Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

August 29, 2024
601.433/633 Introduction to Algorithms
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Things | Forget on Tuesday

Level of Formality:

» Part of mathematical maturity is knowing when to be formal, when not necessary
> Rule of thumb: Be formal for important parts

» Problem 1 is about asymptotic notation. Be formal!
> Problem 2 is about recurrences. Can be a little less formal with asymptotic notation.

» |Lectures:

> | tend to go fast, not be super formal. But | expect you to be formal in homeworks (unless
stated otherwise)
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Today

Should be review, some might be new.
See math background in CLRS

Asymptotics: O(-), (-), and ©O(-) notation.
> Should know from Data Structures / MFCS. We'll be a bit more formal.

> Intuitively: hide constants and lower order terms, since we only care what happen “at
scale” (asymptotically)

Recurrences: How to solve recurrence relations.
> Should know from MFCS / Discrete Math.
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Asymptotic Notation
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O(-)

Definition
g(n) € O(f(n)) if there exist cc’nst nts ¢, ng > 0 such that g(n) < c- f(n) for all n > ny. J
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O(-)

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c- f(n) for all n > ny.

Technically O(f(n)) is a set.
Abuse notation: “g(n) is O(f(n))" or g(n) = O(f(n)).
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O(-)

Definition |
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c- f(n) for all n > ny.

Technically O(f(n)) is a set.
Abuse notation: “g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:
» 2n%+27=0(n?): set ng=6 and c =3
» 2n% + 27 = O(n3): same values, or ng=4 and c =1
> n3+2000n% +2000n = O(n3): set ng = 10000 and c = 2
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O(-)

Definition |
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c- f(n) for all n > ny.

Technically O(f(n)) is a set.
Abuse notation: “g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:
» 2n%+27=0(n?): set ng=6 and c =3
» 2n% + 27 = O(n3): same values, or ng=4 and c =1
> n3+2000n% +2000n = O(n3): set ng = 10000 and c = 2

About functions not algorithms!
Expresses an upper bound
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Example

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny. J

Theorem
2n? + 27 = O(n?) J
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Example

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny. J

Theorem
2n? + 27 = O(n?) J

Proof.
Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n?
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Example

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny. J

Theorem
2n? + 27 = O(n?) J

Proof.

Set ¢ = 3. Suppose 2n? +27 > cn? = 3n
— n?<27

2
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Example

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny. J

Theorem
2n? + 27 = O(n?) J

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n
= n’<27 = n<6

2
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Example

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny. J

Theorem
2n? + 27 = O(n?) J

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n
= n’<27 = n<6
= 2n?+27 < 3n? for all n> 6.

2
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Example

Definition
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny. J

Theorem
2n? + 27 = O(n?) J

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n?

= n?><27 = n<6

= 2n?%+27 < 3n? for all n> 6.

Set ng = 6. Then 2n? + 27 < cn? for all n > ny. ]
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Example

Definition |
g(n) € O(f(n)) if there exist constants ¢, ng > 0 such that g(n) < c-f(n) for all n > ny.

Theorem |
2n? + 27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n
= n?><27 = n<6

= 2n?%+27 < 3n? for all n> 6.

Set ng = 6. Then 2n? + 27 < cn? for all n > ny. ]

2

Many other ways to prove this!
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()

Counterpart to O(+): lower bound rather than upper bound.

Definition
g(n) € Q(f(n)) if there exist constants c, g > 0 such that g(n) > c- f(n) for all n > ny. J

|

_
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()

Counterpart to O(+): lower bound rather than upper bound.
Definition

g(n) € Q(f(n)) if there exist constants ¢, ng > 0 such that g(n) > c- f(n) for all n > ny.

Examples:
» 2n%+27=Q(n?): set ng=1and c=1
» 2n%+27=Q(n): setmp=1and c=1
> —2=n3 -1000n? = Q(n): set ng = 1000000 and c = 1/1000
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O()

Combination of O(-) and (-).

g(n) € ©(f(n)) if g(n) € O(f(n)) and g(n) € Q(f(n)).

Note: constants ng, ¢ can be different in the proofs for O(f(n)) and Q(f(n))

Definition J
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Combination of O(-) and (-).

—

g(n) € ©(f(n)) if g(n) € O(f(n)) and g(n) € Q(f(n)).

Note: constants ng, ¢ can be different in the proofs for O(f(n)) and Q(f(n))

Definition J

Equivalent:

Definition
g(n) e ©(f(n)) if there are constants ¢y, ¢z, ng > 0 such that ¢;f(n) < g(n) < cf (n) for all
n>ng.

Both lower bound and upper bound, so asymptotic equality.
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Little notation

AT N

Strict versions of O and Q:

Definition

g(n) € o(f(n)) if for every constant ¢ > 0 there exists a constant ng > 0 such that
g(n) < c-f(n) for all n> ny.

Definition

g(n) e w(f(n)) if for every constant ¢ > 0 there exists a constant ng > 0 such that
g(n) > c-f(n) for all n> ny.

