Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

August 29, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

1/18

Things | Forget on Tuesday

Level of Formality:

» Part of mathematical maturity is knowing when to be formal, when not necessary
» Rule of thumb: Be formal for important parts

> Problem 1 is about asymptotic notation. Be formal!
> Problem 2 is about recurrences. Can be a little less formal with asymptotic notation.

> Lectures:

» | tend to go fast, not be super formal. But | expect you to be formal in homeworks (unless
stated otherwise)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 2/18

Today

Should be review, some might be new.
See math background in CLRS

Asymptotics: O(-), 2(-), and ©(-) notation.
» Should know from Data Structures / MFCS. We'll be a bit more formal.

> Intuitively: hide constants and lower order terms, since we only care what happen “at
scale” (asymptotically)

Recurrences: How to solve recurrence relations.
» Should know from MFCS / Discrete Math.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 3/18

Asymptotic Notation

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 4/18

O(-)

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng. }

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 5/18

O(-)

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Technically O(f(n)) is a set.
Abuse notation: “g(n) is O(f(n))" or g(n) = O(f(n)).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 5/18

O(-)

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Technically O(f(n)) is a set.
Abuse notation: “g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:
» 2n? +27 = O(n®): set ng=6 and c =3
» 2n? + 27 = O(n®): same values, or np =4 and c =1
» n3+2000n2 +2000n = O(n3): set ng = 10000 and ¢ =2

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 5/18

O(-)

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Technically O(f(n)) is a set.
Abuse notation: “g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:
» 2n? +27 = O(n®): set ng=6 and c =3
» 2n? + 27 = O(n®): same values, or np =4 and c =1
» n3+2000n2 +2000n = O(n3): set ng = 10000 and ¢ =2

About functions not algorithms!
Expresses an upper bound

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 5/18

Example

Definition

g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n? +27 = O(n?)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

6/18

Example

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n? +27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n?

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 6/18

Example

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n? +27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n?
= n?<27

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 6/18

Example

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n? +27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n?
= n?<27 = n<6

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 6/18

Example

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n? +27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n
= n?<27 = n<6
= 2n?+27 < 3n? for all n> 6.

2

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 6/18

Example

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n%+27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n?

= n?<27 = n<6

— 2n?+27 <3n? for all n > 6.

Set ng = 6. Then 2n? + 27 < cn? for all n > ny. O

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 6/18

Example

Definition
g(n) € O(f(n)) if there exist constants ¢, my > 0 such that g(n) < c- f(n) for all n > ng.

Theorem
2n%+27 = O(n?)

Proof.

Set ¢ = 3. Suppose 2n? + 27 > cn? = 3n
= n?<27 = n<6
= 2n?%+27 < 3n? for all n > 6.

2

Set ng = 6. Then 2n? + 27 < cn? for all n > ny. O
Many other ways to prove this!
Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 6/18

Q()

Counterpart to O(+): lower bound rather than upper bound.

Definition
g(n) € Q(f(n)) if there exist constants ¢, ng > 0 such that g(n) > c- f(n) for all n> ny.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 7/18

Q()

Counterpart to O(+): lower bound rather than upper bound.
Definition

g(n) € Q(f(n)) if there exist constants ¢, ng > 0 such that g(n) > c- f(n) for all n> ny.

Examples:
» 2n2+27=9Q(n?): set my=1and c=1
» 2n2+27=9Q(n): set igp=1and c=1
> W" -1000n2 = Q(n?): set ny = 1000000 and ¢ = 1/1000

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 7/18

O()

Combination of O(+) and £(-).
Definition

g(n) € O(f(n)) if g(n) € O(f(n)) and g(n) € Q(f(n)).

Note: constants mg, ¢ can be different in the proofs for O(f(n)) and Q(f(n))

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences

August 29, 2024 8/18

o()

Combination of O(+) and £(-).

Definition

g(n) € ©(f(n)) if g(n) € O(f(n)) and g(n) € Q(f(n)). (

Note: constants mg, ¢ can be different in the proofs for O(f(n)) and Q(f(n))

Equivalent:
Definition

g(n) € ©(f(n)) if there are constants c1, ¢z, mp > 0 such that ¢;f(n) < g(n) < cf (n) for all
n>ng.

