Lecture 20: Max-Flow II

Michael Dinitz

November 7, 2024 601.433/633 Introduction to Algorithms

Introduction

Last time:

- **▸** Max-Flow = Min-Cut
- **▸** Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an $s \rightarrow t$ path, push flow along it.
	- **▸** Corollary: if all capacities integers, max-flow is integral
	- **•** If max-flow has value **F**, time $O(F(m+n))$ (if all capacities integers)
	- **▸** Exponential time!

Today:

- **▸** Important setting where FF is enough: max bipartite matching
- **▸** Two ways of making FF faster: Edmonds-Karp

Max Bipartite Matching

Setup

Definition

A graph $G = (V, E)$ is *bipartite* if V can be partitioned into two parts L, R such that every edge in E has one endpoint in *and one endpoint in* $*R*$ *.*

Definition

A matching is a subset M **⊆** E such that e **∩**e **′ = ∅** for all $e, e' \in M$ with $e \neq e'$ (no two edges share an endpoint)

Bipartite Maximum Matching: Given bipartite graph $G = (V, E)$, find matching M maximizing **∣**M**∣**

▸ Extremely important problem, doesn't seem to have much to do with flow!

Algorithm

Give all edges capacity 1 Direct all edges from L to R Add source s and sink t Add edges of capacity 1 from s to L Add edges of capacity 1 from R to t

Run FF to get flow f $\mathsf{Return} \ \mathsf{M} = \{e \in \mathsf{L} \times \mathsf{R} : f(e) > 0\}$

Correctness

Claim: M is a matching

Correctness

Claim: M is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

 \blacksquare Claim: \blacksquare is a matching $\frac{1}{2}$

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is a matching

Claim: M is a matching

Claim: M is a matching $\frac{1}{2}$

Claim: M is maximum matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is a matching

Claim: M is a matching

Claim: M is a matching $\frac{1}{2}$

Claim: M is maximum matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ **Proof:** Suppose larger matching M' for all e (integrality)

Claim: M is a matching

Claim: M is a matching

Claim: M is a matching $\frac{1}{2}$

Claim: M is maximum matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality) $\sqrt{9}$ Proof: Suppose larger matching M**′** Can send **∣**M**′ ∣** flow using M**′** !

Claim: M is a matching

Claim: M is a matching

Claim: M is a matching $\frac{1}{2}$

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is maximum matching

- Proof: Suppose larger matching M**′** Can send **∣**M**′ ∣** flow using M**′** !
	- \blacktriangleright $f'(s, u) = 1$ is u matched in M' , otherwise 0
	- \blacktriangleright $f'(\nu, t) = 1$ if ν matched in M' , otherwise 0
	- **▶** $f'(u, v) = 1$ if $\{u, v\} \in M'$, otherwise 0

Claim: M is a matching

Claim: M is a matching

Claim: M is a matching $\frac{1}{2}$

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is maximum matching

- Proof: Suppose larger matching M**′** Can send **∣**M**′ ∣** flow using M**′** !
	- \blacktriangleright $f'(s, u) = 1$ is u matched in M' , otherwise 0
	- \blacktriangleright $f'(\nu, t) = 1$ if ν matched in M' , otherwise 0
	- **▶** $f'(u, v) = 1$ if $\{u, v\} \in M'$, otherwise 0 **►** $|f'| = |M'| > |M| = |f|$

Claim: M is a matching

Claim: M is a matching

Claim: M is a matching $\frac{1}{2}$

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is maximum matching

- Proof: Suppose larger matching M**′** Can send **∣**M**′ ∣** flow using M**′** !
	- \blacktriangleright $f'(s, u) = 1$ is u matched in M' , otherwise 0
	- \blacktriangleright $f'(\nu, t) = 1$ if ν matched in M' , otherwise 0
	- **▶** $f'(u, v) = 1$ if $\{u, v\} \in M'$, otherwise 0
	- **►** $|f'| = |M'| > |M| = |f|$
	- **▸** Contradiction

Running Time

Running Time:

- \triangleright **O**($n + m$) to make new graph
- **▸ ∣**f **∣ = ∣**M**∣ ≤** n**/**2 iterations of FF
- \implies $O(n(m+n)) = O(mn)$ time (assuming $m \ge \Omega(n)$)

Exensions

▸ ...

Many extensions:

- **▸** Max-weight bipartite matching
- **▸** Min-cost perfect matching
- **▸** Matchings in general graphs

Exensions

▸ ...

Many extensions:

- **▸** Max-weight bipartite matching
- **▸** Min-cost perfect matching
- **▸** Matchings in general graphs

Still active area of study!

- **▸** Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii. Faster Matchings via Learned Duals. NeurIPS 2021.
- **▸** Michael Dinitz, George Li, Quanquan Liu, Felix Zhou. Differentially Private Matchings. Submitted (Monday), hopefully on arXiv soon.