Examples:
> 2n? + 27 = o(n®log n)
> 2n?% + 27 = w(n)
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Recurrence Relations
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
> Selection Sort
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

> Selection Sort
» Find smallest unsorted element, put it just after sorted elements. Repeat.
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

» Selection Sort

» Find smallest unsorted element, put it just after sorted elements. Repeat.

> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

» Selection Sort

» Find smallest unsorted element, put it just after sorted elements. Repeat.

> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn

> Mergesort
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

» Selection Sort

» Find smallest unsorted element, put it just after sorted elements. Repeat.
> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
> Mergesort
> Split array into left and right halves. Recursively sort each half, then merge.
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

» Selection Sort

» Find smallest unsorted element, put it just after sorted elements. Repeat.
> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
> Mergesort

> Split array into left and right halves. Recursively sort each half, then merge.

> Running time: Merging takes O(n) time. Two recursive calls on half the size.
= T(n)=T(n/2)+ T(n/2) +cn=2T(n/2) +cn
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Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

» Selection Sort

» Find smallest unsorted element, put it just after sorted elements. Repeat.
> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
> Mergesort

> Split array into left and right halves. Recursively sort each half, then merge.

> Running time: Merging takes O(n) time. Two recursive calls on half the size.
= T(n)=T(n/2)+ T(n/2) +cn=2T(n/2) +cn

Also need base case. For algorithms, constant size input takes constant time.
== T (n) < c for all n < ng, for some constants ng, c > 0.
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Guess and Check

T(n)=3T(n/3)+n T(1)=1
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3%n=(c+1)n
(=

-
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T(n) < cn, got T(n) < (c +1)n. Guess was wrong.
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T(n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T(n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37 logz n
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T(n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37 logz n
Guess: T(n) < nlogz(3n)
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Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T(n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37 logz n
Guess: T(n) < nlogz(3n)

Check: assume true for n’ < n, prove true for n (induction).

T(n) = 3 n/3)|og3(3n/3 +n=nlogs(n) +n

= n(log;(n) + Iog3 3) = nlogz(3n).
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.

T(n)=cn+ T(n-1)
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.

T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.

T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+ T(n-3)
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.

T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+ T(n-3)
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.

T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+ T(n-3)

=cn+c(n-1)+c(n-2)+---+c
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

ldea: “unroll” the recurrence.

T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+ T(n-3)

=cn+c(n-1)+c(n-2)+---+c

n terms, each of which at most cn = T (n) < cn? = O(n?)
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.
T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+ T(n-3)

=cn+c(n-1)+c(n-2)+---+c

n terms, each of which at most cn = T (n) < cn? = O(n?)

At least n/2 terms which are at least cn/2 = T(n) > C"Tz = Q(n?)
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Unrolling

Example: selection sort. T(n)=T(n-1)+cn
|ldea: “unroll” the recurrence.
T(n)=cn+ T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+ T(n-3)

=cn+c(n-1)+c(n-2)+---+c

n terms, each of which at most cn = T (n) < cn? = O(n?)
At least n/2 terms which are at least cn/2 = T(n) > C"Tz = Q(n?)
— T(n) =0O(n?).
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

c
q
C-3
C — —
\ )
¢
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/4

cn/4 cn/4

| cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 |
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/4

cn/4 cn/4

| cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 |

# levels:
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/4

cn/4 cn/4

| cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 |

# levels: log, n
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/4

cn/4 cn/4

| cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 |
# levels: log, n
Contribution of level i:
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/4

cn/4 cn/4

| cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 |

# levels: log, n

Contribution of level i: 2"1en/2'~! = ¢cn
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/4

cn/4 cn/4

| cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 | | cn/8 |

# levels: log, n
Contribution of level i: 2"1en/2'~! = ¢cn
= T(n) = O(nlogn)
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Recursion Tree: Strassen

T(n) =7T(n/2) + cn?
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Recursion Tree: Strassen

T(n) =7T(n/2) + cn?
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Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

c(n/4)2

JIN

Level i: 7""1c(n/2'"1)2 = (7/4)"1cn?
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Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

C C 2 c c
c(n/4)?2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)? c(n/4)2 c(n/4)?
|7/7'RJ 57'“4 ;’”“J %IRJ WIV\% 7//l\\<] \7/1\\<

Level i: 7""1c(nf2'-1)% = (7/4)' ¢

log n+1 i-1 Iogn+1 i-1
T(n)= ) (Z) cn® = ( )
i=1

Total:
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Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

C C 2 c c
c(n/4)?2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)?
|7/7“§J 57'“4 ;’”“J %IRJ WIV\% 7//l\\<] \7/1\\<

Level i: 7""1c(nf2'-1)% = (7/4)' ¢

log n+1 i-1 Iogn+1 i-1
T(n)= ) (Z) cn® = ( )
i=1

— T(n) _ O(n2(7/4)logn) _ O(nanog(7/4)) _ O(n2nlog7—2)
— O(nlog7)
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Master Theorem
T(n) =aT(n/b) + cn* T(1)=c

a,b,c,k constants witha>1, b>1,¢>0, and k>0
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Master Theorem
T(n) = aT(n/b) + cn* T(1)=c

a,b,c,k constants witha>1, b>1,¢>0, and k>0

cnk
a
c(n/b)k c(n/b)x c(n/b)x
28 /N
c(n/b?)« c(n/b2)k c(n/b2)k
7T\ /TN /N
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Master Theorem