Both lower bound and upper bound, so asymptotic equality.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 8/18

Little notation

Strict versions of O and Q:
Definition

g(n) € o(f(n)) if for every constant ¢ > 0 there exists a constant ng > 0 such that
g(n) < c-f(n) for all n> ny.

Definition

g(n) e w(f(n)) if for every constant ¢ > 0 there exists a constant ng > 0 such that
g(n) > c-f(n) for all n> ng.

Examples:
» 2n? + 27 = o(n?log n)
» 2n% +27 = w(n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 9/18

Recurrence Relations

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 10/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort
> Find smallest unsorted element, put it just after sorted elements. Repeat.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort

> Find smallest unsorted element, put it just after sorted elements. Repeat.

> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort

> Find smallest unsorted element, put it just after sorted elements. Repeat.

> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn

> Mergesort

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort

> Find smallest unsorted element, put it just after sorted elements. Repeat.
> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
> Mergesort
> Split array into left and right halves. Recursively sort each half, then merge.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort

> Find smallest unsorted element, put it just after sorted elements. Repeat.
> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
> Mergesort
> Split array into left and right halves. Recursively sort each half, then merge.

> Running time: Merging takes O(n) time. Two recursive calls on half the size.
= T(n)=T(n/2)+ T(n/2)+cn=2T(n/2) +cn

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 11/18

Sorting

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
» Selection Sort

> Find smallest unsorted element, put it just after sorted elements. Repeat.
> Running time: Takes O(n) time to find smallest unsorted element, decreases remaining
unsorted by 1.
= T(n)=T(n-1)+cn
> Mergesort
> Split array into left and right halves. Recursively sort each half, then merge.

> Running time: Merging takes O(n) time. Two recursive calls on half the size.
= T(n)=T(n/2)+ T(n/2)+cn=2T(n/2) +cn

Also need base case. For algorithms, constant size input takes constant time.
== T (n) < c for all n < ny, for some constants ng, c > 0.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

11/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 12/18

Guess and Check
T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1
Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T (n) < cn, got T(n) < (c +1)n. Guess was wrong.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1
Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T (n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1
Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T (n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37 logz n

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1
Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T (n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37 logz n
Guess: T(n) < nlogz(3n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

12/18

Guess and Check

T(n)=3T(n/3)+n T(1)=1

Guess: T(n) < cn.

Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3cn/3+n=(c+1)n
Failure! Wanted T (n) < cn, got T(n) < (c +1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 37 logz n
Guess: T(n) < nlogz(3n)
Check: assume true for n’ < n, prove true for n (induction).
T(n)=3T(n/3)+n<3(n/3)log3(3n/3) + n=nlogz(n) +n
= n(logs(n) +log; 3) = nlog3(3n).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

12/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.

T(n)=cn+T(n-1)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn
Idea: “unroll” the recurrence.
T(n)=cn+T(n-1)

cn+c(n-1)+T(n-2)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences

August 29, 2024

13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.

T(n)=cn+T(n-1)
cn+c(n-1)+T(n-2)

cn+c(n-1)+c(n-2)+ T(n-3)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.

T(n)=cn+T(n-1)
cn+c(n-1)+T(n-2)

cn+c(n-1)+c(n-2)+ T(n-3)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.

T(n)=cn+T(n-1)
cn+c(n-1)+T(n-2)

cn+c(n-1)+c(n-2)+ T(n-3)

=cn+c(n-1)+c(n-2)+---+c

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.

T(n)

cn+ T(n-1)
cn+c(n-1)+T(n-2)
cn+c(n-1)+c(n-2)+ T(n-3)

=cn+c(n-1)+c(n-2)+---+c

n terms, each of which at most cn = T (n) < cn® = O(n?)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn

Idea: “unroll” the recurrence.
T(n)=cn+T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+T(n-3)
=cn+c(n-1)+c(n-2)+---+c

n terms, each of which at most cn = T (n) < cn® = O(n?)

