Lecture 20: Max-Flow II

Michael Dinitz

November 7, 2024 601.433/633 Introduction to Algorithms

Introduction

Last time:

- Max-Flow = Min-Cut
- Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an $s \rightarrow t$ path, push flow along it.
 - Corollary: if all capacities integers, max-flow is integral
 - If max-flow has value F, time O(F(m + n)) (if all capacities integers)
 - Exponential time!

Today:

- Important setting where FF is enough: max bipartite matching
- Two ways of making FF faster: Edmonds-Karp

Max Bipartite Matching

Setup

Definition

A graph G = (V, E) is *bipartite* if V can be partitioned into two parts L, R such that every edge in E has one endpoint in L and one endpoint in R.

Definition

A *matching* is a subset $M \subseteq E$ such that $e \cap e' = \emptyset$ for all $e, e' \in M$ with $e \neq e'$ (no two edges share an endpoint)

Bipartite Maximum Matching: Given bipartite graph G = (V, E), find matching M maximizing |M|

Extremely important problem, doesn't seem to have much to do with flow!

Algorithm

Give all edges capacity **1** Direct all edges from **L** to **R** Add source **s** and sink **t** Add edges of capacity **1** from **s** to **L** Add edges of capacity **1** from **R** to **t**

Run FF to get flow fReturn $M = \{e \in L \times R : f(e) > 0\}$

Claim: *M* is a matching

Claim: *M* is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: *M* is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is a matching

Claim: *M* is maximum matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is a matching

Claim: *M* is maximum matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ **Proof:** Suppose larger matching M' for all e (integrality)

Claim: M is a matching

Claim: *M* is maximum matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ **Proof:** for all e (integrality) Can sen

Proof: Suppose larger matching *M'* Can send |*M'*| flow using *M'*!

Claim: M is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is maximum matching

Proof: Suppose larger matching M'Can send |M'| flow using M'!

• f'(s, u) = 1 is u matched in M', otherwise 0

• f'(v, t) = 1 if v matched in M', otherwise 0

•
$$f'(u, v) = 1$$
 if $\{u, v\} \in M'$, otherwise 0

Claim: M is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: *M* is maximum matching

Proof: Suppose larger matching M'Can send |M'| flow using M'!

- f'(s, u) = 1 is u matched in M', otherwise 0
- f'(v, t) = 1 if v matched in M', otherwise 0
- *f*'(*u*, *v*) = 1 if {*u*, *v*} ∈ *M*', otherwise 0
 |*f*'| = |*M*'| > |*M*| = |*f*|

Claim: M is a matching

Proof: capacities in $\{0,1\} \implies f(e) \in \{0,1\}$ for all e (integrality)

Claim: M is maximum matching

Proof: Suppose larger matching M'Can send |M'| flow using M'!

- f'(s, u) = 1 is u matched in M', otherwise 0
- f'(v, t) = 1 if v matched in M', otherwise 0
- f'(u, v) = 1 if $\{u, v\} \in M'$, otherwise 0
- |f'| = |M'| > |M| = |f|
- Contradiction

Running Time

Running Time:

- O(n + m) to make new graph
- $|f| = |M| \le n/2$ iterations of FF
- $\implies O(n(m+n)) = O(mn)$ time (assuming $m \ge \Omega(n)$)

Exensions

▶ ...

Many extensions:

- Max-weight bipartite matching
- Min-cost perfect matching
- Matchings in general graphs

Exensions

•

Many extensions:

- Max-weight bipartite matching
- Min-cost perfect matching
- Matchings in general graphs

Still active area of study!

- Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii. Faster Matchings via Learned Duals. NeurIPS 2021.
- Michael Dinitz, George Li, Quanquan Liu, Felix Zhou. Differentially Private Matchings. Submitted (Monday), hopefully on arXiv soon.

Bad example for Ford-Fulkerson:

A bad example for the Ford-Fulkerson algorithm.