T(n) = aT(n/b) + cn*

T(1)=c

a,b,c,k constants witha>1, b>1,¢>0, and k>0

c(n/b)k

/N

# levels: log,n+1

Michael Dinitz

cnk

c(n/b)k

c(n/b2)k

/ 1\

c(n/b2)k

c(n/b)k

/1IN

c(n/b2)k

/1IN
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Master Theorem

T(n) = aT(n/b) + cn*

T(l)=c

a,b,c,k constants witha>1, b>1,¢>0, and k>0

cnk

c(n/b)k

c(n/b)* c(n/b)k
/ I\
c(n/b2)k c(n/b2)k c(n/b2)k
/ T\ 7T\ 7T\
# levels: logyn+1
Level i: a’"lc(n/b"l)k = cnk(a/bk)"l
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Master Theorem Il
Let o = (a/b¥)

> T(n) = cnk Zlicgb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1
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Master Theorem Il
Let o = (a/b¥)

— T(n) = cn* Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* Zl,'ig1b mly - ©(n*log n)
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Master Theorem Il
Let o = (a/b¥)

— T(n) = cn* Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* Zl,'ig1b mly - ©(n*log n)
» Case 2: a« < 1. Dominated by top level.
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Master Theorem Il
Let o = (a/b¥)

> T(n) = cnk Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* le.i‘(i" mly - ©(n*log n)

» Case 2: a« < 1. Dominated by top level.

log, n+1 j_1 oo i-1 _ 1
> X Sy yaT =1

= T(n) = O(nk)
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Master Theorem Il
Let o = (a/b¥)

> T(n) = cnk Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* le.i‘(i" mly - ©(n*log n)

» Case 2: a« < 1. Dominated by top level.
log, n+1 j_1 oo i—1 1
> Zi:l o' < zi=1 o' = T

= T(n) = O(nk)
T(n) > cn* = T(n) = Q(n*)
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Master Theorem Il
Let o = (a/b¥)

— T(n) = cn* Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* le.i‘(i" mly - ©(n*log n)
» Case 2: a« < 1. Dominated by top level.
— I e ayn e = o

= T(n) = O(nk)
T(n)>cn* = T(n) =Q(n*) = T(n) =0O(n*)
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Master Theorem Il
Let o = (a/b¥)

— T(n) = cn* Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* le.i‘(i" mly - ©(n*log n)
» Case 2: a« < 1. Dominated by top level.

— Zli‘:glb n+l -1 ¢ > i1 = ﬁ

— T(n) = O(n*)

T(n)>cn* = T(n) =Q(n*) = T(n) =0O(n*)
» Case 3: a > 1. Dominated by bottom level
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Master Theorem Il
Let o = (a/b¥)

— T(n) = cn* Zlicﬁb n+1(a/bk)i—1 - cnk Zlicﬁb n+l i1

» Case 1: a=1. All levels the same. T(n) = cn* le.i‘(i" mly - ©(n*log n)
» Case 2: a« < 1. Dominated by top level.

— Zli‘:glb n+l -1 ¢ > i1 = ﬁ

— T(n) = O(n*)

T(n)>cn* = T(n) =Q(n*) = T(n) =0O(n*)
» Case 3: a > 1. Dominated by bottom level

log, n+1 log, n+1 ¢ ¢ i-1 1
Z al—l _ alogbn Z - < alogbn
i=1 \& 1-

i=1 (1/x)
— O(alogb n)
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Master Theorem ||
Let o = (a/b¥)
_ k wlog, n+1 kyi-1 _ k wlog,n+l ;1
= T(n)=cn* Y. """ (a/b")' " =cn" L. """ o
» Case 1: a=1. All levels the same. T(n) = cn* le.i‘(i" mly - ©(n*log n)
» Case 2: a« < 1. Dominated by top level.

— 5" el g e =

— T(n) = O(n*)

T(n)>cn* = T(n) =Q(n*) = T(n) =0O(n*)
» Case 3: a > 1. Dominated by bottom level

log, n+1 log, n+1 ¢ ¢ i-1 1
Z al—l _ alogbn Z - < alogbn
i=1 \& 1-

(1/a)

i=1
_ O(alogb n)
: T(n) — @(nkalogbn) — @(nk(a/bk)logbn) — @(alogbn)
— @(nlogb a)
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Master Theorem Ill

Theorem (“Master Theorem”)

The recurrence
T(n) = aT(n/b) + cn® T(1)=c
where a, b, c, and k are constants witha>1, b>1, ¢>0, and k >0, is equal to

T(n) = ©(n*) if a < b¥,
T(n) = ©(n*logn) if a = b,
T(n) = ©(n'°%:?) if a > bX.
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