

Today: some algorithms but not efficient. Mostly structure. Better algorithms Thursday.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 2 / 21

Flows

Intuition: send “stuff” from s to t
▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t)-flow is a function f ∶ E → R≥0 such that

∑
u∶(u,v)∈E

f (u,v) = ∑
u∶(v ,u)∈E

f (v ,u)

for all v ∈ V ∖ {s, t}. This constraint is known as flow conservation.

Value of flow ∣f ∣: “total amount of stuff sent from s to t”

∣f ∣ = ∑
u∶(s,u)∈E

f (s,u) − ∑
u∶(u,s)∈E

f (u, s) = ∑
u∶(u,t)∈E

f (u, t) − ∑
u∶(t,u)∈E

f (t,u)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 3 / 21

Flows

Intuition: send “stuff” from s to t
▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t)-flow is a function f ∶ E → R≥0 such that

∑
u∶(u,v)∈E

f (u,v) = ∑
u∶(v ,u)∈E

f (v ,u)

for all v ∈ V ∖ {s, t}. This constraint is known as flow conservation.

Value of flow ∣f ∣: “total amount of stuff sent from s to t”

∣f ∣ = ∑
u∶(s,u)∈E

f (s,u) − ∑
u∶(u,s)∈E

f (u, s) = ∑
u∶(u,t)∈E

f (u, t) − ∑
u∶(t,u)∈E

f (t,u)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 3 / 21

Flows

Intuition: send “stuff” from s to t
▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t)-flow is a function f ∶ E → R≥0 such that

∑
u∶(u,v)∈E

f (u,v) = ∑
u∶(v ,u)∈E

f (v ,u)

for all v ∈ V ∖ {s, t}. This constraint is known as flow conservation.

Value of flow ∣f ∣: “total amount of stuff sent from s to t”

∣f ∣ = ∑
u∶(s,u)∈E

f (s,u) − ∑
u∶(u,s)∈E

f (u, s) = ∑
u∶(u,t)∈E

f (u, t) − ∑
u∶(t,u)∈E

f (t,u)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 3 / 21

Flows

Intuition: send “stuff” from s to t
▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t)-flow is a function f ∶ E → R≥0 such that

∑
u∶(u,v)∈E

f (u,v) = ∑
u∶(v ,u)∈E

f (v ,u)

for all v ∈ V ∖ {s, t}. This constraint is known as flow conservation.

Value of flow ∣f ∣: “total amount of stuff sent from s to t”

∣f ∣ = ∑
u∶(s,u)∈E

f (s,u) − ∑
u∶(u,s)∈E

f (u, s) = ∑
u∶(u,t)∈E

f (u, t) − ∑
u∶(t,u)∈E

f (t,u)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 3 / 21

Feasible Flows
Capacity constraints: 0 ≤ f (u,v) ≤ c(u,v) for all (u,v) ∈ V ×V

Definitions:

▸ An (s, t)-flow satisfying capacity constraints is a feasible flow.

▸ If f (e) = c(e) then f saturates e.
▸ If f (e) = 0 then f avoids e.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

amount of material that can be transported from s to t; the minimum cut problem asks for the
minimum damage needed to separate s from t.

��.� Flows
An (s , t)-flow (or just a flow if the source and target are clear from context) is a function
f : E! R�0 that satisfies the following conservation constraint at every vertex v except possibly
s and t: X

u

f (u�v) =
X

w

f (v�w).

In English, the total flow into v is equal to the total flow out of v. To keep the notation simple,
we define f (u�v) = 0 if there is no edge u�v in the graph. The value of the flow f , denoted | f |,
is the total net flow out of the source vertex s:

| f | :=
X

w

f (s�w)�
X

u

f (u�s).

It’s not hard to prove that | f | is also equal to the total net flow into the target vertex t, as
follows. To simplify notation, let @ f (v) denote the total net flow out of any vertex v:

@ f (v) :=
X

u

f (u�v)�
X

w

f (v�w).

The conservation constraint implies that @ f (v) = 0 or every vertex v except s and t, so
X

v

@ f (v) = @ f (s) + @ f (t).

On the other hand, any flow that leaves one vertex must enter another vertex, so we must haveP
v @ f (v) = 0. It follows immediately that | f |= @ f (s) = �@ f (t).

Now suppose we have another function c : E! R�0 that assigns a non-negative capacity c(e)
to each edge e. We say that a flow f is feasible (with respect to c) if f (e) c(e) for every edge e.
Most of the time we will consider only flows that are feasible with respect to some fixed capacity
function c. We say that a flow f saturates edge e if f (e) = c(e), and avoids edge e if f (e) = 0.
The maximum flow problem is to compute a feasible (s, t)-flow in a given directed graph, with
a given capacity function, whose value is as large as possible.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

��.� Cuts
An (s , t)-cut (or just cut if the source and target are clear from context) is a partition of the
vertices into disjoint subsets S and T—meaning S [T = V and S \ T = ?—where s 2 S and
t 2 T .

�

Problem we’ll talk about: find feasible flow of maximum value (max flow)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 4 / 21

Feasible Flows
Capacity constraints: 0 ≤ f (u,v) ≤ c(u,v) for all (u,v) ∈ V ×V

Definitions:

▸ An (s, t)-flow satisfying capacity constraints is a feasible flow.

▸ If f (e) = c(e) then f saturates e.
▸ If f (e) = 0 then f avoids e.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

amount of material that can be transported from s to t; the minimum cut problem asks for the
minimum damage needed to separate s from t.

��.� Flows
An (s , t)-flow (or just a flow if the source and target are clear from context) is a function
f : E! R�0 that satisfies the following conservation constraint at every vertex v except possibly
s and t: X

u

f (u�v) =
X

w

f (v�w).

In English, the total flow into v is equal to the total flow out of v. To keep the notation simple,
we define f (u�v) = 0 if there is no edge u�v in the graph. The value of the flow f , denoted | f |,
is the total net flow out of the source vertex s:

| f | :=
X

w

f (s�w)�
X

u

f (u�s).

