Lecture 2: Asymptotic Analysis, Recurrences

Michael Dinitz

August 29, 2024 601.433/633 Introduction to Algorithms

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Things I Forget on Tuesday

Level of Formality:

- ▶ Part of mathematical maturity is knowing when to be formal, when not necessary
- Rule of thumb: Be formal for important parts
 - Problem 1 is about asymptotic notation. Be formal!
 - ▶ Problem 2 is *about* recurrences. Can be a little less formal with asymptotic notation.
- Lectures:
 - I tend to go fast, not be super formal. But I expect you to be formal in homeworks (unless stated otherwise)

Today

Should be review, some might be new. See math background in CLRS

Asymptotics: $O(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$ notation.

- Should know from Data Structures / MFCS. We'll be a bit more formal.
- Intuitively: hide constants and lower order terms, since we only care what happen "at scale" (asymptotically)

Recurrences: How to solve recurrence relations.

Should know from MFCS / Discrete Math.

A B M A B M

Asymptotic Notation

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷
 August 29, 2024

Definition

$g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Technically O(f(n)) is a set. Abuse notation: "g(n) is O(f(n))" or g(n) = O(f(n)).

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Technically O(f(n)) is a set. Abuse notation: "g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:

•
$$2n^2 + 27 = O(n^2)$$
: set $n_0 = 6$ and $c = 3$

▶
$$2n^2 + 27 = O(n^3)$$
: same values, or $n_0 = 4$ and $c = 1$

▶
$$n^3 + 2000n^2 + 2000n = O(n^3)$$
: set $n_0 = 10000$ and $c = 2$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Technically O(f(n)) is a set. Abuse notation: "g(n) is O(f(n))" or g(n) = O(f(n)).

Examples:

•
$$2n^2 + 27 = O(n^2)$$
: set $n_0 = 6$ and $c = 3$

▶
$$2n^2 + 27 = O(n^3)$$
: same values, or $n_0 = 4$ and $c = 1$

•
$$n^3 + 2000n^2 + 2000n = O(n^3)$$
: set $n_0 = 10000$ and $c = 2$

About *functions* not algorithms! Expresses an *upper* bound

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem $2n^2 + 27 = O(n^2)$

Proof.

Set c = 3. Suppose $2n^2 + 27 > cn^2 = 3n^2$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem $2n^2 + 27 = O(n^2)$

Proof.

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2 + 27 = O(n^2)$

Proof.

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27 \implies n < 6$

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2+27=O(n^2)$

Proof.

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27 \implies n < 6$
 $\implies 2n^2 + 27 \le 3n^2$ for all $n \ge 6$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2+27=O(n^2)$

Proof.

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27 \implies n < 6$
 $\implies 2n^2 + 27 \le 3n^2$ for all $n \ge 6$.
Set $n_0 = 6$. Then $2n^2 + 27 \le cn^2$ for all $n > n_0$.

Definition

 $g(n) \in O(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \leq c \cdot f(n)$ for all $n > n_0$.

Theorem

 $2n^2+27=O(n^2)$

Proof.

Set
$$c = 3$$
. Suppose $2n^2 + 27 > cn^2 = 3n^2$
 $\implies n^2 < 27 \implies n < 6$
 $\implies 2n^2 + 27 \le 3n^2$ for all $n \ge 6$.
Set $n_0 = 6$. Then $2n^2 + 27 \le cn^2$ for all $n > n_0$

Many other ways to prove this!

Michael Dinitz

イロト 不得下 イヨト イヨト

Ω(·)

Counterpart to $O(\cdot)$: *lower* bound rather than upper bound.

Definition

 $g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \ge c \cdot f(n)$ for all $n > n_0$.

Ω(·)

Counterpart to $O(\cdot)$: *lower* bound rather than upper bound.

Definition $g(n) \in \Omega(f(n))$ if there exist constants $c, n_0 > 0$ such that $g(n) \ge c \cdot f(n)$ for all $n > n_0$.