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Bad example for Ford-Fulkerson:

A bad example for the Ford-Fulkerson algorithm.

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

Bad example for Ford-Fulkerson:

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick:

 $\mathop{\operatorname{arg\,max}}_{\operatorname{augmenting paths}} \mathop{\operatorname{min}}_{P} \mathop{\operatorname{e}}_{e\in P} e\in P$

Bad example for Ford-Fulkerson:

If Ford-Fulkerson chooses bad augmenting paths, super slow!

Obvious idea: Choose better paths!

A bad example for the Ford-Fulkerson algorithm.

Obvious path to pick:

 $\mathop{\operatorname{arg\,max}}_{\operatorname{augmenting paths}P} \mathop{\operatorname{min}}_{e\in P} c_f(e).$

"Widest" path: push as much flow as possible each iteration

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$.

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \to t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \rightarrow t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$cap(S, \overline{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F$$

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let
$$X = \{e \in E : c(e) < F/m\}$$
.
If no $s \rightarrow t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$cap(S, \overline{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F$$

 \implies min (s, t) cut $\leq cap(S, \overline{S}) < F$.

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \rightarrow t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$cap(S, \overline{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F$$

 \implies min (s, t) cut $\leq cap(S, \overline{S}) < F$. Contradiction.

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \rightarrow t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$cap(S, \overline{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F$$

 $\implies \min(s, t) \text{ cut } \leq cap(S, \overline{S}) < F. \text{ Contradiction.}$ $\implies \exists s \to t \text{ path } P \text{ in } G \setminus X: \text{ every edge of } P \text{ has capacity at least } F/m$

Edmonds-Karp #1: Ford-Fulkerson, always choose "widest" path.

Correct, since FF. Running time?

Lemma

In any graph with max s - t flow F, there exists a path from s to t with capacity at least F/m

Proof.

Let $X = \{e \in E : c(e) < F/m\}$. If no $s \rightarrow t$ path in $G \setminus X$, then X an (edge) cut. Let S = nodes reachable from s in $G \setminus X$.

$$cap(S, \overline{S}) \leq cap(X) = \sum_{e \in X} c(e) < m \cdot (F/m) = F$$

 $\implies \min(s,t) \text{ cut } \leq cap(S,\bar{S}) < F. \text{ Contradiction.}$ $\implies \exists s \to t \text{ path } P \text{ in } G \setminus X: \text{ every edge of } P \text{ has capacity at least } F/m$

Does this implies at most m iterations?

Michael Dinitz

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

► *i* = 0:

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

▶ *i* = 0: *F*

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

- ▶ *i* = 0: *F*
- ▶ I = 1: Sent at least F/m, so at most F F/m = F(1 1/m) remaining

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

- ▶ *i* = 0: *F*
- ▶ I = 1: Sent at least F/m, so at most F F/m = F(1 1/m) remaining
- ▶ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most $R R/m = R(1 1/m) \le F(1 1/m)^2$ remaining

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

- ▶ *i* = 0: *F*
- ▶ I = 1: Sent at least F/m, so at most F F/m = F(1 1/m) remaining
- ▶ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most $R R/m = R(1 1/m) \le F(1 1/m)^2$ remaining

By induction: after iteration *i*, at most $F(1 - 1/m)^i$ flow remaining to be sent.

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

- ▶ *i* = 0: *F*
- ▶ I = 1: Sent at least F/m, so at most F F/m = F(1 1/m) remaining
- ▶ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most $R R/m = R(1 1/m) \le F(1 1/m)^2$ remaining

By induction: after iteration *i*, at most $F(1-1/m)^i$ flow remaining to be sent. Super useful inequality: $1 + x \le e^x$ for all $x \in \mathbb{R}$

Theorem

If **F** is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at most $O(m \log F)$

How much flow remains to be be sent after iteration *i*?