It’s not hard to prove that | f | is also equal to the total net flow into the target vertex t, as
follows. To simplify notation, let @ f (v) denote the total net flow out of any vertex v:

@ f (v) :=
X

u

f (u�v)�
X

w

f (v�w).

The conservation constraint implies that @ f (v) = 0 or every vertex v except s and t, so
X

v

@ f (v) = @ f (s) + @ f (t).

On the other hand, any flow that leaves one vertex must enter another vertex, so we must haveP
v @ f (v) = 0. It follows immediately that | f |= @ f (s) = �@ f (t).

Now suppose we have another function c : E! R�0 that assigns a non-negative capacity c(e)
to each edge e. We say that a flow f is feasible (with respect to c) if f (e) c(e) for every edge e.
Most of the time we will consider only flows that are feasible with respect to some fixed capacity
function c. We say that a flow f saturates edge e if f (e) = c(e), and avoids edge e if f (e) = 0.
The maximum flow problem is to compute a feasible (s, t)-flow in a given directed graph, with
a given capacity function, whose value is as large as possible.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

��.� Cuts
An (s , t)-cut (or just cut if the source and target are clear from context) is a partition of the
vertices into disjoint subsets S and T—meaning S [T = V and S \ T = ?—where s 2 S and
t 2 T .

�

Problem we’ll talk about: find feasible flow of maximum value (max flow)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 4 / 21

Feasible Flows
Capacity constraints: 0 ≤ f (u,v) ≤ c(u,v) for all (u,v) ∈ V ×V

Definitions:

▸ An (s, t)-flow satisfying capacity constraints is a feasible flow.

▸ If f (e) = c(e) then f saturates e.
▸ If f (e) = 0 then f avoids e.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

amount of material that can be transported from s to t; the minimum cut problem asks for the
minimum damage needed to separate s from t.

��.� Flows
An (s , t)-flow (or just a flow if the source and target are clear from context) is a function
f : E! R�0 that satisfies the following conservation constraint at every vertex v except possibly
s and t: X

u

f (u�v) =
X

w

f (v�w).

In English, the total flow into v is equal to the total flow out of v. To keep the notation simple,
we define f (u�v) = 0 if there is no edge u�v in the graph. The value of the flow f , denoted | f |,
is the total net flow out of the source vertex s:

| f | :=
X

w

f (s�w)�
X

u

f (u�s).

It’s not hard to prove that | f | is also equal to the total net flow into the target vertex t, as
follows. To simplify notation, let @ f (v) denote the total net flow out of any vertex v:

@ f (v) :=
X

u

f (u�v)�
X

w

f (v�w).

The conservation constraint implies that @ f (v) = 0 or every vertex v except s and t, so
X

v

@ f (v) = @ f (s) + @ f (t).

On the other hand, any flow that leaves one vertex must enter another vertex, so we must haveP
v @ f (v) = 0. It follows immediately that | f |= @ f (s) = �@ f (t).

Now suppose we have another function c : E! R�0 that assigns a non-negative capacity c(e)
to each edge e. We say that a flow f is feasible (with respect to c) if f (e) c(e) for every edge e.
Most of the time we will consider only flows that are feasible with respect to some fixed capacity
function c. We say that a flow f saturates edge e if f (e) = c(e), and avoids edge e if f (e) = 0.
The maximum flow problem is to compute a feasible (s, t)-flow in a given directed graph, with
a given capacity function, whose value is as large as possible.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

��.� Cuts
An (s , t)-cut (or just cut if the source and target are clear from context) is a partition of the
vertices into disjoint subsets S and T—meaning S [T = V and S \ T = ?—where s 2 S and
t 2 T .

�

Problem we’ll talk about: find feasible flow of maximum value (max flow)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 4 / 21

Feasible Flows
Capacity constraints: 0 ≤ f (u,v) ≤ c(u,v) for all (u,v) ∈ V ×V

Definitions:

▸ An (s, t)-flow satisfying capacity constraints is a feasible flow.

▸ If f (e) = c(e) then f saturates e.
▸ If f (e) = 0 then f avoids e.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

amount of material that can be transported from s to t; the minimum cut problem asks for the
minimum damage needed to separate s from t.

��.� Flows
An (s , t)-flow (or just a flow if the source and target are clear from context) is a function
f : E! R�0 that satisfies the following conservation constraint at every vertex v except possibly
s and t: X

u

f (u�v) =
X

w

f (v�w).

In English, the total flow into v is equal to the total flow out of v. To keep the notation simple,
we define f (u�v) = 0 if there is no edge u�v in the graph. The value of the flow f , denoted | f |,
is the total net flow out of the source vertex s:

| f | :=
X

w

f (s�w)�
X

u

f (u�s).

It’s not hard to prove that | f | is also equal to the total net flow into the target vertex t, as
follows. To simplify notation, let @ f (v) denote the total net flow out of any vertex v:

@ f (v) :=
X

u

f (u�v)�
X

w

f (v�w).

The conservation constraint implies that @ f (v) = 0 or every vertex v except s and t, so
X

v

@ f (v) = @ f (s) + @ f (t).

On the other hand, any flow that leaves one vertex must enter another vertex, so we must haveP
v @ f (v) = 0. It follows immediately that | f |= @ f (s) = �@ f (t).

Now suppose we have another function c : E! R�0 that assigns a non-negative capacity c(e)
to each edge e. We say that a flow f is feasible (with respect to c) if f (e) c(e) for every edge e.
Most of the time we will consider only flows that are feasible with respect to some fixed capacity
function c. We say that a flow f saturates edge e if f (e) = c(e), and avoids edge e if f (e) = 0.
The maximum flow problem is to compute a feasible (s, t)-flow in a given directed graph, with
a given capacity function, whose value is as large as possible.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15

An (s, t)-flow with value 10. Each edge is labeled with its flow/capacity.

��.� Cuts
An (s , t)-cut (or just cut if the source and target are clear from context) is a partition of the
vertices into disjoint subsets S and T—meaning S [T = V and S \ T = ?—where s 2 S and
t 2 T .

