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Things I Forget on Tuesday

Level of Formality:

▸ Part of mathematical maturity is knowing when to be formal, when not necessary
▸ Rule of thumb: Be formal for important parts

▸ Problem 1 is about asymptotic notation. Be formal!
▸ Problem 2 is about recurrences. Can be a little less formal with asymptotic notation.

▸ Lectures:
▸ I tend to go fast, not be super formal. But I expect you to be formal in homeworks (unless

stated otherwise)

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 2 / 18



Today

Should be review, some might be new.
See math background in CLRS

Asymptotics: O(⋅), Ω(⋅), and Θ(⋅) notation.
▸ Should know from Data Structures / MFCS. We’ll be a bit more formal.

▸ Intuitively: hide constants and lower order terms, since we only care what happen “at
scale” (asymptotically)

Recurrences: How to solve recurrence relations.

▸ Should know from MFCS / Discrete Math.
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Asymptotic Notation

Michael Dinitz Lecture 2: Asymptotic Analysis, Recurrences August 29, 2024 4 / 18



O(⋅)

Definition

g(n) ∈ O(f (n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f (n) for all n > n0.

Technically O(f (n)) is a set.
Abuse notation: “g(n) is O(f (n))” or g(n) = O(f (n)).

Examples:

▸ 2n2 + 27 = O(n2): set n0 = 6 and c = 3
▸ 2n2 + 27 = O(n3): same values, or n0 = 4 and c = 1
▸ n3 + 2000n2 + 2000n = O(n3): set n0 = 10000 and c = 2

About functions not algorithms!
Expresses an upper bound
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Example

Definition

g(n) ∈ O(f (n)) if there exist constants c,n0 > 0 such that g(n) ≤ c ⋅ f (n) for all n > n0.

Theorem

2n2 + 27 = O(n2)

Proof.

Set c = 3. Suppose 2n2 + 27 > cn2 = 3n2

Ô⇒ n2 < 27 Ô⇒ n < 6
Ô⇒ 2n2 + 27 ≤ 3n2 for all n ≥ 6.
Set n0 = 6. Then 2n2 + 27 ≤ cn2 for all n > n0.

Many other ways to prove this!
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Ω(⋅)

Counterpart to O(⋅): lower bound rather than upper bound.

Definition

g(n) ∈ Ω(f (n)) if there exist constants c,n0 > 0 such that g(n) ≥ c ⋅ f (n) for all n > n0.

Examples:

▸ 2n2 + 27 = Ω(n2): set n0 = 1 and c = 1
▸ 2n2 + 27 = Ω(n): set n0 = 1 and c = 1
▸ 1

100
n3 − 1000n2 = Ω(n3): set n0 = 1000000 and c = 1/1000
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Θ(⋅)

Combination of O(⋅) and Ω(⋅).

Definition

g(n) ∈Θ(f (n)) if g(n) ∈ O(f (n)) and g(n) ∈ Ω(f (n)).

Note: constants n0, c can be different in the proofs for O(f (n)) and Ω(f (n))

Equivalent:

Definition

g(n) ∈Θ(f (n)) if there are constants c1, c2,n0 > 0 such that c1f (n) ≤ g(n) ≤ c2f (n) for all
n > n0.

Both lower bound and upper bound, so asymptotic equality.
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Little notation

Strict versions of O and Ω:

Definition

g(n) ∈ o(f (n)) if for every constant c > 0 there exists a constant n0 > 0 such that
g(n) < c ⋅ f (n) for all n > n0.

Definition

g(n) ∈ ω(f (n)) if for every constant c > 0 there exists a constant n0 > 0 such that
g(n) > c ⋅ f (n) for all n > n0.

Examples:

▸ 2n2 + 27 = o(n2 logn)
▸ 2n2 + 27 = ω(n)
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Recurrence Relations
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Sorting
Many algorithms recursive so running time naturally a recurrence relation (Karatsuba,
Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.
▸ Selection Sort

▸ Find smallest unsorted element, put it just after sorted elements. Repeat.
▸ Running time: Takes O(n) time to find smallest unsorted element, decreases remaining

unsorted by 1.
Ô⇒ T(n) = T(n − 1) + cn

▸ Mergesort
▸ Split array into left and right halves. Recursively sort each half, then merge.
▸ Running time: Merging takes O(n) time. Two recursive calls on half the size.
Ô⇒ T(n) = T(n/2) +T(n/2) + cn = 2T(n/2) + cn

Also need base case. For algorithms, constant size input takes constant time.
Ô⇒ T(n) ≤ c for all n ≤ n0, for some constants n0, c > 0.
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Guess and Check

T(n) = 3T(n/3) + n T(1) = 1

Guess: T(n) ≤ cn.
Check: assume true for n′ < n, prove true for n (induction).

