Lecture 19: Max-Flow Min-Cut

Michael Dinitz

November 5, 2024 601.433/633 Introduction to Algorithms

Introduction

Flow Network:

- \triangleright Directed graph $G = (V, E)$
- **▸** Capacities c **∶** E **→** R**≥**⁰ (simplify notation: c**(**x, y**) =** 0 if **(**x, y**) /∈** E)
- **▸** Source s **∈** V , sink t **∈** V

Today: flows and cuts

- **▸** Flow: "sending stuff" from s to t
- **►** Cut: separating **t** from **s**

Turn out to be very related!

Today: some algorithms but not efficient. Mostly structure. Better algorithms Thursday.

Intuition: send "stuff" from s to t

▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Intuition: send "stuff" from s to t

▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t) -flow is a function $f : E \rightarrow \mathbb{R}_{>0}$ such that

$$
\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)
$$

for all $v \in V \setminus \{s, t\}$. This constraint is known as *flow conservation*.

Intuition: send "stuff" from s to t

▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t) -flow is a function $f : E \rightarrow \mathbb{R}_{>0}$ such that

$$
\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)
$$

for all $v \in V \setminus \{s, t\}$. This constraint is known as flow conservation.

Value of flow |f|: "total amount of stuff sent from *s* to *t*"

Intuition: send "stuff" from s to t

▸ Water in a city water system, traffic along roads, trains along tracks, . . .

Definition

An (s, t) -flow is a function $f : E \rightarrow \mathbb{R}_{>0}$ such that

$$
\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)
$$

for all $v \in V \setminus \{s, t\}$. This constraint is known as flow conservation.

Value of flow |f|: "total amount of stuff sent from *s* to *t*"

$$
|f|=\sum_{u:(s,u)\in E}f(s,u)-\sum_{u:(u,s)\in E}f(u,s)=\sum_{u:(u,t)\in E}f(u,t)-\sum_{u:(t,u)\in E}f(t,u)
$$

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Capacity constraints: $0 \le f(u, v) \le c(u, v)$ for all $(u, v) \in V \times V$

Definitions:

- **►** An (s, t) -flow satisfying capacity constraints is a *feasible* flow.
- \blacktriangleright If $f(e) = c(e)$ then f saturates e.
- \blacktriangleright If $f(e) = 0$ then f avoids e.

Capacity constraints: $\mathbf{0} \leq f(\boldsymbol{u},\boldsymbol{v}) \leq c(\boldsymbol{u},\boldsymbol{v})$ for all $(\boldsymbol{u},\boldsymbol{v}) \in \boldsymbol{V} \times \boldsymbol{V}$

Definitions:

- An (s, t) -flow satisfying capacity constraints is a *feasible* flow. $\mathcal{L}(\mathbf{y}, \mathbf{y})$ has seen this constant that are formulated consider the some fixed capacity fixed capacity \mathbf{y}
- If $f(e) = c(e)$ then f saturates e.
- \blacktriangleright If $f(e) = 0$ then f avoids e. \mathcal{L} given calculate.

An (*s*, *t*)-flow with value 10. Each edge is labeled with its flow/capacity.

Capacity constraints: $\mathbf{0} \leq f(\boldsymbol{u},\boldsymbol{v}) \leq c(\boldsymbol{u},\boldsymbol{v})$ for all $(\boldsymbol{u},\boldsymbol{v}) \in \boldsymbol{V} \times \boldsymbol{V}$

Definitions:

- An (s, t) -flow satisfying capacity constraints is a *feasible* flow. $\mathcal{L}(\mathbf{y}, \mathbf{y})$ has seen this constant that are formulated consider the some fixed capacity fixed capacity \mathbf{y}
- If $f(e) = c(e)$ then f saturates e.
- \blacktriangleright If $f(e) = 0$ then f avoids e. \mathcal{L} given calculate.

An (*s*, *t*)-flow with value 10. Each edge is labeled with its flow/capacity.