�

Problem we’ll talk about: find feasible flow of maximum value (max flow)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 4 / 21

Cuts

Definition

▸ An (s, t)-cut is a partition of V into (S, S̄) such that s ∈ S , t /∈ S

▸ The capacity of an (s, t)-cut (S, S̄) is

cap(S, S̄) = ∑
(u,v)∈E ∶u∈S,v∈S̄

c(u,v) = ∑
u∈S
∑
v∈S̄

c(u,v)

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

If we have a capacity function c : E! R�0, the capacity of a cut is the sum of the capacities
of the edges that start in S and end in T :

kS, Tk :=
X
v2S

X
w2T

c(v�w).

(Again, if v�w is not an edge in the graph, we assume c(v�w) = 0.) Notice that the definition is
asymmetric; edges that start in T and end in S are unimportant. The minimum cut problem is
to compute an (s, t)-cut whose capacity is as large as possible.

s t

20

10

10

5

10

15

10

20

15

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Intuitively, the minimum cut is the cheapest way to disrupt all flow from s to t. Indeed, it
is not hard to show that the value of any feasible (s , t)-flow is at most the capacity of any
(s , t)-cut. Choose your favorite flow f and your favorite cut (S, T), and then follow the bouncing
inequalities:

| f |=
X

w

f (s�w)�
X

u

f (u�s) by definition

=
X
v2S

✓X
w

f (v�w)�
X

u

f (u�v)

◆
by the conservation constraint

=
X
v2S

ÇX
w2T

f (v�w)�
X
u2T

f (u�v)

å
removing duplicate edges

X
v2S

X
w2T

f (v�w) since f (u�v)� 0

X
v2S

X
w2T

c(v�w) since f (u�v) c(v�w)

= kS, Tk by definition

Our derivation actually implies the following stronger observation: | f | = kS, Tk if and only if
f saturates every edge from S to T and avoids every edge from T to S. Moreover, if we have
a flow f and a cut (S, T) that satisfies this equality condition, f must be a maximum flow, and
(S, T) must be a minimum cut.

��.� The Maxflow Mincut Theorem
Surprisingly, for any weighted directed graph, there is always a flow f and a cut (S, T) that
satisfy the equality condition. This is the famous max-flow min-cut theorem, first proved by Lester
Ford (of shortest path fame) and Delbert Ferguson in ���� and independently by Peter Elias,
Amiel Feinstein, and and Claude Shannon (of information theory fame) in ����.

�

Problem we’ll talk about: find (s, t)-cut of
minimum capacity (min cut)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 5 / 21

Cuts

Definition

▸ An (s, t)-cut is a partition of V into (S, S̄) such that s ∈ S , t /∈ S
▸ The capacity of an (s, t)-cut (S, S̄) is

cap(S, S̄) = ∑
(u,v)∈E ∶u∈S,v∈S̄

c(u,v) = ∑
u∈S
∑
v∈S̄

c(u,v)

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

If we have a capacity function c : E! R�0, the capacity of a cut is the sum of the capacities
of the edges that start in S and end in T :

kS, Tk :=
X
v2S

X
w2T

c(v�w).

(Again, if v�w is not an edge in the graph, we assume c(v�w) = 0.) Notice that the definition is
asymmetric; edges that start in T and end in S are unimportant. The minimum cut problem is
to compute an (s, t)-cut whose capacity is as large as possible.

s t

20

10

10

5

10

15

10

20

15

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Intuitively, the minimum cut is the cheapest way to disrupt all flow from s to t. Indeed, it
is not hard to show that the value of any feasible (s , t)-flow is at most the capacity of any
(s , t)-cut. Choose your favorite flow f and your favorite cut (S, T), and then follow the bouncing
inequalities:

| f |=
X

w

f (s�w)�
X

u

f (u�s) by definition

=
X
v2S

✓X
w

f (v�w)�
X

u

f (u�v)

◆
by the conservation constraint

=
X
v2S

ÇX
w2T

f (v�w)�
X
u2T

f (u�v)

å
removing duplicate edges

X
v2S

X
w2T

f (v�w) since f (u�v)� 0

X
v2S

X
w2T

c(v�w) since f (u�v) c(v�w)

= kS, Tk by definition

Our derivation actually implies the following stronger observation: | f | = kS, Tk if and only if
f saturates every edge from S to T and avoids every edge from T to S. Moreover, if we have
a flow f and a cut (S, T) that satisfies this equality condition, f must be a maximum flow, and
(S, T) must be a minimum cut.

��.� The Maxflow Mincut Theorem
Surprisingly, for any weighted directed graph, there is always a flow f and a cut (S, T) that
satisfy the equality condition. This is the famous max-flow min-cut theorem, first proved by Lester
Ford (of shortest path fame) and Delbert Ferguson in ���� and independently by Peter Elias,
Amiel Feinstein, and and Claude Shannon (of information theory fame) in ����.

�

Problem we’ll talk about: find (s, t)-cut of
minimum capacity (min cut)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 5 / 21

Cuts

Definition

▸ An (s, t)-cut is a partition of V into (S, S̄) such that s ∈ S , t /∈ S
▸ The capacity of an (s, t)-cut (S, S̄) is

cap(S, S̄) = ∑
(u,v)∈E ∶u∈S,v∈S̄

c(u,v) = ∑
u∈S
∑
v∈S̄

c(u,v)

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

If we have a capacity function c : E! R�0, the capacity of a cut is the sum of the capacities
of the edges that start in S and end in T :

kS, Tk :=
X
v2S

X
w2T

c(v�w).

(Again, if v�w is not an edge in the graph, we assume c(v�w) = 0.) Notice that the definition is
asymmetric; edges that start in T and end in S are unimportant. The minimum cut problem is
to compute an (s, t)-cut whose capacity is as large as possible.

s t

20

10

10

5

10

15

10

20

15

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Intuitively, the minimum cut is the cheapest way to disrupt all flow from s to t. Indeed, it
is not hard to show that the value of any feasible (s , t)-flow is at most the capacity of any
(s , t)-cut. Choose your favorite flow f and your favorite cut (S, T), and then follow the bouncing
inequalities:

| f |=
X

w

f (s�w)�
X

u

f (u�s) by definition

=
X
v2S

✓X
w

f (v�w)�
X

u

f (u�v)

◆
by the conservation constraint

=
X
v2S

ÇX
w2T

f (v�w)�
X
u2T

f (u�v)

å
removing duplicate edges

X
v2S

X
w2T

f (v�w) since f (u�v)� 0

X
v2S

X
w2T

c(v�w) since f (u�v) c(v�w)

= kS, Tk by definition

Our derivation actually implies the following stronger observation: | f | = kS, Tk if and only if
f saturates every edge from S to T and avoids every edge from T to S. Moreover, if we have
a flow f and a cut (S, T) that satisfies this equality condition, f must be a maximum flow, and
(S, T) must be a minimum cut.

