Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

August 29, 2024 601.433/633 Introduction to Algorithms

 $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow

4 0 8

Things I Forget on Tuesday

Level of Formality:

- **▸** Part of mathematical maturity is knowing when to be formal, when not necessary
- **▸** Rule of thumb: Be formal for important parts
	- **▸** Problem 1 is about asymptotic notation. Be formal!
	- **▸** Problem 2 is about recurrences. Can be a little less formal with asymptotic notation.
- **▸** Lectures:
	- **▸** I tend to go fast, not be super formal. But I expect you to be formal in homeworks (unless stated otherwise)

医单位 医单位

Today

Should be review, some might be new. See math background in CLRS

Asymptotics: O**(⋅)**, Ω**(⋅)**, and Θ**(⋅)** notation.

- **▸** Should know from Data Structures / MFCS. We'll be a bit more formal.
- **▸** Intuitively: hide constants and lower order terms, since we only care what happen "at scale" (asymptotically)

Recurrences: How to solve recurrence relations.

▸ Should know from MFCS / Discrete Math.

 \rightarrow 4 \equiv \rightarrow

Asymptotic Notation

メタトメ ミトメ ミト

 \leftarrow \Box \rightarrow

重

Definition

g(n) \in O(f(n)) if there exist constants c, n₀ > 0 such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Technically $O(f(n))$ is a set. Abuse notation: " $g(n)$ is $O(f(n))$ " or $g(n) = O(f(n))$.

K ロ ト K 御 ト K 君 ト K 君 ト 一君

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Technically $O(f(n))$ is a set. Abuse notation: " $g(n)$ is $O(f(n))$ " or $g(n) = O(f(n))$.

Examples:

▶
$$
2n^2 + 27 = O(n^2)
$$
: set $n_0 = 6$ and $c = 3$

▶
$$
2n^2 + 27 = O(n^3)
$$
: same values, or $n_0 = 4$ and $c = 1$

•
$$
n^3 + 2000n^2 + 2000n = O(n^3)
$$
: set $n_0 = 10000$ and $c = 2$

K ロ ト K 御 ト K 君 ト K 君 ト 一君

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Technically $O(f(n))$ is a set. Abuse notation: " $g(n)$ is $O(f(n))$ " or $g(n) = O(f(n))$.

Examples:

▶
$$
2n^2 + 27 = O(n^2)
$$
: set $n_0 = 6$ and $c = 3$

▶
$$
2n^2 + 27 = O(n^3)
$$
: same values, or $n_0 = 4$ and $c = 1$

•
$$
n^3 + 2000n^2 + 2000n = O(n^3)
$$
: set $n_0 = 10000$ and $c = 2$

About functions not algorithms! Expresses an upper bound

K ロ ト K 御 ト K 君 ト K 君 ト 一君

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

K 御 ▶ K 君 ▶ K 君 ▶

4 0 8

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem $2n^2 + 27 = O(n^2)$

Proof.

Set c **=** 3. Suppose 2n ² **+** 27 **>** cn² **=** 3n 2

Definition

g(n) \in O(f(n)) if there exist constants c, n₀ > 0 such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem $2n^2 + 27 = O(n^2)$

Proof.

Set
$$
c = 3
$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
\n $\implies n^2 < 27$

Definition

g(n) \in O(f(n)) if there exist constants c, n₀ > 0 such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem $2n^2 + 27 = O(n^2)$

Proof.

Set
$$
c = 3
$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
\n $\implies n^2 < 27 \implies n < 6$

Definition

g(n) \in O(f(n)) if there exist constants c, n₀ > 0 such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2 + 27 = O(n^2)$

Proof.

Set
$$
c = 3
$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
\n $\implies n^2 < 27 \implies n < 6$
\n $\implies 2n^2 + 27 \le 3n^2$ for all $n \ge 6$.

Definition

g(n) \in O(f(n)) if there exist constants c, n₀ > 0 such that $g(n) \le c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2 + 27 = O(n^2)$

Proof.

Set
$$
c = 3
$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
\n $\implies n^2 < 27 \implies n < 6$
\n $\implies 2n^2 + 27 \le 3n^2$ for all $n \ge 6$.
\nSet $n_0 = 6$. Then $2n^2 + 27 \le cn^2$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2 + 27 = O(n^2)$

Proof

Set
$$
c = 3
$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
\n $\implies n^2 < 27 \implies n < 6$
\n $\implies 2n^2 + 27 \le 3n^2$ for all $n \ge 6$.
\nSet $n_0 = 6$. Then $2n^2 + 27 \le cn^2$ for all $n > n_0$.

Many other ways to prove this!