23.2 Cuts Problem we'll talk about: find feasible flow of maximum value (max flow)

An **(***s***,** *t* **)***-cut* (or just *cut* if the source and target are clear from context) is a partition of the Michael Dinitz **[Lecture 19: Max-Flow Min-Cut](#page-0-0)** November 5, 2024 4/21

Cuts

Definition

► An (s, t) -cut is a partition of **V** into (S, \bar{S}) such that $s \in S$, $t \notin S$

Cuts

Definition

- **►** An (s, t) -cut is a partition of **V** into (S, \bar{S}) such that $s \in S$, $t \notin S$
- ▶ The *capacity* of an (s, t) -cut (S, \bar{S}) is

$$
cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)
$$

Cuts If we have a capacity function \mathcal{L} and \mathcal{L} and sum of the capacity of a cut is the sum of the capacity of the sum of the capacity of

of the edges that start in *S* and end in *T*:

Definition

- **►** An (s, t) -cut is a partition of **V** into $(\mathcal{S}, \bar{\mathcal{S}})$ such that $s \in \mathcal{S}, t \notin \mathcal{S}$
- ▶ The *capacity* of an (s, t) -cut (S, \bar{S}) is

$$
cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)
$$

Cuts If we have a capacity function \mathcal{L} and \mathcal{L} and sum of the capacity of a cut is the sum of the capacity of the sum of the capacity of

Definition of the edges that start in *S* and end in *T*:

- **►** An (s, t) -cut is a partition of **V** into $(\mathcal{S}, \bar{\mathcal{S}})$ such that $s \in \mathcal{S}, t \notin \mathcal{S}$
- ▶ The *capacity* of an (s, t) -cut (S, \bar{S}) is

$$
cap(S,\bar{S}) = \sum_{(u,v)\in E: u\in S, v\in \bar{S}} c(u,v) = \sum_{u\in S} \sum_{v\in \bar{S}} c(u,v)
$$

Problem we'll talk about: find **(**s, t**)**-cut of minimum capacity (min cut)

Theorem

Let **f** be a feasible (s, t) -flow, and let (S, \bar{S}) be an (s, t) -cut. Then $|f| \leq cap(S, \bar{S})$.

Theorem

Let **f** be a feasible (s, t) -flow, and let (S, \bar{S}) be an (s, t) -cut. Then $|f| \leq cap(S, \bar{S})$.

$$
|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)
$$
 (definition)

Theorem

Let **f** be a feasible (s, t) -flow, and let (S, \bar{S}) be an (s, t) -cut. Then $|f| \leq cap(S, \bar{S})$.

$$
|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)
$$

=
$$
\sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)
$$

f **(**v, s**)** (definition)

(flow conservation constraints)

Theorem

Let **f** be a feasible (s, t) -flow, and let (S, \overline{S}) be an (s, t) -cut. Then $|f| \leq \text{cap}(S, \overline{S})$.

 $|f| = ∑$ v**∈**V $f(s, v) - \sum$ v**∈**V **= ∑** u**∈**S **(∑** v**∈**V $f(u, v) - \sum$ v**∈**V **= ∑** u**∈**S **⎛** $\sum_{\mathbf{v}\in\mathbf{S}}$ v**∈**S¯ $f(u, v) - \sum$ v**∈**S¯ $f(v, u)$ **⎠** f **(**v, s**)** (definition)

(flow conservation constraints)

(remove terms which cancel)

Theorem

Let **f** be a feasible (s, t) -flow, and let (S, \bar{S}) be an (s, t) -cut. Then $|f| \leq cap(S, \bar{S})$.

$$
|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)
$$

\n
$$
= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)
$$

\n
$$
= \sum_{u \in S} \left(\sum_{v \in \overline{S}} f(u, v) - \sum_{v \in \overline{S}} f(v, u) \right)
$$

\n
$$
\leq \sum_{u \in S} \sum_{v \in \overline{S}} f(u, v)
$$

f **(**v, s**)** (definition)

(flow conservation constraints)

(remove terms which cancel)

(flow is nonnegative)

Theorem

Let **f** be a feasible (s, t) -flow, and let (S, \bar{S}) be an (s, t) -cut. Then $|f| \leq cap(S, \bar{S})$.

$$
|f| = \sum_{v \in V} f(s, v) - \sum_{v \in V} f(v, s)
$$
 (definition)
\n
$$
= \sum_{u \in S} \left(\sum_{v \in V} f(u, v) - \sum_{v \in V} f(v, u) \right)
$$
 (flow conservation constraints)
\n
$$
= \sum_{u \in S} \left(\sum_{v \in \overline{S}} f(u, v) - \sum_{v \in \overline{S}} f(v, u) \right)
$$
 (from view terms which cancel)
\n
$$
\leq \sum_{u \in S} \sum_{v \in \overline{S}} f(u, v)
$$
 (flow is nonnegative)
\n
$$
\leq \sum_{u \in S} \sum_{v \in \overline{S}} c(u, v) = cap(S, \overline{S})
$$
 (flow is feasible)

Max-Flow Min-Cut

Corollary

If f avoids every $\bar{S} \rightarrow S$ edge and saturates every $S \rightarrow \bar{S}$ edge, then f is a maximum flow and (S,\bar{S}) is a minimum cut.