��.� The Maxflow Mincut Theorem
Surprisingly, for any weighted directed graph, there is always a flow f and a cut (S, T) that
satisfy the equality condition. This is the famous max-flow min-cut theorem, first proved by Lester
Ford (of shortest path fame) and Delbert Ferguson in ���� and independently by Peter Elias,
Amiel Feinstein, and and Claude Shannon (of information theory fame) in ����.

�

Problem we’ll talk about: find (s, t)-cut of
minimum capacity (min cut)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 5 / 21

Cuts

Definition

▸ An (s, t)-cut is a partition of V into (S, S̄) such that s ∈ S , t /∈ S
▸ The capacity of an (s, t)-cut (S, S̄) is

cap(S, S̄) = ∑
(u,v)∈E ∶u∈S,v∈S̄

c(u,v) = ∑
u∈S
∑
v∈S̄

c(u,v)

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

If we have a capacity function c : E! R�0, the capacity of a cut is the sum of the capacities
of the edges that start in S and end in T :

kS, Tk :=
X
v2S

X
w2T

c(v�w).

(Again, if v�w is not an edge in the graph, we assume c(v�w) = 0.) Notice that the definition is
asymmetric; edges that start in T and end in S are unimportant. The minimum cut problem is
to compute an (s, t)-cut whose capacity is as large as possible.

s t

20

10

10

5

10

15

10

20

15

An (s, t)-cut with capacity 15. Each edge is labeled with its capacity.

Intuitively, the minimum cut is the cheapest way to disrupt all flow from s to t. Indeed, it
is not hard to show that the value of any feasible (s , t)-flow is at most the capacity of any
(s , t)-cut. Choose your favorite flow f and your favorite cut (S, T), and then follow the bouncing
inequalities:

| f |=
X

w

f (s�w)�
X

u

f (u�s) by definition

=
X
v2S

✓X
w

f (v�w)�
X

u

f (u�v)

◆
by the conservation constraint

=
X
v2S

ÇX
w2T

f (v�w)�
X
u2T

f (u�v)

å
removing duplicate edges

X
v2S

X
w2T

f (v�w) since f (u�v)� 0

X
v2S

X
w2T

c(v�w) since f (u�v) c(v�w)

= kS, Tk by definition

Our derivation actually implies the following stronger observation: | f | = kS, Tk if and only if
f saturates every edge from S to T and avoids every edge from T to S. Moreover, if we have
a flow f and a cut (S, T) that satisfies this equality condition, f must be a maximum flow, and
(S, T) must be a minimum cut.

��.� The Maxflow Mincut Theorem
Surprisingly, for any weighted directed graph, there is always a flow f and a cut (S, T) that
satisfy the equality condition. This is the famous max-flow min-cut theorem, first proved by Lester
Ford (of shortest path fame) and Delbert Ferguson in ���� and independently by Peter Elias,
Amiel Feinstein, and and Claude Shannon (of information theory fame) in ����.

�

Problem we’ll talk about: find (s, t)-cut of
minimum capacity (min cut)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 5 / 21

Warmup Theorem

Theorem

Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then ∣f ∣ ≤ cap(S, S̄).

∣f ∣ = ∑
v∈V

f (s,v) − ∑
v∈V

f (v , s) (definition)

= ∑
u∈S
(∑

v∈V
f (u,v) − ∑

v∈V
f (v ,u)) (flow conservation constraints)

= ∑
u∈S

⎛
⎝∑v∈S̄

f (u,v) − ∑
v∈S̄

f (v ,u)
⎞
⎠

(remove terms which cancel)

≤ ∑
u∈S
∑
v∈S̄

f (u,v) (flow is nonnegative)

≤ ∑
u∈S
∑
v∈S̄

c(u,v) = cap(S, S̄) (flow is feasible)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 6 / 21

Warmup Theorem

Theorem

Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then ∣f ∣ ≤ cap(S, S̄).

∣f ∣ = ∑
v∈V

f (s,v) − ∑
v∈V

f (v , s) (definition)

= ∑
u∈S
(∑

v∈V
f (u,v) − ∑

v∈V
f (v ,u)) (flow conservation constraints)

= ∑
u∈S

⎛
⎝∑v∈S̄

f (u,v) − ∑
v∈S̄

f (v ,u)
⎞
⎠

(remove terms which cancel)

≤ ∑
u∈S
∑
v∈S̄

f (u,v) (flow is nonnegative)

≤ ∑
u∈S
∑
v∈S̄

c(u,v) = cap(S, S̄) (flow is feasible)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 6 / 21

Warmup Theorem

Theorem

Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then ∣f ∣ ≤ cap(S, S̄).

∣f ∣ = ∑
v∈V

f (s,v) − ∑
v∈V

f (v , s) (definition)

= ∑
u∈S
(∑

v∈V
f (u,v) − ∑

v∈V
f (v ,u)) (flow conservation constraints)

= ∑
u∈S

⎛
⎝∑v∈S̄

f (u,v) − ∑
v∈S̄

f (v ,u)
⎞
⎠

(remove terms which cancel)

≤ ∑
u∈S
∑
v∈S̄

f (u,v) (flow is nonnegative)

≤ ∑
u∈S
∑
v∈S̄

c(u,v) = cap(S, S̄) (flow is feasible)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 6 / 21

Warmup Theorem

Theorem

Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then ∣f ∣ ≤ cap(S, S̄).