Examples:

•
$$2n^2 + 27 = \Omega(n^2)$$
: set $n_0 = 1$ and $c = 1$

•
$$2n^2 + 27 = \Omega(n)$$
: set $n_0 = 1$ and $c = 1$

•
$$\frac{1}{100}n^3 - 1000n^2 = \Omega(n^3)$$
: set $n_0 = 1000000$ and $c = 1/1000$

$\Theta(\cdot)$

Combination of $O(\cdot)$ and $\Omega(\cdot)$.

Definition

 $g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0, c can be different in the proofs for O(f(n)) and $\Omega(f(n))$

$\Theta(\cdot)$

Combination of $O(\cdot)$ and $\Omega(\cdot)$.

Definition

 $g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$.

Note: constants n_0, c can be different in the proofs for O(f(n)) and $\Omega(f(n))$

Equivalent:

Definition $g(n) \in \Theta(f(n))$ if there are constants $c_1, c_2, n_0 > 0$ such that $c_1f(n) \le g(n) \le c_2f(n)$ for all $n > n_0$.

Both lower bound and upper bound, so asymptotic equality.

Little notation

Strict versions of $\boldsymbol{\textit{O}}$ and $\boldsymbol{\Omega}$:

Definition

 $g(n) \in o(f(n))$ if for every constant c > 0 there exists a constant $n_0 > 0$ such that $g(n) < c \cdot f(n)$ for all $n > n_0$.

Definition

 $g(n) \in \omega(f(n))$ if for every constant c > 0 there exists a constant $n_0 > 0$ such that $g(n) > c \cdot f(n)$ for all $n > n_0$.

Examples:

▶
$$2n^2 + 27 = o(n^2 \log n)$$

► $2n^2 + 27 = \omega(n)$

< 回 > < 三 > < 三 >

Recurrence Relations

✓ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷</p>
August 29, 2024

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

Selection Sort

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

イロト 不得下 イヨト イヨト 二日

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

Mergesort

(本語) (本語) (本語) (本語) (本語)

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes O(n) time. Two recursive calls on half the size. $\implies T(n) = T(n/2) + T(n/2) + cn = 2T(n/2) + cn$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Many algorithms recursive so running time naturally a recurrence relation (Karatsuba, Strassen).

Sorting: Let T(n) denote (worst-case) running time on an array of size n.

- Selection Sort
 - Find smallest unsorted element, put it just after sorted elements. Repeat.
 - Running time: Takes O(n) time to find smallest unsorted element, decreases remaining unsorted by 1.

$$\implies T(n) = T(n-1) + cn$$

- Mergesort
 - Split array into left and right halves. Recursively sort each half, then merge.
 - Running time: Merging takes O(n) time. Two recursive calls on half the size. $\implies T(n) = T(n/2) + T(n/2) + cn = 2T(n/2) + cn$

Also need base case. For algorithms, constant size input takes constant time.

 \implies $T(n) \le c$ for all $n \le n_0$, for some constants $n_0, c > 0$.

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

э.

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction). $T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction).

 $T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$

Failure! Wanted $T(n) \leq cn$, got $T(n) \leq (c+1)n$. Guess was wrong.

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \leq cn$, got $T(n) \leq (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3?

人口 医水理 医水黄 医水黄素 计算
Guess and Check

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \leq cn$, got $T(n) \leq (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$

人口 医水理 医水黄 医水黄素 计算机

Guess and Check

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \leq cn$, got $T(n) \leq (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$ Guess: $T(n) \le n \log_3(3n)$

Guess and Check

$$T(n) = 3T(n/3) + n$$
 $T(1) = 1$

Guess: $T(n) \leq cn$.

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3cn/3 + n = (c+1)n$$

Failure! Wanted $T(n) \leq cn$, got $T(n) \leq (c+1)n$. Guess was wrong.