At least n/2 terms which are at least cnf2 = T (n) > C"Tz = Q(n?)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

13/18

Unrolling

Example: selection sort. T(n)=T(n-1)+cn
Idea: “unroll” the recurrence.
T(n)=cn+T(n-1)
=cn+c(n-1)+ T(n-2)
=cn+c(n-1)+c(n-2)+T(n-3)

=cn+c(n-1)+c(n-2)+---+c

n terms, each of which at most cn = T (n) < cn® = O(n?)

At least n/2 terms which are at least cnf2 = T (n) > C"Tz = Q(n?)
= T(n) = O(n?).

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

13/18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/2 cn/2

l cn/4] l cn/4] l cn/4] l cn/4]

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/2 cn/2

l cn/4] l cn/4] l cn/4] l cn/4]

levels:

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/2 cn/2

l cn/4] l cn/4] l cn/4] l cn/4]

levels: log, n

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/2 cn/2

l cn/4] l cn/4] l cn/4] l cn/4]

levels: log, n
Contribution of level i:

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/2 cn/2

l cn/4] l cn/4] l cn/4] l cn/4]

levels: log, n
Contribution of level i: 2"-1cn/2'" = ¢n

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.
Mergesort: T(n) =2T(n/2) + cn.

cn/2 cn/2

l cn/4] l cn/4] l cn/4] l cn/4]

levels: log, n
Contribution of level i: 2"-1cn/2'" = ¢n
== T(n) =O(nlogn)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 14 /18

Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 15/18

Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

c(nf4)? | | c(n/4)? (n/4)2 | | c(n/4; c(n/4)? cn/4 c(n/4)?
%7 RJ %W\% VNN

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 15/18

Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

c(nfa)? | | ci (n/4 c(n/4, c(nfa)? | | c(n/A c(n/4)?
%7 RJ %W\% VNN

Level i: 771c(n/2i"1)2 = (7/4) ¢

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 15/18

Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

c(n/ay || e cn/ay | |cvar | |cmmr| | n/4 c(n/ay
% V\% V/INZI\N

Level i: 771¢c(n/2i-1)% = (7/4)' ¢

log n+1 i-1 Iogn+1 i-1
T(n)= Z (Z) cn® = ()
i=1

Total:

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

15/18

Recursion Tree: Strassen

T(n) =7T(n/2) + cn?

cn?

[c(n/2)2 c(n/2)?

(n/4 n/4 2| | e(n/a)y? | | c(n/4 c(n/a)?
%l“é VNN

c(n/4)2

Level i: 771¢c(n/2i-1)% = (7/4)' ¢

log n+1 i-1 Iogn+1 i-1
T(n)= Z (Z) cn® = ()
i=1

= T(n) = O(n2(7/4)logn) =0(n nlog(7/4)) _ O(n2nlog7-2)
- O(nlog7)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences

Total:

August 29, 2024

15/18

Master Theorem
T(n) = aT(n/b) + cn® T(l)=c

a,b,c,k constants witha>1, b>1, ¢>0,and k>0

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 16 /18

Master Theorem
T(n) = aT(n/b) + cn® T(l)=c

a,b,c,k constants witha>1, b>1, ¢>0,and k>0

[ty |

/1N

[ty |

VAR

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 16 /18

Master Theorem
T(n) = aT(n/b) + cn® T(l)=c

a,b,c,k constants witha>1, b>1, ¢>0,and k>0

[ty |

/1N

[ty |

VAR

levels: log,n+1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 16 /18

Master Theorem
T(n) = aT(n/b) + cn® T(l)=c

a,b,c,k constants witha>1, b>1, ¢>0,and k>0

|c(n/b2)k|

/1N

| c(n/b2)¢ |

VAR

levels: log,n+1
Level i: alc(n/b* 1)k = cn*(a/bk)-1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 16 /18

Master Theorem |l
Let o = (a/b¥)
= T(n) = cn* £25""! (a/bk)i1 = enk £ 280" o1

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 17 /18

Master Theorem |l
Let o = (a/b¥)
= T(n) = cn* £25""! (a/bk)i1 = enk £ 280" o1

» Case 1: a=1. All levels the same. T(n) =cn Zlog”"+11 O©(n*log n)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 17 /18