∣f ∣ = ∑
v∈V

f (s,v) − ∑
v∈V

f (v , s) (definition)

= ∑
u∈S
(∑

v∈V
f (u,v) − ∑

v∈V
f (v ,u)) (flow conservation constraints)

= ∑
u∈S

⎛
⎝∑v∈S̄

f (u,v) − ∑
v∈S̄

f (v ,u)
⎞
⎠

(remove terms which cancel)

≤ ∑
u∈S
∑
v∈S̄

f (u,v) (flow is nonnegative)

≤ ∑
u∈S
∑
v∈S̄

c(u,v) = cap(S, S̄) (flow is feasible)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 6 / 21

Warmup Theorem

Theorem

Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then ∣f ∣ ≤ cap(S, S̄).

∣f ∣ = ∑
v∈V

f (s,v) − ∑
v∈V

f (v , s) (definition)

= ∑
u∈S
(∑

v∈V
f (u,v) − ∑

v∈V
f (v ,u)) (flow conservation constraints)

= ∑
u∈S

⎛
⎝∑v∈S̄

f (u,v) − ∑
v∈S̄

f (v ,u)
⎞
⎠

(remove terms which cancel)

≤ ∑
u∈S
∑
v∈S̄

f (u,v) (flow is nonnegative)

≤ ∑
u∈S
∑
v∈S̄

c(u,v) = cap(S, S̄) (flow is feasible)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 6 / 21

Warmup Theorem

Theorem

Let f be a feasible (s, t)-flow, and let (S, S̄) be an (s, t)-cut. Then ∣f ∣ ≤ cap(S, S̄).

∣f ∣ = ∑
v∈V

f (s,v) − ∑
v∈V

f (v , s) (definition)

= ∑
u∈S
(∑

v∈V
f (u,v) − ∑

v∈V
f (v ,u)) (flow conservation constraints)

= ∑
u∈S

⎛
⎝∑v∈S̄

f (u,v) − ∑
v∈S̄

f (v ,u)
⎞
⎠

(remove terms which cancel)

≤ ∑
u∈S
∑
v∈S̄

f (u,v) (flow is nonnegative)

≤ ∑
u∈S
∑
v∈S̄

c(u,v) = cap(S, S̄) (flow is feasible)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 6 / 21

Max-Flow Min-Cut

Corollary

If f avoids every S̄ → S edge and saturates every S → S̄ edge, then f is a maximum flow and
(S, S̄) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t)-flow = capacity of min (s, t)-cut.

Spend rest of today proving this.

▸ Many different valid proofs.

▸ We’ll see a classical proof which will naturally lead to algorithms for these problems.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 7 / 21

Max-Flow Min-Cut

Corollary

If f avoids every S̄ → S edge and saturates every S → S̄ edge, then f is a maximum flow and
(S, S̄) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t)-flow = capacity of min (s, t)-cut.

Spend rest of today proving this.

▸ Many different valid proofs.

▸ We’ll see a classical proof which will naturally lead to algorithms for these problems.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 7 / 21

Max-Flow Min-Cut

Corollary

If f avoids every S̄ → S edge and saturates every S → S̄ edge, then f is a maximum flow and
(S, S̄) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t)-flow = capacity of min (s, t)-cut.

Spend rest of today proving this.

▸ Many different valid proofs.

▸ We’ll see a classical proof which will naturally lead to algorithms for these problems.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 7 / 21

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

Corollary If f saturates every 1 75 edge

and anils every J 75 edge then

Ifl capIS T f a map flow 1,51 a nine t

cut 5 10

t.us
The In any flow network value of

maximum 6 H flow capacity of min ht cut

Prelim
L 2

Residual capacities for feasible flow f

can EiS i c e'E
0 otherwise

i Is

▸ Doesn’t change max-flow or min-cut

▸ Increases #edges by constant factor, # nodes to original # edges.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 8 / 21

One Direction

Cycles of length 2 will turn out to be annoying. Get rid of them.

Corollary If f saturates every 1 75 edge

and anils every J 75 edge then

Ifl capIS T f a map flow 1,51 a nine t

cut 5 10

t.us
The In any flow network value of

maximum 6 H flow capacity of min ht cut

Prelim
L 2

Residual capacities for feasible flow f

can EiS i c e'E
0 otherwise

i Is

▸ Doesn’t change max-flow or min-cut

▸ Increases #edges by constant factor, # nodes to original # edges.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 8 / 21

Residual
Let f be feasible (s, t)-flow. Define residual capacities:

cf (u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c(u,v) − f (u,v) if (u,v) ∈ E

f (v ,u) if (v ,u) ∈ E

0 otherwise

Residual Graph: Gf = (V ,Ef) where (u,v) ∈ Ef if cf (u,v) > 0.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E! R�0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V ⇥ V ! R, called the
residual capacity, as follows:

c f (u�v) =

8
><
>:

c(u�v)� f (u�v) if u�v 2 E

f (v�u) if v�u 2 E

0 otherwise
.

Since f � 0 and f c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph Gf = (V, Ef), where Ef is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph Gf .

Suppose there is no path from the source s to the target t in the residual graph Gf . Let S
be the set of vertices that are reachable from s in Gf , and let T = V \ S. The partition (S, T) is
clearly an (s, t)-cut. For every vertex u 2 S and v 2 T , we have

c f (u�v) = (c(u�v)� f (u�v)) + f (v�u) = 0,

which implies that c(u�v)� f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= kS, Tk. Moreover,
f is a maximum flow and (S, T) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in Gf . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount

�

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 9 / 21

Residual
Let f be feasible (s, t)-flow. Define residual capacities:

cf (u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c(u,v) − f (u,v) if (u,v) ∈ E
f (v ,u) if (v ,u) ∈ E
0 otherwise

Residual Graph: Gf = (V ,Ef) where (u,v) ∈ Ef if cf (u,v) > 0.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E! R�0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V ⇥ V ! R, called the
residual capacity, as follows:

c f (u�v) =

8
><
>:

c(u�v)� f (u�v) if u�v 2 E

f (v�u) if v�u 2 E

0 otherwise
.

Since f � 0 and f c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph Gf = (V, Ef), where Ef is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph Gf .