Better guess? What goes up by 1 when n goes up by a factor of 3? $\log_3 n$ Guess: $T(n) \le n \log_3(3n)$

Check: assume true for n' < n, prove true for n (induction).

$$T(n) = 3T(n/3) + n \le 3(n/3)\log_3(3n/3) + n = n\log_3(n) + n$$

= $n(\log_3(n) + \log_3 3) = n\log_3(3n).$

NOC E VEN VOC

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$
$$= cn + c(n-1) + T(n-2)$$

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:

August 29, 2024

<ロト < 同ト < 回ト < 回ト = 三日

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

T

$$T(n) = cn + T(n-1)$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
:
= cn + c(n-1) + c(n-2) + ... + c

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

Lecture 2: Asymptotic Analysis, Recurrences

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

-

$$T(n) = cn + T(n-1)$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
:
= cn + c(n-1) + c(n-2) + \dots + c

n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$

<ロト < 四ト < 回ト < 回ト < 回ト = 回

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
:
= cn + c(n-1) + c(n-2) + \dots + c

n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$ At least n/2 terms which are at least $cn/2 \implies T(n) \ge c\frac{n^2}{4} = \Omega(n^2)$

Example: selection sort. T(n) = T(n-1) + cnIdea: "unroll" the recurrence.

$$T(n) = cn + T(n-1)$$

= cn + c(n-1) + T(n-2)
= cn + c(n-1) + c(n-2) + T(n-3)
:
:
= cn + c(n-1) + c(n-2) + \dots + c

n terms, each of which at most $cn \implies T(n) \le cn^2 = O(n^2)$ At least n/2 terms which are at least $cn/2 \implies T(n) \ge c\frac{n^2}{4} = \Omega(n^2)$ $\implies T(n) = \Theta(n^2).$

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

.

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

.

levels:

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

.

levels: **log**₂ *n*

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

٠

levels: log₂ n
Contribution of level i:

			≡ ♥) ⊄ (♥
Michael Dinitz	Lecture 2: Asymptotic Analysis, Recurrences	August 29, 2024	14 / 18

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

levels: $\log_2 n$ Contribution of level *i*: $2^{i-1}cn/2^{i-1} = cn$

글 제 제 글 제

Generalizes unrolling: draw out full tree of "recursive calls".

Mergesort: T(n) = 2T(n/2) + cn.

٠

levels: $\log_2 n$ Contribution of level *i*: $2^{i-1}cn/2^{i-1} = cn$ $\implies T(n) = \Theta(n \log n)$

Michael Dinitz

Lecture 2: Asymptotic Analysis, Recurrences

August 29, 2024

글 🖌 🖌 글 🕨

$$T(n) = 7T(n/2) + cn^2$$

ж

 $T(n) = 7T(n/2) + cn^2$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 August 29, 2024

 $T(n) = 7T(n/2) + cn^2$

Level *i*: $7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2$

August 29, 2024

(日本)

 $T(n) = 7T(n/2) + cn^2$

Level *i*:
$$7^{i-1}c(n/2^{i-1})^2 = (7/4)^{i-1}cn^2$$

 $T(n) = \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1}cn^2 = cn^2 \sum_{i=1}^{\log n+1} \left(\frac{7}{4}\right)^{i-1}$
Total:

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 August 29, 2024

 $T(n) = 7T(n/2) + cn^2$

August 29, 2024

$$T(n) = aT(n/b) + cn^k$$
 $T(1) = c$

a, b, c, k constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$

$$T(n) = aT(n/b) + cn^k \qquad T(1) = c$$

a, b, c, k constants with $a \ge 1$, $b > 1$, $c > 0$, and $k \ge 0$

Michael	Dinitz	
---------	--------	--

Lecture 2: Asymptotic Analysis, Recurrences

$$T(n) = aT(n/b) + cn^k \qquad T(1) = c$$

a, b, c, k constants with $a \ge 1$, $b > 1$, $c > 0$, and $k \ge 0$

levels: $\log_b n + 1$

		< □ >	▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶	- 2	500
Michael Dinitz	Lecture 2: Asymptotic Analysis, Recurrences		August 29, 2024		16 / 18

$$T(n) = aT(n/b) + cn^k \qquad T(1) = c$$

a, b, c, k constants with $a \ge 1$, $b > 1$, $c > 0$, and $k \ge 0$

levels:
$$\log_b n + 1$$

Level i: $a^{i-1}c(n/b^{i-1})^k = cn^k(a/b^k)^{i-1}$

Michael Dinitz

Lecture 2: Asymptotic Analysis, Recurrences

Master Theorem II Let $\alpha = (a/b^k)$ $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

<ロト < 四ト < 回ト < 回ト < 回ト = 回

Master Theorem II Let $\alpha = (a/b^k)$ $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

• Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$

Master Theorem II Let $\alpha = (a/b^k)$ $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$

• Case 1: $\alpha = \mathbf{1}$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} \mathbf{1} = \Theta(n^k \log n)$

• Case 2: $\alpha < 1$. Dominated by top level.