Max-Flow Min-Cut

Corollary

If f avoids every $\bar{S} \rightarrow S$ edge and saturates every $S \rightarrow \bar{S}$ edge, then f is a maximum flow and (S,\bar{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t) -flow $=$ capacity of min (s, t) -cut.

Max-Flow Min-Cut

Corollary

If f avoids every $\bar{S} \rightarrow S$ edge and saturates every $S \rightarrow \bar{S}$ edge, then f is a maximum flow and (S,\bar{S}) is a minimum cut.

Theorem (Max-Flow Min-Cut Theorem)

In any flow network, value of max (s, t) -flow $=$ capacity of min (s, t) -cut.

Spend rest of today proving this.

- **▸** Many different valid proofs.
- **▸** We'll see a classical proof which will naturally lead to algorithms for these problems.

One Direction One Direction 2001

Cycles of length 2 will turn out to be annoying. Get rid of them.

One Direction One Direction 2001

Cycles of length 2 will turn out to be annoying. Get rid of them.

- **▸** Doesn't change max-flow or min-cut
- R_{m} increases $\#$ capacities for fearing factor, $\#$ hours to original $\#$ capacities \triangleright Increases #edges by constant factor, # nodes to original # edges.

Residual

Let f be feasible (s, t) -flow. Define *residual capacities*:

$$
c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}
$$

Residual

Let f be feasible (s, t) -flow. Define *residual capacities*:

$$
c_f(u,v) = \begin{cases} c(u,v) - f(u,v) & \text{if } (u,v) \in E \\ f(v,u) & \text{if } (v,u) \in E \\ 0 & \text{otherwise} \end{cases}
$$

Residual

Let \boldsymbol{f} be feasible $(\boldsymbol{s},\boldsymbol{t})$ -flow. Define *residual capacities*:

$$
c_f(u, v) = \begin{cases} c(u, v) - f(u, v) & \text{if } (u, v) \in E \\ f(v, u) & \text{if } (v, u) \in E \\ 0 & \text{otherwise} \end{cases}
$$

Residual Graph: $G_f = (V, E_f)$ where $(u, v) \in E_f$ if $c_f(u, v) > 0$. $Residual$ *Graph:*

A flow f in a weighted graph G and the corresponding residual graph G_f .

Start of Proof

Let **f** be a max (s, t) -flow with residual graph G_f . **Want to Show:** There is a cut (S,\bar{S}) with $cap(S,\bar{S}) = |f|$.

Start of Proof

Let **f** be a max (s, t) -flow with residual graph G_f . **Want to Show:** There is a cut (S,\bar{S}) with $cap(S,\bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{$ vertices reachable from s in $G_f\}$

 \blacktriangleright $(\mathcal{S}, \bar{\mathcal{S}})$ an (s, t) -cut. \checkmark

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{$ vertices reachable from s in $G_f\}$

 \blacktriangleright (S,\bar{S}) an (s,t) -cut. \checkmark \blacktriangleright $c_f(a, b) =$

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

•
$$
(S, \overline{S})
$$
 an (s, t) -cut. \checkmark
\n• $c_f(a, b) = 0$

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

•
$$
(S, \overline{S})
$$
 an (s, t) -cut.
\n• $c_f(a, b) = 0$
\n $\implies c(a, b) - f(a, b) = 0$
\n $\implies c(a, b) = f(a, b)$

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

•
$$
(S, \overline{S})
$$
 an (s, t) -cut.
\n• $c_f(a, b) = 0$
\n $\implies c(a, b) - f(a, b) = 0$
\n $\implies c(a, b) = f(a, b)$
\n• $c_f(v, x) =$

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

►
$$
(S, \overline{S})
$$
 an (s, t) -cut.
\n► $c_f(a, b) = 0$
\n⇒ $c(a, b) - f(a, b) = 0$
\n⇒ $c(a, b) = f(a, b)$
\n▶ $c_f(y, x) = 0$

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

•
$$
(S, \overline{S})
$$
 an (s, t) -cut.
\n• $c_f(a, b) = 0$
\n $\implies c(a, b) - f(a, b) = 0$
\n $\implies c(a, b) = f(a, b)$
\n• $c_f(y, x) = 0$
\n $\implies f(x, y) = 0$

Let **f** be a max (s, t) -flow with residual graph G_f . Let **f** be a max (s, t) -flow with residual graph G_f .
Want to Show: There is a cut (S, \bar{S}) with $cap(S, \bar{S}) = |f|$.