Ω**(⋅)**

Counterpart to O**(⋅)**: lower bound rather than upper bound.

Definition

 $g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \ge c \cdot f(n)$ for all $n > n_0$.

Ω**(⋅)**

Counterpart to O**(⋅)**: lower bound rather than upper bound.

Definition $g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \ge c \cdot f(n)$ for all $n > n_0$.

Examples:

▶
$$
2n^2 + 27 = \Omega(n^2)
$$
: set $n_0 = 1$ and $c = 1$

▶
$$
2n^2 + 27 = \Omega(n)
$$
: set $n_0 = 1$ and $c = 1$

$$
\frac{1}{100}n^3 - 1000n^2 = \Omega(n^3)
$$
: set $n_0 = 1000000$ and $c = 1/1000$

Θ**(⋅)**

Combination of O**(⋅)** and Ω**(⋅)**.

Definition

$g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0 , c can be different in the proofs for $O(f(n))$ and $Ω(f(n))$

イロメ イ部 メイミメ イミメー

Θ**(⋅)**

Combination of O**(⋅)** and Ω**(⋅)**.

Definition

 $g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0 , c can be different in the proofs for $O(f(n))$ and $Ω(f(n))$

Equivalent:

Definition $g(n) \in \Theta(f(n))$ if there are constants $c_1, c_2, n_0 > 0$ such that $c_1 f(n) \leq g(n) \leq c_2 f(n)$ for all $n > n_0$.

Both lower bound and upper bound, so asymptotic equality.

Little notation

Strict versions of O and Ω :

Definition

 $g(n) \in o(f(n))$ if for every constant $c > 0$ there exists a constant $n_0 > 0$ such that $g(n) < c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in \omega(f(n))$ if for every constant $c > 0$ there exists a constant $n_0 > 0$ such that $g(n) > c \cdot f(n)$ for all $n > n_0$.

Examples:

$$
2n^2+27=o(n^2\log n)
$$

► $2n^2 + 27 = \omega(n)$

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Recurrence Relations

イロト イ部 トイモ トイモト

目

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let $T(n)$ denote (worst-case) running time on an array of size n .

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let $T(n)$ denote (worst-case) running time on an array of size n .

▸ Selection Sort

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let $T(n)$ denote (worst-case) running time on an array of size n .

- **▸** Selection Sort
	- **▸** Find smallest unsorted element, put it just after sorted elements. Repeat.

医毛囊 医牙骨下的

← ロ ▶ → イ 同 ▶

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T**(**n**)** denote (worst-case) running time on an array of size n.

- **▸** Selection Sort
	- **▸** Find smallest unsorted element, put it just after sorted elements. Repeat.
	- **▸** Running time: Takes O**(**n**)** time to find smallest unsorted element, decreases remaining unsorted by 1.

$$
\implies \mathcal{T}(n) = \mathcal{T}(n-1) + cn
$$

イロト イ押 トイヨ トイヨ トー

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T**(**n**)** denote (worst-case) running time on an array of size n.

- **▸** Selection Sort
	- **▸** Find smallest unsorted element, put it just after sorted elements. Repeat.
	- **▶** Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.

$$
\implies \mathcal{T}(n) = \mathcal{T}(n-1) + cn
$$

▸ Mergesort

イロト イ押 トイヨ トイヨ トー

GB 11

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let $T(n)$ denote (worst-case) running time on an array of size n .

- **▸** Selection Sort
	- **▸** Find smallest unsorted element, put it just after sorted elements. Repeat.
	- **▶** Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.

$$
\implies \mathcal{T}(n) = \mathcal{T}(n-1) + cn
$$

- **▸** Mergesort
	- **▸** Split array into left and right halves. Recursively sort each half, then merge.

イロト イ押 トイヨ トイヨ トー

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let $T(n)$ denote (worst-case) running time on an array of size n .

- **▸** Selection Sort
	- **▸** Find smallest unsorted element, put it just after sorted elements. Repeat.
	- **▸** Running time: Takes O**(**n**)** time to find smallest unsorted element, decreases remaining unsorted by 1.

$$
\implies \mathcal{T}(n) = \mathcal{T}(n-1) + cn
$$

- **▸** Mergesort
	- **▸** Split array into left and right halves. Recursively sort each half, then merge.
	- **▸** Running time: Merging takes O**(**n**)** time. Two recursive calls on half the size. \implies $T(n) = T(n/2) + T(n/2) + cn = 2T(n/2) + cn$

KOD KOD KED KED DAR

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let $T(n)$ denote (worst-case) running time on an array of size n .