Suppose there is no path from the source s to the target t in the residual graph Gf . Let S
be the set of vertices that are reachable from s in Gf , and let T = V \ S. The partition (S, T) is
clearly an (s, t)-cut. For every vertex u 2 S and v 2 T , we have

c f (u�v) = (c(u�v)� f (u�v)) + f (v�u) = 0,

which implies that c(u�v)� f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= kS, Tk. Moreover,
f is a maximum flow and (S, T) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in Gf . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount

�

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 9 / 21

Residual
Let f be feasible (s, t)-flow. Define residual capacities:

cf (u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

c(u,v) − f (u,v) if (u,v) ∈ E
f (v ,u) if (v ,u) ∈ E
0 otherwise

Residual Graph: Gf = (V ,Ef) where (u,v) ∈ Ef if cf (u,v) > 0.

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E! R�0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V ⇥ V ! R, called the
residual capacity, as follows:

c f (u�v) =

8
><
>:

c(u�v)� f (u�v) if u�v 2 E

f (v�u) if v�u 2 E

0 otherwise
.

Since f � 0 and f c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph Gf = (V, Ef), where Ef is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph Gf .

Suppose there is no path from the source s to the target t in the residual graph Gf . Let S
be the set of vertices that are reachable from s in Gf , and let T = V \ S. The partition (S, T) is
clearly an (s, t)-cut. For every vertex u 2 S and v 2 T , we have

c f (u�v) = (c(u�v)� f (u�v)) + f (v�u) = 0,

which implies that c(u�v)� f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= kS, Tk. Moreover,
f is a maximum flow and (S, T) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in Gf . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount

�

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 9 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht

▸ (S, S̄) an (s, t)-cut. ✓
▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) =

0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0

Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) =

0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0

Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Start of Proof

Let f be a max (s, t)-flow with residual graph Gf .
Want to Show: There is a cut (S, S̄) with cap(S, S̄) = ∣f ∣.

Case 1: There is no s → t path in Gf

Let S = {vertices reachable from s in Gf }

Residual graph Gf Cu Ef Guleff if kn O

I
O 0

Let f be a max 4 t flow

nets 3 G H c t 4,51 with cartsT 1ft

Residual graph he

aie1 No path from s ta t in he

nudes reachable from s in Gf
ht▸ (S, S̄) an (s, t)-cut. ✓

▸ cf (a,b) = 0
Ô⇒ c(a,b) − f (a,b) = 0
Ô⇒ c(a,b) = f (a,b)

▸ cf (y ,x) = 0
Ô⇒ f (x,y) = 0

f saturates S → S̄ edges, avoids S̄ → S edges Ô⇒ cap(S, S̄) = ∣f ∣ by corollary

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 10 / 21

Case 2

Suppose ∃ an s → t path P in Gf .

▸ Called an augmenting path

Idea: show that we can “push” more flow along P, so f not a max flow. Contradiction, can’t
be in this case.

▸ Foreshadowing: augmenting path allows us to send more flow. Algorithm to increase flow!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 11 / 21

Case 2

Suppose ∃ an s → t path P in Gf .

▸ Called an augmenting path

Idea: show that we can “push” more flow along P, so f not a max flow. Contradiction, can’t
be in this case.

▸ Foreshadowing: augmenting path allows us to send more flow. Algorithm to increase flow!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 11 / 21

Intuition

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

The Maxflow Mincut Theorem. In any flow network with source s and target t, the value of the
maximum (s, t)-flow is equal to the capacity of the minimum (s, t)-cut.

Ford and Fulkerson proved this theorem as follows. Fix a graph G, vertices s and t, and a
capacity function c : E! R�0. The proof will be easier if we assume that the capacity function
is reduced: For any vertices u and v, either c(u�v) = 0 or c(v�u) = 0, or equivalently, if an
edge appears in G, then its reversal does not. This assumption is easy to enforce. Whenever an
edge u�v and its reversal v�u are both the graph, replace the edge u�v with a path u�x�v of
length two, where x is a new vertex and c(u�x) = c(x�v) = c(u�v). The modified graph has
the same maximum flow value and minimum cut capacity as the original graph.

Enforcing the one-direction assumption.

Let f be a feasible flow. We define a new capacity function c f : V ⇥ V ! R, called the
residual capacity, as follows:

c f (u�v) =

8
><
>:

c(u�v)� f (u�v) if u�v 2 E

f (v�u) if v�u 2 E

0 otherwise
.

Since f � 0 and f c, the residual capacities are always non-negative. It is possible to have
c f (u�v) > 0 even if u�v is not an edge in the original graph G. Thus, we define the residual
graph Gf = (V, Ef), where Ef is the set of edges whose residual capacity is positive. Notice that
the residual capacities are not necessarily reduced; it is quite possible to have both c f (u�v)> 0
and c f (v�u)> 0.

s t

10/20

0/10

10/10

0/5

10/10

5/15

5/10

5/20

0/15
s t

10

10

5

10

515 5

10

5

15

5

10

10

A flow f in a weighted graph G and the corresponding residual graph Gf .

Suppose there is no path from the source s to the target t in the residual graph Gf . Let S
be the set of vertices that are reachable from s in Gf , and let T = V \ S. The partition (S, T) is
clearly an (s, t)-cut. For every vertex u 2 S and v 2 T , we have

c f (u�v) = (c(u�v)� f (u�v)) + f (v�u) = 0,

which implies that c(u�v)� f (u�v) = 0 and f (v�u) = 0. In other words, our flow f saturates
every edge from S to T and avoids every edge from T to S. It follows that | f |= kS, Tk. Moreover,
f is a maximum flow and (S, T) is a minimum cut.