・ロト ・四ト ・日ト ・日ト ・日

Master Theorem II Let $\alpha = (a/b^k)$ $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$ • Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$ • Case 2: $\alpha < 1$. Dominated by top level. $\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}.$ $\implies T(n) = O(n^k)$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うらぐ

Master Theorem II
Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$
 \triangleright Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
 \triangleright Case 2: $\alpha < 1$. Dominated by top level.
 $\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\implies T(n) = O(n^k)$
 $T(n) \ge cn^k \implies T(n) = \Omega(n^k)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Master Theorem II
Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$
 \triangleright Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
 \triangleright Case 2: $\alpha < 1$. Dominated by top level.
 $\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\implies T(n) = O(n^k)$
 $T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Master Theorem II
Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$
 \triangleright Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
 \triangleright Case 2: $\alpha < 1$. Dominated by top level.
 $\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\implies T(n) = O(n^k)$
 $T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$
 \triangleright Case 3: $\alpha > 1$. Dominated by bottom level

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Master Theorem II
Let
$$\alpha = (a/b^k)$$

 $\implies T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$
• Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
• Case 2: $\alpha < 1$. Dominated by top level.
 $\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\implies T(n) = O(n^k)$
 $T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$
• Case 3: $\alpha > 1$. Dominated by bottom level
 $\implies \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \le \alpha^{\log_b n} \frac{1}{1-(1/\alpha)}$
 $= O(\alpha^{\log_b n})$

August 29, 2024

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●
Master Theorem II
Let
$$\alpha = (a/b^k)$$

 $\Rightarrow T(n) = cn^k \sum_{i=1}^{\log_b n+1} (a/b^k)^{i-1} = cn^k \sum_{i=1}^{\log_b n+1} \alpha^{i-1}$
• Case 1: $\alpha = 1$. All levels the same. $T(n) = cn^k \sum_{i=1}^{\log_b n+1} 1 = \Theta(n^k \log n)$
• Case 2: $\alpha < 1$. Dominated by top level.
 $\Rightarrow \sum_{i=1}^{\log_b n+1} \alpha^{i-1} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \frac{1}{1-\alpha}$.
 $\Rightarrow T(n) = O(n^k)$
 $T(n) \ge cn^k \implies T(n) = \Omega(n^k) \implies T(n) = \Theta(n^k)$
• Case 3: $\alpha > 1$. Dominated by bottom level
 $\Rightarrow \sum_{i=1}^{\log_b n+1} \alpha^{i-1} = \alpha^{\log_b n} \sum_{i=1}^{\log_b n+1} \left(\frac{1}{\alpha}\right)^{i-1} \le \alpha^{\log_b n} \frac{1}{1-(1/\alpha)}$
 $= O(\alpha^{\log_b n})$
 $\Rightarrow T(n) = \Theta(n^k \alpha^{\log_b n}) = \Theta(n^k (a/b^k)^{\log_b n}) = \Theta(a^{\log_b n})$
 $= \Theta(n^{\log_b a})$

August 29, 2024

Master Theorem III

Theorem ("Master Theorem")

The recurrence

$$T(n) = aT(n/b) + cn^{k} \qquad T(1) = c$$

where a, b, c, and k are constants with $a \ge 1$, b > 1, c > 0, and $k \ge 0$, is equal to

$$T(n) = \Theta(n^k) \text{ if } a < b^k,$$

$$T(n) = \Theta(n^k \log n) \text{ if } a = b^k,$$

$$T(n) = \Theta(n^{\log_b a}) \text{ if } a > b^k.$$

Mie	chael	Dinitz
	cina ci	DINNEL

3