Bad example for Ford-Fulkerson: *^svut*, leading to a running time of *⇥*(*X*) = *⌦*(|*^f* ⇤|).

A bad example for the Ford-Fulkerson algorithm.

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Bad example for Ford-Fulkerson: *^svut*, leading to a running time of *⇥*(*X*) = *⌦*(|*^f* ⇤|).

A bad example for the Ford-Fulkerson algorithm.

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

Bad example for Ford-Fulkerson: *^svut*, leading to a running time of *⇥*(*X*) = *⌦*(|*^f* ⇤|).

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick: **Example 20** or in many practical situations, or in settings or in setting α

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

Bad example for Ford-Fulkerson: *^svut*, leading to a running time of *⇥*(*X*) = *⌦*(|*^f* ⇤|).

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick: **Example 20** or in many practical situations, or in settings or in setting α

 $arg max$ maximum $cf(e)$. augmenting paths P e ϵ P arg max augmenting paths \boldsymbol{P} $\min_{e \in P} c_f(e).$

If Ford-Fulkerson chooses bad augmenting

Obvious idea: Choose better paths!

paths, super slow!

Bad example for Ford-Fulkerson: *^svut*, leading to a running time of *⇥*(*X*) = *⌦*(|*^f* ⇤|).

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick: **Example 20** or in many practical situations, or in settings or in setting α

 $arg max$ maximum $cf(e)$. augmenting paths P e ϵ P arg max augmenting paths \boldsymbol{P} $\min_{e \in P} c_f(e).$

using only *O*(log *X*) bits; thus, the running time of Ford-Fulkerson is actually *exponential* in the **▸** "Widest" path: push as much flow as possible each iteration

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$.

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$
cap(S,\bar{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F
$$

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$
cap(S,\bar{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F
$$

 \implies min (s, t) cut \leq **cap** (S, \bar{S}) < **F**.

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$
cap(S,\bar{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F
$$

 \implies min (s, t) cut \leq cap (S, \bar{S}) < F. Contradiction.

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$
cap(S,\bar{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F
$$

 \implies min (s, t) cut \leq cap (S, \bar{S}) < F. Contradiction. **Ô⇒ ∃**s **→** t path P in G **∖** X: every edge of P has capacity at least F**/**m

Edmonds-Karp $#1$: Ford-Fulkerson, always choose "widest" path.

▸ Correct, since FF. Running time?

Lemma

In any graph with max s **−** t flow F, there exists a path from s to t with capacity at least F**/**m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$
cap(S,\bar{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F
$$

 \implies min (s, t) cut \leq cap (S, \bar{S}) < F. Contradiction. **Ô⇒ ∃**s **→** t path P in G **∖** X: every edge of P has capacity at least F**/**m

Does this implies at most m iterations?

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration \mathbf{i} ?

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration \mathbf{i} ?

 \rightarrow $i = 0$:

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration \mathbf{i} ?

 \rightarrow *i* = 0: F

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration *i*?

- \rightarrow $i = 0$ \rightarrow F
- **▸** I **=** 1: Sent at least F**/**m, so at most F **−** F**/**m **=** F**(**1 **−** 1**/**m**)** remaining

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration *i*?

- \rightarrow $i = 0$ \rightarrow F
- **▸** I **=** 1: Sent at least F**/**m, so at most F **−** F**/**m **=** F**(**1 **−** 1**/**m**)** remaining
- **▶** *i* **= 2**: Sent at least **R/m** if **R** was remaining after iteration **1**, so at most R **−** R**/**m **=** R**(**1 **−** 1**/**m**) ≤** F**(**1 **−** 1**/**m**)** 2 remaining

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration *i*?

- \rightarrow $i = 0$ \rightarrow F
- **▸** I **=** 1: Sent at least F**/**m, so at most F **−** F**/**m **=** F**(**1 **−** 1**/**m**)** remaining
- **▶** *i* **= 2**: Sent at least **R/m** if **R** was remaining after iteration **1**, so at most R **−** R**/**m **=** R**(**1 **−** 1**/**m**) ≤** F**(**1 **−** 1**/**m**)** 2 remaining

By induction: after iteration \bm{i} , at most $\bm{F(1\!-\!1/m)^i}$ flow remaining to be sent.

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at most O**(**m log F**)**

How much flow remains to be be sent after iteration *i*?