Case 1: There is no $s \rightarrow t$ path in G_f

Let $S = \{$ vertices reachable from s in $G_f\}$

f saturates $S \rightarrow \overline{S}$ edges, avoids $\overline{S} \rightarrow S$ edges \implies **cap(** S, \overline{S}) = |**f**| by corollary

- Suppose \exists an $s \to t$ path P in G_f .
	- **►** Called an *augmenting path*

Idea: show that we can "push" more flow along P , so f not a max flow. Contradiction, can't be in this case.

- Suppose \exists an $s \to t$ path P in G_f .
	- **►** Called an *augmenting path*

Idea: show that we can "push" more flow along P , so f not a max flow. Contradiction, can't be in this case.

▸ Foreshadowing: augmenting path allows us to send more flow. Algorithm to increase flow!

Intuition and *cf* (*vu*) *>* ⁰. the residual capacities are *not* necessarily reduced; it is quite possible to have both *cf* (*uv*) *>* ⁰

An augmenting path in G_f with value $F=5$ and the augmented flow $f'.$ *f* is a maximum flow and (*S*, *T*) is a minimum cut.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$. Define new flow f' : for all $(u, v) \in E$, let

$$
f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}
$$

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$. Define new flow f' : for all $(u, v) \in E$, let

$$
f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}
$$

Claim: f' is a feasible (s, t) -flow with $|f'| > |f|$.

Let P be (simple) augmenting path in G_f . Let $F = \min_{e \in P} c_f(e)$. Define new flow f' : for all $(u, v) \in E$, let

$$
f'(u,v) = \begin{cases} f(u,v) + F & \text{if } (u,v) \text{ in } P \\ f(u,v) - F & \text{if } (v,u) \text{ in } P \\ f(u,v) & \text{otherwise} \end{cases}
$$

Claim: f' is a feasible (s, t) -flow with $|f'| > |f|$.

Plan: prove (sketch) each subclaim individually

- **▸ ∣**f **′ ∣ > ∣**f **∣**
- ▶ **f**' an (s, t) -flow (flow conservation)
- **F** feasible (obeys capacities)

$|f'| > |f|$ f au ^e

Consider first edge of P (out of s), say (s, v_1)

- ▶ If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- **▶** If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$

▶ If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$

$|f'| > |f|$ f au ^e

Consider first edge of P (out of s), say **(**s, v1**)**

- ▶ If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$
- **▶** If $(s, v_1) \in E$, then $f'(s, v_1) = f(s, v_1) + F$

▶ If $(v_1, s) \in E$ then $f'(v_1, s) = f(v_1, s) F$

f **′** obeys flow conservation

Consider some $u \in V \setminus \{s, t\}$.

f **′** obeys flow conservation

Consider some $u \in V \setminus \{s, t\}$.

▶ If $u \notin P$, no change in flow at $u \implies$ still balanced.

f **′** obeys flow conservation If $\frac{1}{100}$

Consider some $u \in V \setminus \{s, t\}$.

- **▶** If $u \notin P$, no change in flow at $u \implies$ still balanced. \mathbf{I} is the Ifl theory of \mathbf{I}
- **►** If $u \in P$, four possibilities:

Let $(u, v) \in E$

Let **(**u, v**) ∈** E

▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$

Let $(u, v) \in E$

▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$

▸ If **(**u, v**) ∈** P:

Let $(u, v) \in E$

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$
- **▸** If **(**u, v**) ∈** P:

$$
f'(u, v) = f(u, v) + F
$$

\n
$$
\leq f(u, v) + c_f(u, v)
$$

\n
$$
= f(u, v) + c(u, v) - f(u, v)
$$

\n
$$
= c(u, v)
$$

Let **(**u, v**) ∈** E

- ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$
- **▸** If **(**u, v**) ∈** P: **▸** If **(**v, u**) ∈** P:

$$
f'(u, v) = f(u, v) + F
$$

\n
$$
\leq f(u, v) + c_f(u, v)
$$

\n
$$
= f(u, v) + c(u, v) - f(u, v)
$$

\n
$$
= c(u, v)
$$

Let **(**u, v**) ∈** E ▶ If $(u, v), (v, u) \notin P$: $f'(u, v) = f(u, v) \leq c(u, v)$ **▸** If **(**u, v**) ∈** P: $f'(u, v) = f(u, v) + F(u, v)$ $\leq f(u, v) + c_f(u, v)$ $= f(u, v) + c(u, v) - f(u, v)$ **=** c**(**u, v**) ▸** If **(**v, u**) ∈** P: $f'(u, v) = f(u, v) - F(u, v)$ $\geq f(u, v) - c_f(v, u)$ $= f(u, v) - f(u, v)$ **=** 0

Ford-Fulkerson Algorithm and Integrality

FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0}while(\exists s \rightarrow t path P in G_f) {
   F = \min_{e \in P} c_f(e)Push F flow along P to get new flow f'f = f'}
return f
```
FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0}while(\exists s \rightarrow t path P in G_f) {
   F = \min_{e \in P} c_f(e)Push F flow along P to get new flow f'f = f'}
return f or \{v \in V : v \} reachable from s in G_f\}
```
FF Algorithm

Obvious algorithm from previous proof: keep pushing flow!

```
f = \vec{0}while(\exists s \rightarrow t path P in G_f) {
   F = \min_{e \in P} c_f(e)Push F flow along P to get new flow f'f = f'}
return f or \{v \in V : v \} reachable from s in G_f\}
```
Correctness: directly from previous proof

Example

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Integrality

Corollary

If all capacities are integers, then there is a max flow such that the flow through every edge is an integer

Proof.

Induction on iterations of the Ford-Fulkerson algorithm: initially true, stays true **Ô⇒** true at end.

Running Time

Theorem

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most $O(F(m+n))$

Theorem capacities, the Ford-Fulkerson algorithm runs in *O***(***E***|***f* **⇤|)** time in the worst case.

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most $O(F(m+n))$

Finding path takes $O(m+n)$ time, increase flow by at least 1 network is clearly 2*X*. However, Ford-Fulkerson might alternate between pushing 1 unit of flow

A bad example for the Ford-Fulkerson algorithm.

Theorem capacities, the Ford-Fulkerson algorithm runs in *O***(***E***|***f* **⇤|)** time in the worst case.

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most $O(F(m+n))$

Finding path takes $O(m+n)$ time, increase flow by at least 1 network is clearly 2*X*. However, Ford-Fulkerson might alternate between pushing 1 unit of flow

A bad example for the Ford-Fulkerson algorithm.

Running time \geq # iterations.

Theorem capacities, the Ford-Fulkerson algorithm runs in *O***(***E***|***f* **⇤|)** time in the worst case.

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most $O(F(m+n))$

Finding path takes $O(m+n)$ time, increase flow by at least 1 network is clearly 2*X*. However, Ford-Fulkerson might alternate between pushing 1 unit of flow

A bad example for the Ford-Fulkerson algorithm.

Running time \geq # iterations. This example:

▸ Running time: Ω**(**x**)**

Theorem capacities, the Ford-Fulkerson algorithm runs in *O***(***E***|***f* **⇤|)** time in the worst case.

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most $O(F(m+n))$

Finding path takes $O(m+n)$ time, increase flow by at least 1 network is clearly 2*X*. However, Ford-Fulkerson might alternate between pushing 1 unit of flow

A bad example for the Ford-Fulkerson algorithm.

Running time \geq # iterations. This example:

- **▸** Running time: Ω**(**x**)**
- \blacktriangleright Input size $O(\log x) + O(1)$

Theorem capacities, the Ford-Fulkerson algorithm runs in *O***(***E***|***f* **⇤|)** time in the worst case.

If all capacities are integers and the max flow value is F , Ford-Fulkerson takes time at most $O(F(m+n))$

Finding path takes $O(m+n)$ time, increase flow by at least 1 network is clearly 2*X*. However, Ford-Fulkerson might alternate between pushing 1 unit of flow

A bad example for the Ford-Fulkerson algorithm.

Running time \geq # iterations. This example:

- **▸** Running time: Ω**(**x**)**
- \blacktriangleright Input size $O(\log x) + O(1)$
- \implies Exponential time!