On the other hand, suppose there is a path s = v0�v1� · · ·�vr = t in Gf . We refer to
v0�v1� · · ·�vr as an augmenting path. Let F =mini c f (vi�vi+1) denote the maximum amount

�

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

s t

10

10

5

10

515 5

10

5

15

5

10

10

s t

10/20

5/10

5/10

5/5

10/10

5/15

0/10

10/20

0/15

An augmenting path in Gf with value F = 5 and the augmented flow f 0.

of flow that we can push through the augmenting path in Gf . We define a new flow function
f 0 : E! R as follows:

f 0(u�v) =

8
><
>:

f (u�v) + F if u�v is in the augmenting path
f (u�v)� F if v�u is in the augmenting path
f (u�v) otherwise

To prove that the flow f 0 is feasible with respect to the original capacities c, we need to verify
that f 0 � 0 and f 0 c. Consider an edge u�v in G. If u�v is in the augmenting path, then
f 0(u�v)> f (u�v)� 0 and

f 0(u�v) = f (u�v) + F by definition of f 0

 f (u�v) + c f (u�v) by definition of F

= f (u�v) + c(u�v)� f (u�v) by definition of c f

= c(u�v) Duh.

On the other hand, if the reversal v�u is in the augmenting path, then f 0(u�v) < f (u�v)
c(u�v), which implies that

f 0(u�v) = f (u�v)� F by definition of f 0

� f (u�v)� c f (v�u) by definition of F

= f (u�v)� f (u�v) by definition of c f

= 0 Duh.

Finally, we observe that (without loss of generality) only the first edge in the augmenting path
leaves s, so | f 0|= | f |+ F > 0. In other words, f is not a maximum flow.

This completes the proof!

��.� Ford and Fulkerson’s augmenting-path algorithm
Ford and Fulkerson’s proof of the Maxflow-Mincut Theorem translates immediately to an
algorithm to compute maximum flows: Starting with the zero flow, repeatedly augment the flow
along any path from s to t in the residual graph, until there is no such path.

This algorithm has an important but straightforward corollary:

Integrality Theorem. If all capacities in a flow network are integers, then there is a maximum
flow such that the flow through every edge is an integer.

�

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 12 / 21

Formalities

Let P be (simple) augmenting path in Gf . Let F =mine∈P cf (e).

Define new flow f ′: for all (u,v) ∈ E , let

f ′(u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (u,v) + F if (u,v) in P
f (u,v) − F if (v ,u) in P
f (u,v) otherwise

Claim: f ′ is a feasible (s, t)-flow with ∣f ′∣ > ∣f ∣.

Plan: prove (sketch) each subclaim individually

▸ ∣f ′∣ > ∣f ∣
▸ f ′ an (s, t)-flow (flow conservation)

▸ f ′ feasible (obeys capacities)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 13 / 21

Formalities

Let P be (simple) augmenting path in Gf . Let F =mine∈P cf (e).
Define new flow f ′: for all (u,v) ∈ E , let

f ′(u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (u,v) + F if (u,v) in P
f (u,v) − F if (v ,u) in P
f (u,v) otherwise

Claim: f ′ is a feasible (s, t)-flow with ∣f ′∣ > ∣f ∣.

Plan: prove (sketch) each subclaim individually

▸ ∣f ′∣ > ∣f ∣
▸ f ′ an (s, t)-flow (flow conservation)

▸ f ′ feasible (obeys capacities)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 13 / 21

Formalities

Let P be (simple) augmenting path in Gf . Let F =mine∈P cf (e).
Define new flow f ′: for all (u,v) ∈ E , let

f ′(u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (u,v) + F if (u,v) in P
f (u,v) − F if (v ,u) in P
f (u,v) otherwise

Claim: f ′ is a feasible (s, t)-flow with ∣f ′∣ > ∣f ∣.

Plan: prove (sketch) each subclaim individually

▸ ∣f ′∣ > ∣f ∣
▸ f ′ an (s, t)-flow (flow conservation)

▸ f ′ feasible (obeys capacities)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 13 / 21

Formalities

Let P be (simple) augmenting path in Gf . Let F =mine∈P cf (e).
Define new flow f ′: for all (u,v) ∈ E , let

f ′(u,v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (u,v) + F if (u,v) in P
f (u,v) − F if (v ,u) in P
f (u,v) otherwise

Claim: f ′ is a feasible (s, t)-flow with ∣f ′∣ > ∣f ∣.

Plan: prove (sketch) each subclaim individually

▸ ∣f ′∣ > ∣f ∣
▸ f ′ an (s, t)-flow (flow conservation)

▸ f ′ feasible (obeys capacities)

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 13 / 21

∣f ′∣ > ∣f ∣

Consider first edge of P (out of s), say (s,v1)
▸ If (s,v1) ∈ E , then f ′(s,v1) = f (s,v1) + F
▸ If (v1, s) ∈ E then f ′(v1, s) = f (v1, s) − F

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

∣f ′∣ =∑
u

f ′(s,u) −∑
u

f ′(u, s) = ∣f ∣ + F > ∣f ∣

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 14 / 21

∣f ′∣ > ∣f ∣

Consider first edge of P (out of s), say (s,v1)
▸ If (s,v1) ∈ E , then f ′(s,v1) = f (s,v1) + F
▸ If (v1, s) ∈ E then f ′(v1, s) = f (v1, s) − F

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

∣f ′∣ =∑
u

f ′(s,u) −∑
u

f ′(u, s) = ∣f ∣ + F > ∣f ∣

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 14 / 21

f ′ obeys flow conservation

Consider some u ∈ V ∖ {s, t}.

▸ If u /∈ P, no change in flow at u Ô⇒ still balanced.

▸ If u ∈ P, four possibilities:

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 15 / 21

f ′ obeys flow conservation

Consider some u ∈ V ∖ {s, t}.
▸ If u /∈ P, no change in flow at u Ô⇒ still balanced.

▸ If u ∈ P, four possibilities:

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 15 / 21

f ′ obeys flow conservation

Consider some u ∈ V ∖ {s, t}.
▸ If u /∈ P, no change in flow at u Ô⇒ still balanced.