- \rightarrow $i = 0$ \rightarrow F
- **▸** I **=** 1: Sent at least F**/**m, so at most F **−** F**/**m **=** F**(**1 **−** 1**/**m**)** remaining
- **▶** *i* **= 2**: Sent at least **R/m** if **R** was remaining after iteration **1**, so at most R **−** R**/**m **=** R**(**1 **−** 1**/**m**) ≤** F**(**1 **−** 1**/**m**)** 2 remaining

By induction: after iteration \bm{i} , at most $\bm{F(1\!-\!1/m)^i}$ flow remaining to be sent. Super useful inequality: $1 + x \le e^x$ for all $x \in \mathbb{R}$

Theorem

If **F** is the value of the maximum flow and all capacities are integers, $\#$ iterations of EK1 is at $most$ $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

 \rightarrow $i = 0$ \rightarrow F

- **▸** I **=** 1: Sent at least F**/**m, so at most F **−** F**/**m **=** F**(**1 **−** 1**/**m**)** remaining
- **▶** *i* **= 2**: Sent at least **R/m** if **R** was remaining after iteration **1**, so at most R **−** R**/**m **=** R**(**1 **−** 1**/**m**) ≤** F**(**1 **−** 1**/**m**)** 2 remaining

By induction: after iteration \bm{i} , at most $\bm{F(1\!-\!1/m)^i}$ flow remaining to be sent. Super useful inequality: $1 + x \le e^x$ for all $x \in \mathbb{R}$

⇒ If *i* **> m ln F**, amount remaining to be sent at most

$$
F(1-1/m)^{i} < F(1-1/m)^{m \ln F} \leq F(e^{-1/m})^{m \ln F} = F \cdot e^{-\ln F} = 1
$$

But all capacities integers, so must be finished!

Modified version of Dijkstra: find widest path in O**(**m log n**)** time

- **▸** Total time O**(**m log n **⋅** m log F**) =** O**(**m² log n log F**)**
- **▸** Polynomial time!

Modified version of Dijkstra: find widest path in O**(**m log n**)** time

- **▸** Total time O**(**m log n **⋅** m log F**) =** O**(**m² log n log F**)**
- **▸** Polynomial time!

Question: can we get running time independent of \bm{F} ?

▸ Strongly polynomial-time algorithm.

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

- **▸** Ignore capacities, just find augmenting path with fewest hops!
- \blacktriangleright Easy to compute with BFS in $O(m + n)$ time.

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

- **▸** Ignore capacities, just find augmenting path with fewest hops!
- \blacktriangleright Easy to compute with BFS in $O(m + n)$ time.

Main question: how many iterations?

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

- **▸** Ignore capacities, just find augmenting path with fewest hops!
- \blacktriangleright Easy to compute with BFS in $O(m + n)$ time.

Main question: how many iterations?

Theorem

EK2 has at most $O(mn)$ iterations, so at most $O(m^2n)$ running time (if $m \ge n$)

Idea: prove that distance from **s** to **t** (unweighted) goes up by at least one every $\leq m$ iterations.

Idea: prove that distance from s to t (unweighted) goes up by at least one every $\leq m$ iterations.

- **▸** Distance initially **≥** 1 **Ô⇒** distance **>** n after at most mn iterations
- **▸** Only distance larger than n is **∞**: no s **→** t path
- **⇒⇒** Terminates after at most *mn* iterations.

Suppose $s \rightarrow t$ distance is **d**.

"Lay out" residual graph in levels by BFS (distance from s)

Suppose $s \rightarrow t$ distance is **d**.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- **▸** Forward edges: 1 level
- **▸** Edges inside level
- **▸** Backwards edges

Suppose $s \rightarrow t$ distance is **d**.

"Lay out" residual graph in levels by BFS (distance from s)

What happens when we choose a *shortest* augmenting path?

Edge types:

- **▸** Forward edges: 1 level
- **▸** Edges inside level
- **▸** Backwards edges

Suppose $s \rightarrow t$ distance is **d**.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- **▸** Forward edges: 1 level
- **▸** Edges inside level
- **▸** Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

Suppose $s \rightarrow t$ distance is **d**.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- **▸** Forward edges: 1 level
- **▸** Edges inside level
- **▸** Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

- **▸** At least 1 forward edge gets removed, replaced with backwards edge.
- **▸** No backwards edges turned forward

Suppose $s \rightarrow t$ distance is **d**.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- **▸** Forward edges: 1 level
- **▸** Edges inside level
- **▸** Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

- **▸** At least 1 forward edge gets removed, replaced with backwards edge.
- **▸** No backwards edges turned forward

So after **m** iterations (same layout): no path using only forward edges → distance larger than d!

So at most *mn* iterations. Each iteration unweighted shortest path: BFS, time $O(m + n)$

So at most **mn** iterations. Each iteration unweighted shortest path: BFS, time $O(m + n)$

Total time: $O(mn(n+n)) = O(m^2n)$. Independent of F!

Extensions

Many better algorithms for max-flow: *blocking flows* (Dinitz's algorithm (not me)). push-relabel algorithms, etc.

- **▸** CLRS has a few of these.
- **▸** State of the art:
	- **▸** Strongly polynomial: O**(**mn**)**. Orlin [2013] & King, Rao, Tarjan [1994]
	- ▶ Weakly Polynomial: $O(m^{1+o(1)}\log U)$ (where U is maximum capacity). Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva [2022]

Many other variants of flows, some of which are just $s - t$ max flow in disguise!

▸ Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be solved with just normal max flow!