T(n) = 3T(n/3) + n ≤ 3cn/3 + n = (c + 1)n
Failure! Wanted T(n) ≤ cn, got T(n) ≤ (c + 1)n. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? log3 n
Guess: T(n) ≤ n log3(3n)
Check: assume true for n′ < n, prove true for n (induction).

T(n) = 3T(n/3) + n ≤ 3(n/3) log3(3n/3) + n = n log3(n) + n
= n(log3(n) + log3 3) = n log3(3n).
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Unrolling

Example: selection sort. T(n) = T(n − 1) + cn
Idea: “unroll” the recurrence.

T(n) = cn +T(n − 1)
= cn + c(n − 1) +T(n − 2)
= cn + c(n − 1) + c(n − 2) +T(n − 3)

⋮
= cn + c(n − 1) + c(n − 2) + ⋅ ⋅ ⋅ + c

n terms, each of which at most cn Ô⇒ T(n) ≤ cn2 = O(n2)
At least n/2 terms which are at least cn/2 Ô⇒ T(n) ≥ c n2

4
= Ω(n2)

Ô⇒ T(n) =Θ(n2).
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Recursion Tree: Mergesort
Generalizes unrolling: draw out full tree of “recursive calls”.

Mergesort: T(n) = 2T(n/2) + cn.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8 cn/8

⋮

# levels: log2 n
Contribution of level i : 2i−1cn/2i−1 = cn
Ô⇒ T(n) =Θ(n logn)
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Recursion Tree: Strassen

T(n) = 7T(n/2) + cn2

cn2

c(n/2)2 c(n/2)2

⋮

c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2 c(n/2)2

c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2 c(n/4)2

Level i : 7i−1c(n/2i−1)2 = (7/4)i−1cn2

Total:

T(n) =
logn+1
∑
i=1
(
7

4
)

i−1
cn2 = cn2

logn+1
∑
i=1
(
7

4
)

i−1

Ô⇒ T(n) = O(n2(7/4)logn) = O(n2nlog(7/4)) = O(n2nlog 7−2)
= O(nlog 7)
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Master Theorem

T(n) = aT(n/b) + cnk T(1) = c

a,b, c,k constants with a ≥ 1, b > 1, c > 0, and k ≥ 0

cnk

c(n/b)k

⋮

c(n/b)k c(n/b)k

c(n/b2)k c(n/b2)k c(n/b2)k

a

# levels: logb n + 1
Level i : ai−1c(n/bi−1)k = cnk(a/bk)i−1
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Master Theorem II
Let α = (a/bk)
Ô⇒ T(n) = cnk ∑logb n+1

i=1 (a/bk)i−1 = cnk ∑logb n+1
i=1 αi−1

▸ Case 1: α = 1. All levels the same. T(n) = cnk ∑logb n+1
i=1 1 =Θ(nk logn)

▸ Case 2: α < 1. Dominated by top level.

Ô⇒ ∑logb n+1
i=1 αi−1 ≤ ∑∞i=1α

i−1 = 1
1−α .

Ô⇒ T(n) = O(nk)
T(n) ≥ cnk Ô⇒ T(n) = Ω(nk) Ô⇒ T(n) =Θ(nk)

▸ Case 3: α > 1. Dominated by bottom level

Ô⇒
logb n+1
∑
i=1

αi−1 = αlogb n
logb n+1
∑
i=1

(
1

α
)

i−1
≤ αlogb n 1

1 − (1/α)
= O(αlogb n)

Ô⇒ T(n) =Θ(nkαlogb n) =Θ(nk(a/bk)logb n) =Θ(alogb n)
=Θ(nlogb a)
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Master Theorem II
Let α = (a/bk)
Ô⇒ T(n) = cnk ∑logb n+1

i=1 (a/bk)i−1 = cnk ∑logb n+1
i=1 αi−1

▸ Case 1: α = 1. All levels the same. T(n) = cnk ∑logb n+1
i=1 1 =Θ(nk logn)
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Master Theorem III

Theorem (“Master Theorem”)

The recurrence

T(n) = aT(n/b) + cnk T(1) = c

where a,b, c , and k are constants with a ≥ 1, b > 1, c > 0, and k ≥ 0, is equal to

T(n) =Θ(nk) if a < bk ,

T(n) =Θ(nk logn) if a = bk ,

T(n) =Θ(nlogb a) if a > bk .
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