- **▸** Selection Sort
	- **▸** Find smallest unsorted element, put it just after sorted elements. Repeat.
	- **▶** Running time: Takes $O(n)$ time to find smallest unsorted element, decreases remaining unsorted by 1.

$$
\implies \mathcal{T}(n) = \mathcal{T}(n-1) + cn
$$

- **▸** Mergesort
	- **▸** Split array into left and right halves. Recursively sort each half, then merge.
	- **▸** Running time: Merging takes O**(**n**)** time. Two recursive calls on half the size. \implies $T(n) = T(n/2) + T(n/2) + cn = 2T(n/2) + cn$

Also need base case. For algorithms, constant size input takes constant time.

 \implies **T**(n) \le c for all $n \le n_0$, for some constants $n_0, c > 0$.

KOD KOD KED KED DAR

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

メロメ メタメ メミメ メミメー

■

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \leq cn$.

目

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \leq cn$.

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \le cn$.

Check: assume true for $n' < n$, prove true for n (induction). $T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c + 1)n$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

4 0 8

E.

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \le cn$.

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c+1)n
$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

 $\mathcal{A} \equiv \mathcal{A} \times \mathcal{A} \equiv \mathcal{A}$

← ロ ▶ → イ 同 ▶

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \leq cn$.

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c+1)n
$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3?

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$
Guess and Check

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \leq cn$.

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c+1)n
$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

G.

Guess and Check

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \leq cn$.

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c+1)n
$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$ Guess: $T(n) \le n \log_3(3n)$

GB 11

Guess and Check

$$
T(n) = 3T(n/3) + n \qquad T(1) = 1
$$

Guess: $T(n) \leq cn$.

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \leq 3cn/3 + n = (c+1)n
$$

Failure! Wanted $T(n) \le cn$, got $T(n) \le (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$ Guess: $T(n) \le n \log_3(3n)$

Check: assume true for $n' < n$, prove true for n (induction).

$$
T(n) = 3T(n/3) + n \le 3(n/3) \log_3(3n/3) + n = n \log_3(n) + n
$$

= $n(\log_3(n) + \log_3(3)) = n \log_3(3n)$.

[K 플 K X 플 K 및 L YO Q @

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
\mathcal{T}(n) = cn + \mathcal{T}(n-1)
$$

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
\begin{aligned} \mathcal{T}(n) &= cn + \mathcal{T}(n-1) \\ &= cn + c(n-1) + \mathcal{T}(n-2) \end{aligned}
$$

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
T(n) = cn + T(n-1)
$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
T(n) = cn + T(n-1)
$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
T(n) = cn + T(n-1)
$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
= cn + c(n-1) + c(n-2) + \cdots + c

イロン イ部ン イヨン イヨン 一番

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
T(n) = cn + T(n-1)
$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
= cn + c(n-1) + c(n-2) + \cdots + c

 n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$

GB 11

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
T(n) = cn + T(n-1)
$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
= cn + c(n-1) + c(n-2) + \cdots + c

 n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$ At least $n/2$ terms which are at least $cn/2 \implies T(n) \geq c \frac{n^2}{4}$ $\frac{n^2}{4} = \Omega(n^2)$

イロト イ押 トイヨ トイヨ トー ヨー

Example: selection sort. $T(n) = T(n-1) + cn$ Idea: "unroll" the recurrence.

$$
T(n) = cn + T(n-1)
$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
= cn + c(n-1) + c(n-2) + \cdots + c

 n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$ At least $n/2$ terms which are at least $cn/2 \implies T(n) \geq c \frac{n^2}{4}$ $\frac{n^2}{4} = \Omega(n^2)$ \implies **T**(**n**) = $\Theta(n^2)$.

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

G.

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

 \bullet

 \rightarrow \pm $\mathbf{A} \rightarrow \mathbf{A} \rightarrow \mathbf{A}$

4 0 8

∍

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

 \bullet

 $#$ levels:

 $A \equiv \mathbf{1} \times A \equiv \mathbf{1}$

4 0 8 ∢母 ∍

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

 \bullet

levels: $\log_2 n$

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

 \bullet

levels: $\log_2 n$ Contribution of level *i*:

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

levels: $\log_2 n$ Contribution of level i: 2 i**−**1 cn**/**2 ⁱ**−**¹ **=** cn

4 0 F

 \rightarrow \rightarrow \rightarrow

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: $T(n) = 2T(n/2) + cn$.

levels: $\log_2 n$ Contribution of level i: 2 i**−**1 cn**/**2 ⁱ**−**¹ **=** cn \implies $T(n) = \Theta(n \log n)$

Michael Dinitz **[Lecture 2: Asymptotic Analysis, Recurrences](#page-0-0)** August 29, 2024 14/18