Master Theorem |l
Let o = (a/b¥)
= T(n) = cn* £25""! (a/bk)i1 = enk £ 280" o1

» Case 1: a=1. All levels the same. T(n) =cn Zlog”"+11 O©(n*log n)
» Case 2: a < 1. Dominated by top level.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 17 /18

Master Theorem |l
Let o = (a/b¥)
= T(n) = cn* £25""! (a/bk)i1 = enk £ 280" o1

» Case 1: a=1. All levels the same. T(n) =cn Zlog”"+11 O©(n*log n)

» Case 2: a < 1. Dominated by top level.

log, n+1 l 1<Z l -1_ 1
11

= X, =T

= T(n) = O(nk)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 17 /18

Master Theorem |l
Let o = (a/b¥)
= T(n) = cn* £25""! (a/bk)i1 = enk £ 280" o1

» Case 1: a=1. All levels the same. T(n) =cn Z'og”ml = @(n*log n)

» Case 2: a < 1. Dominated by top level.

log, n+1 l 1<Z l -1_ 1
11

= X, =T

— T(n)= 0(n")
T(n) > cnt = T(n) = Q(n")

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 17 /18

Master Theorem |l
Let o = (a/b¥)
= T(n) = cn* £25""! (a/bk)i1 = enk £ 280" o1

» Case 1: a=1. All levels the same. T(n) =cn Z'og”ml = @(n*log n)

» Case 2: a < 1. Dominated by top level.

log, n+1 l 1<Z l -1_ 1
11

= X, =T

= T(")— o(n*)
T(n)zcnk = T(n)=Q(nk) = T(n)=G)(nk)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 17 /18

Master Theorem |l

Let o = (a/b¥)
_ T(n) —ecn z:Iog,,n+1(/bk)' 1 —cn Z:Iog,,n+1 i-1
» Case 1: a=1. All levels the same. T(n) =cn Z'og”ml = @(n*log n)
» Case 2: a < 1. Dominated by top level.
N Zk’gb""‘l i-1 < Z, e l -1 ﬁ
= T(n) = O(n*)
T(n) > cn* — T(n)=Q(n*) — T(n)=0O(n")

» Case 3: a>1. Dominated by bottom level

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

17/18

Master Theorem |l

Let o = (a/b¥)
— T(n) -cn ZlogbIHI(/bk)' 1_cn Zlogbn+1 i-1

» Case 1: a=1. All levels the same. T(n) =cn Z'og”ml = @(n*log n)

» Case 2: a < 1. Dominated by top level.
N Zk’gb""‘l i-1 < Z, 1 l -1 ﬁ
= T(n) = O(n*)

T(n) > cn* — T(n)=Q(n*) — T(n)=0O(n")

» Case 3: a>1. Dominated by bottom level

1

log, n+l) log, n+1 i-1
- Z o'l = 'o8sn Z (_) < '%8b "
i1 ' a 1-(1/a)
- O(alogbn)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

17/18

Master Theorem |l

Let o = (a/b¥)
= T(n)=cn Zlog”ml(/b¥)i"! = ¢cn Z'°g""+1 i-1

» Case 1: a=1. All levels the same. T(n) =cn Z'Og”ml = @(n*log n)
» Case 2: a < 1. Dominated by top level.
_ le_f;glb el is1 ¢ > ol = ﬁ
= T(n) = O(n*)
T(n) > cn* — T(n)=Q(n*) — T(n)=0O(n")
» Case 3: a>1. Dominated by bottom level
log, n+l log, n+1 i-1 1
— Z al—l - alogbn Z (_) < alogbn
i-1 ' e’ 1-(1/a)
- O(alogbn)
— T(n) - e(nkalogbn) - @(nk(a/bk)logbn) - e(alogbn)

=0 (nlogb a)
August 29, 2024

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences

17/18

Master Theorem Il

Theorem (“Master Theorem™)

The recurrence
T(n) = aT(n/b) + cn* T(l)=c
where a, b, c, and k are constants witha>1, b>1, ¢ >0, and k >0, is equal to

T(n) = ©(n¥) ifa< b,
T(n) = ©(n*logn) if a = b¥,
T(n) = ©(n'"°8:?) if a > b*.

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024

18/18