▸ If u ∈ P, four possibilities:

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

f au e
fkn tf it Gulep
f un F if 4,4 EP
f un otherwise

claim f a feasible Is f flow with If't Ifl

F ff't Ifl 3 or

If't fig u f is

Ifl tf Ifl

flow conservation at nts t

tf tf

tf f
c

f t Fc

f fc c

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 15 / 21

f ′ obeys capacity constraints

Let (u,v) ∈ E

▸ If (u,v), (v ,u) /∈ P: f ′(u,v) = f (u,v) ≤ c(u,v)

▸ If (u,v) ∈ P:

f ′(u,v) = f (u,v) + F
≤ f (u,v) + cf (u,v)
= f (u,v) + c(u,v) − f (u,v)
= c(u,v)

▸ If (v ,u) ∈ P:

f ′(u,v) = f (u,v) − F
≥ f (u,v) − cf (v ,u)
= f (u,v) − f (u,v)
= 0

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 16 / 21

f ′ obeys capacity constraints

Let (u,v) ∈ E
▸ If (u,v), (v ,u) /∈ P: f ′(u,v) = f (u,v) ≤ c(u,v)

▸ If (u,v) ∈ P:

f ′(u,v) = f (u,v) + F
≤ f (u,v) + cf (u,v)
= f (u,v) + c(u,v) − f (u,v)
= c(u,v)

▸ If (v ,u) ∈ P:

f ′(u,v) = f (u,v) − F
≥ f (u,v) − cf (v ,u)
= f (u,v) − f (u,v)
= 0

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 16 / 21

f ′ obeys capacity constraints

Let (u,v) ∈ E
▸ If (u,v), (v ,u) /∈ P: f ′(u,v) = f (u,v) ≤ c(u,v)

▸ If (u,v) ∈ P:

f ′(u,v) = f (u,v) + F
≤ f (u,v) + cf (u,v)
= f (u,v) + c(u,v) − f (u,v)
= c(u,v)

▸ If (v ,u) ∈ P:

f ′(u,v) = f (u,v) − F
≥ f (u,v) − cf (v ,u)
= f (u,v) − f (u,v)
= 0

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 16 / 21

f ′ obeys capacity constraints

Let (u,v) ∈ E
▸ If (u,v), (v ,u) /∈ P: f ′(u,v) = f (u,v) ≤ c(u,v)

▸ If (u,v) ∈ P:

f ′(u,v) = f (u,v) + F
≤ f (u,v) + cf (u,v)
= f (u,v) + c(u,v) − f (u,v)
= c(u,v)

▸ If (v ,u) ∈ P:

f ′(u,v) = f (u,v) − F
≥ f (u,v) − cf (v ,u)
= f (u,v) − f (u,v)
= 0

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 16 / 21

f ′ obeys capacity constraints

Let (u,v) ∈ E
▸ If (u,v), (v ,u) /∈ P: f ′(u,v) = f (u,v) ≤ c(u,v)

▸ If (u,v) ∈ P:

f ′(u,v) = f (u,v) + F
≤ f (u,v) + cf (u,v)
= f (u,v) + c(u,v) − f (u,v)
= c(u,v)

▸ If (v ,u) ∈ P:

f ′(u,v) = f (u,v) − F
≥ f (u,v) − cf (v ,u)
= f (u,v) − f (u,v)
= 0

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 16 / 21

f ′ obeys capacity constraints

Let (u,v) ∈ E
▸ If (u,v), (v ,u) /∈ P: f ′(u,v) = f (u,v) ≤ c(u,v)

▸ If (u,v) ∈ P:

f ′(u,v) = f (u,v) + F
≤ f (u,v) + cf (u,v)
= f (u,v) + c(u,v) − f (u,v)
= c(u,v)

▸ If (v ,u) ∈ P:

f ′(u,v) = f (u,v) − F
≥ f (u,v) − cf (v ,u)
= f (u,v) − f (u,v)
= 0

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 16 / 21

Ford-Fulkerson Algorithm and Integrality

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 17 / 21

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

f = 0⃗
while(∃s → t path P in Gf) {

F =mine∈P cf (e)
Push F flow along P to get new flow f ′

f = f ′

}
return f

or {v ∈ V ∶ v reachable from s in Gf }

Correctness: directly from previous proof

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 18 / 21

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

f = 0⃗
while(∃s → t path P in Gf) {

F =mine∈P cf (e)
Push F flow along P to get new flow f ′

f = f ′

}
return f or {v ∈ V ∶ v reachable from s in Gf }

Correctness: directly from previous proof

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 18 / 21

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

f = 0⃗
while(∃s → t path P in Gf) {

F =mine∈P cf (e)
Push F flow along P to get new flow f ′

f = f ′

}
return f or {v ∈ V ∶ v reachable from s in Gf }

Correctness: directly from previous proof

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 18 / 21

Example

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 19 / 21

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is
an integer

Proof.

Induction on iterations of the Ford-Fulkerson algorithm: initially true, stays true Ô⇒ true at
end.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 20 / 21

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is
an integer

Proof.

Induction on iterations of the Ford-Fulkerson algorithm: initially true, stays true Ô⇒ true at
end.

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 20 / 21

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most
O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

Running time ≥ # iterations.
This example:

▸ Running time: Ω(x)
▸ Input size O(log x) +O(1)
Ô⇒ Exponential time!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 21 / 21

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most
O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

Running time ≥ # iterations.
This example:

▸ Running time: Ω(x)
▸ Input size O(log x) +O(1)
Ô⇒ Exponential time!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 21 / 21

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most
O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

Running time ≥ # iterations.

This example:

▸ Running time: Ω(x)
▸ Input size O(log x) +O(1)
Ô⇒ Exponential time!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 21 / 21

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most
O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

Running time ≥ # iterations.
This example:

▸ Running time: Ω(x)

▸ Input size O(log x) +O(1)
Ô⇒ Exponential time!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 21 / 21

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most
O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

Running time ≥ # iterations.
This example:

▸ Running time: Ω(x)
▸ Input size O(log x) +O(1)

Ô⇒ Exponential time!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 21 / 21

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most
O(F(m + n))

Finding path takes O(m + n) time, increase flow by at least 1

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

Running time ≥ # iterations.
This example:

▸ Running time: Ω(x)
▸ Input size O(log x) +O(1)
Ô⇒ Exponential time!

Michael Dinitz Lecture 19: Max-Flow Min-Cut November 5, 2024 21 / 21