←□

 \rightarrow \rightarrow \rightarrow

$$
\mathcal{T}(n)=7\,\mathcal{T}(n/2)+cn^2
$$

イロト イ部 トイヨ トイヨト

■

 $T(n) = 7T(n/2) + cn^2$

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

э

 $T(n) = 7T(n/2) + cn^2$

Level i: 7 i**−**1 c**(**n**/**2 i**−**1 **)** ² **= (**7**/**4**)** i**−**1 cn²

 $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow

4 0 8

∍

 $T(n) = 7T(n/2) + cn^2$

Total:
\n
$$
T(n) = \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1} cn^{2} = cn^{2} \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1}
$$

 $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow $\sqrt{2}$ \rightarrow

4 0 8

э

 $T(n) = 7T(n/2) + cn^2$

$$
\mathcal{T}(n) = a\mathcal{T}(n/b) + cn^k \qquad \qquad \mathcal{T}(1) = c
$$

 a, b, c, k constants with $a \ge 1$, $b > 1$, $c > 0$, and $k \ge 0$

目

$$
\mathcal{T}(n) = a\mathcal{T}(n/b) + cn^k \qquad \qquad \mathcal{T}(1) = c
$$

$$
a, b, c, k \text{ constants with } a \ge 1, b > 1, c > 0, \text{ and } k \ge 0
$$

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

$$
\mathcal{T}(n) = a\mathcal{T}(n/b) + cn^k \qquad \qquad \mathcal{T}(1) = c
$$

$$
a, b, c, k \text{ constants with } a \ge 1, b > 1, c > 0, \text{ and } k \ge 0
$$

⋮

 $#$ levels: $log_b n + 1$

$$
\mathcal{T}(n) = a\mathcal{T}(n/b) + cn^k \qquad \qquad \mathcal{T}(1) = c
$$

$$
a, b, c, k \text{ constants with } a \ge 1, b > 1, c > 0, \text{ and } k \ge 0
$$

⋮

$$
\text{ levels: } \log_b n + 1
$$

Level *i*:
$$
a^{i-1}c(n/b^{i-1})^k = cn^k(a/b^k)^{i-1}
$$

Michael Dinitz **[Lecture 2: Asymptotic Analysis, Recurrences](#page-0-0)** August 29, 2024 16/18

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

 299

Master Theorem II Let $\alpha = (a/b^k)$ \implies **T**(**n**) = cn^k $\sum_{i=1}^{\log_b n+1}$ $\int_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1}$ $\frac{\log_b n+1}{a} \alpha^{i-1}$

イロン イ部ン イヨン イヨン 一君

Master Theorem II Let $\alpha = (a/b^k)$ \implies **T**(**n**) = cn^k $\sum_{i=1}^{\log_b n+1}$ $\int_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1}$ $\frac{\log_b n+1}{a} \alpha^{i-1}$

▶ Case 1: α = 1. All levels the same. $T(n) = cn^{k} \sum_{i=1}^{\log_{b} n+1}$ $\int_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 │ ◆ 9,9,0*

Master Theorem II Let $\alpha = (a/b^k)$ \implies **T**(**n**) = cn^k $\sum_{i=1}^{\log_b n+1}$ $\int_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1}$ $\frac{\log_b n+1}{a} \alpha^{i-1}$

▶ Case 1: α = 1. All levels the same. $T(n) = cn^{k} \sum_{i=1}^{\log_{b} n+1}$ $\int_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$ **►** Case 2: α < 1. Dominated by top level.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Master Theorem II Let $\alpha = (a/b^k)$ \implies **T**(**n**) = cn^k $\sum_{i=1}^{\log_b n+1}$ $\int_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1}$ $\frac{\log_b n+1}{a} \alpha^{i-1}$ **▶** Case 1: α = 1. All levels the same. $T(n) = cn^{k} \sum_{i=1}^{\log_{b} n+1}$ $\int_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$ **►** Case 2: α < 1. Dominated by top level. $\implies \sum_{i=1}^{\log_b n+1}$ $\sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$ $\frac{1}{1-\alpha}$. \implies **T**(n) = $O(n^k)$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Master Theorem II Let $\alpha = (a/b^k)$ \implies **T**(**n**) = cn^k $\sum_{i=1}^{\log_b n+1}$ $\int_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1}$ $\frac{\log_b n+1}{a} \alpha^{i-1}$ **▶** Case 1: α = 1. All levels the same. $T(n) = cn^{k} \sum_{i=1}^{\log_{b} n+1}$ $\int_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$ **►** Case 2: α < 1. Dominated by top level. $\implies \sum_{i=1}^{\log_b n+1}$ $\sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$ $\frac{1}{1-\alpha}$. \implies **T**(n) = $O(n^k)$ $T(n) \ge cn^k \implies T(n) = \Omega(n^k)$

KOD KAP KED KED E VAA

Master Theorem II

\nLet
$$
\alpha = (a/b^k)
$$

\n⇒ $T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

\n▶ Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$

\n▶ Case 2: $\alpha < 1$. Dominated by top level.