▶ *i* = 0: *F*

- ▶ I = 1: Sent at least F/m, so at most F F/m = F(1 1/m) remaining
- ▶ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most $R R/m = R(1 1/m) \le F(1 1/m)^2$ remaining

By induction: after iteration i, at most $F(1-1/m)^i$ flow remaining to be sent. Super useful inequality: $1 + x \le e^x$ for all $x \in \mathbb{R}$

 \implies If $i > m \ln F$, amount remaining to be sent at most

$$F(1-1/m)^{i} < F(1-1/m)^{m \ln F} \le F(e^{-1/m})^{m \ln F} = F \cdot e^{-\ln F} = 1$$

But all capacities integers, so must be finished!

Modified version of Dijkstra: find widest path in $O(m \log n)$ time

- Total time $O(m \log n \cdot m \log F) = O(m^2 \log n \log F)$
- Polynomial time!

Finishing EK1

Modified version of Dijkstra: find widest path in $O(m \log n)$ time

- Total time $O(m \log n \cdot m \log F) = O(m^2 \log n \log F)$
- Polynomial time!

Question: can we get running time independent of F?

Strongly polynomial-time algorithm.

Edmonds-Karp #2

Again use Ford-Fulkerson, but pick *shortest* augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in O(m + n) time.

Edmonds-Karp #2

Again use Ford-Fulkerson, but pick *shortest* augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in O(m + n) time.

Main question: how many iterations?

Edmonds-Karp #2

Again use Ford-Fulkerson, but pick *shortest* augmenting path (unweighted)

- Ignore capacities, just find augmenting path with fewest hops!
- Easy to compute with BFS in O(m + n) time.

Main question: how many iterations?

Theorem

EK2 has at most O(mn) iterations, so at most $O(m^2n)$ running time (if $m \ge n$)

Idea: prove that distance from s to t (unweighted) goes up by at least one every $\leq m$ iterations.

Idea: prove that distance from s to t (unweighted) goes up by at least one every $\leq m$ iterations.

- Distance initially $\geq 1 \implies$ distance > *n* after at most *mn* iterations
- Only distance larger than n is ∞ : no $s \rightarrow t$ path
- → Terminates after at most *mn* iterations.

Suppose $s \rightarrow t$ distance is d.

"Lay out" residual graph in levels by BFS (distance from s)

Suppose $s \rightarrow t$ distance is d.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- ► Forward edges: 1 level
- Edges inside level
- Backwards edges

Suppose $s \rightarrow t$ distance is d.

"Lay out" residual graph in levels by BFS (distance from s)

What happens when we choose a *shortest* augmenting path?

Edge types:

- ► Forward edges: 1 level
- Edges inside level
- Backwards edges

Suppose $s \rightarrow t$ distance is d.

"Lay out" residual graph in levels by BFS (distance from *s*)

Edge types:

- ► Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

Suppose $s \rightarrow t$ distance is d.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- ► Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

- At least 1 forward edge gets removed, replaced with backwards edge.
- No backwards edges turned forward

Suppose $s \rightarrow t$ distance is d.

"Lay out" residual graph in levels by BFS (distance from s)

Edge types:

- Forward edges: 1 level
- Edges inside level
- Backwards edges

What happens when we choose a *shortest* augmenting path? Only uses forward edges!

- \blacktriangleright At least 1 forward edge gets removed, replaced with backwards edge.
- No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges \implies distance larger than d!

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)

Total time: $O(mn(m+n)) = O(m^2n)$. Independent of F!

Extensions

Many better algorithms for max-flow: *blocking flows* (Dinitz's algorithm (not me)), *push-relabel* algorithms, etc.

- CLRS has a few of these.
- State of the art:
 - Strongly polynomial: O(mn). Orlin [2013] & King, Rao, Tarjan [1994]
 - Weakly Polynomial: O(m^{1+o(1)} log U) (where U is maximum capacity). Chen, Kyng, Liu, Peng, Gutenberg and Sachdeva [2022]

Many other variants of flows, some of which are just s - t max flow in disguise!

Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be solved with just normal max flow!