\n⇒ $\sum_{i=1}^{\log_b n+1} \alpha^{i-1} \leq \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.

\n⇒ $T(n) = O(n^k)$

\n⇒ $T(n) \geq cn^k$ ⇒ $T(n) = \Omega(n^k)$ ⇒ $T(n) = \Theta(n^k)$

KO K K @ K K B K K B K Y W K Y K Y W W Y

Master Theorem II Let $\alpha = (a/b^k)$ \implies **T**(**n**) = cn^k $\sum_{i=1}^{\log_b n+1}$ $\int_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1}$ $\frac{\log_b n+1}{a} \alpha^{i-1}$ **▶** Case 1: α = 1. All levels the same. $T(n) = cn^{k} \sum_{i=1}^{\log_{b} n+1}$ $\int_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$ **►** Case 2: α < 1. Dominated by top level. $\implies \sum_{i=1}^{\log_b n+1}$ $\sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$ $\frac{1}{1-\alpha}$. \implies **T**(n) = $O(n^k)$ $\mathcal{T}(n) \geq cn^k \implies \mathcal{T}(n) = \Omega(n^k) \implies \mathcal{T}(n) = \Theta(n^k)$ **▸** Case 3: α **>** 1. Dominated by bottom level

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Master Theorem II
\nLet α = (a/b^k)
\n⇒ T(n) = cn^k
$$
\sum_{i=1}^{\log_b n+1}
$$
 (a/b^k)ⁱ⁻¹ = cn^k $\sum_{i=1}^{\log_b n+1}$ αⁱ⁻¹
\n► Case 1: α = 1. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
\n► Case 2: α < 1. Dominated by top level.
\n⇒ $\sum_{i=1}^{\log_b n+1}$ αⁱ⁻¹ ≤ $\sum_{i=1}^{\infty}$ αⁱ⁻¹ = $\frac{1}{1-\alpha}$.
\n⇒ T(n) = O(n^k)
\nT(n) ≥ cn^k ⇒ T(n) = Ω(n^k) ⇒ T(n) = Θ(n^k)
\n► Case 3: α > 1. Dominated by bottom level
\nlog_b n+1
\n⇒ $\sum_{i=1}^{\log_b n+1}$ αⁱ⁻¹ = α^{log_b} n^{log_b} nⁱ⁻¹ $\sum_{i=1}^{\log_b n+1}$ $\left(\frac{1}{\alpha}\right)^{i-1}$ ≤ α^{log_b} n $\frac{1}{1-(1/\alpha)}$
\n= O(α^{log_b} n)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君 │ めぬ@
Master Theorem II
\nLet α = (a/b^k)
\n⇒ T(n) = cn^k
$$
\sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}
$$

\n⇒ Case 1: α = 1. All levels the same. T(n) = cn^k $\sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
\n⇒ Case 2: α < 1. Dominated by top level.
\n⇒ $\sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
\n⇒ T(n) = O(n^k)
\nT(n) ≥ cn^k ⇒ T(n) = Ω(n^k) ⇒ T(n) = Θ(n^k)
\n⇒ Case 3: α > 1. Dominated by bottom level
\n
$$
\frac{\log_b n+1}{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \le \alpha^{\log_b n} \frac{1}{1-(1/\alpha)}
$$
\n= O(α^{log_b n})
\n= O(α^{log_b n})
\n⇒ T(n) = Θ(n^kα^{log_b n}) = Θ(n^k(a/b^k)^{log_b n}) = Θ(a^{log_b n})
\n= Θ(n^{log_b a})

 \mathbb{R}^+

Master Theorem III

Theorem ("Master Theorem")

The recurrence

$$
T(n) = aT(n/b) + cn^k \qquad T(1) = c
$$

where a, b, c , and k are constants with $a \ge 1$, $b > 1$, $c > 0$, and $k \ge 0$, is equal to

$$
T(n) = \Theta(n^{k}) \text{ if } a < b^{k},
$$

\n
$$
T(n) = \Theta(n^{k} \log n) \text{ if } a = b^{k},
$$

\n
$$
T(n) = \Theta(n^{\log_b a}) \text{ if } a > b^{k}.
$$

G.