
Lecture 20: Max-Flow II

Michael Dinitz

November 7, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 1 / 18



Introduction

Last time:

▸ Max-Flow = Min-Cut
▸ Can compute max flow and min cut using Ford-Fulkerson: while residual graph has an

s → t path, push flow along it.
▸ Corollary: if all capacities integers, max-flow is integral
▸ If max-flow has value F , time O(F(m + n)) (if all capacities integers)
▸ Exponential time!

Today:

▸ Important setting where FF is enough: max bipartite matching

▸ Two ways of making FF faster: Edmonds-Karp

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 2 / 18



Max Bipartite Matching

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 3 / 18



Setup

Definition

A graph G = (V ,E) is bipartite if V can be partitioned
into two parts L,R such that every edge in E has one
endpoint in L and one endpoint in R.

Definition

A matching is a subset M ⊆ E such that e ∩e ′ = ∅ for all
e,e ′ ∈M with e ≠ e ′ (no two edges share an endpoint)

A

B

C

1

2

3

Bipartite Maximum Matching: Given bipartite graph G = (V ,E), find matching M
maximizing ∣M ∣
▸ Extremely important problem, doesn’t seem to have much to do with flow!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 4 / 18



Algorithm

Give all edges capacity 1
Direct all edges from L to R
Add source s and sink t
Add edges of capacity 1 from s to L
Add edges of capacity 1 from R to t

Run FF to get flow f
Return M = {e ∈ L ×R ∶ f (e) > 0}

A

B

C

1

2

3

s

A

B

C

1

2

3

t

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 5 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!

▸ f ′(s,u) = 1 is u matched in M ′,
otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣

▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Correctness

Claim: M is a matching

Proof: capacities in {0,1} Ô⇒ f (e) ∈ {0,1}
for all e (integrality)

probley one te matching M maximizing IMI

Use f f to compute max flow f

m e fce O

Thin M is a maximum matching

PI All capacities integral feel't 91 He

feel I iff eEM

Matching

to

to

Claim: M is maximum matching

Proof: Suppose larger matching M ′

Can send ∣M ′∣ flow using M ′!
▸ f ′(s,u) = 1 is u matched in M ′,

otherwise 0

▸ f ′(v , t) = 1 if v matched in M ′,
otherwise 0

▸ f ′(u,v) = 1 if {u,v} ∈M ′, otherwise 0

▸ ∣f ′∣ = ∣M ′∣ > ∣M ∣ = ∣f ∣
▸ Contradiction

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 6 / 18



Running Time

Running Time:

▸ O(n +m) to make new graph

▸ ∣f ∣ = ∣M ∣ ≤ n/2 iterations of FF

Ô⇒ O(n(m + n)) = O(mn) time (assuming m ≥ Ω(n))

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 7 / 18



Exensions

Many extensions:

▸ Max-weight bipartite matching

▸ Min-cost perfect matching

▸ Matchings in general graphs

▸ ...

Still active area of study!

▸ Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii.
Faster Matchings via Learned Duals. NeurIPS 2021.

▸ Michael Dinitz, George Li, Quanquan Liu, Felix Zhou. Differentially Private Matchings.
Submitted (Monday), hopefully on arXiv soon.

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 8 / 18



Exensions

Many extensions:

▸ Max-weight bipartite matching

▸ Min-cost perfect matching

▸ Matchings in general graphs

▸ ...

Still active area of study!

▸ Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, Sergei Vassilvitskii.
Faster Matchings via Learned Duals. NeurIPS 2021.

▸ Michael Dinitz, George Li, Quanquan Liu, Felix Zhou. Differentially Private Matchings.
Submitted (Monday), hopefully on arXiv soon.

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 8 / 18



Edmonds-Karp

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 9 / 18



Intuition

Bad example for Ford-Fulkerson:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X ) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X ) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

If Ford-Fulkerson chooses bad augmenting
paths, super slow!

Obvious idea: Choose better paths!

Obvious path to pick:
argmax

augmenting paths P
min
e∈P

cf (e).

▸ “Widest” path: push as much flow as possible each iteration

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 10 / 18



Intuition

Bad example for Ford-Fulkerson:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X ) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X ) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

If Ford-Fulkerson chooses bad augmenting
paths, super slow!

Obvious idea: Choose better paths!

Obvious path to pick:
argmax

augmenting paths P
min
e∈P

cf (e).

▸ “Widest” path: push as much flow as possible each iteration

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 10 / 18



Intuition

Bad example for Ford-Fulkerson:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X ) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X ) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

If Ford-Fulkerson chooses bad augmenting
paths, super slow!

Obvious idea: Choose better paths!

Obvious path to pick:

argmax
augmenting paths P

min
e∈P

cf (e).

▸ “Widest” path: push as much flow as possible each iteration

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 10 / 18



Intuition

Bad example for Ford-Fulkerson:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X ) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X ) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

If Ford-Fulkerson chooses bad augmenting
paths, super slow!

Obvious idea: Choose better paths!

Obvious path to pick:
argmax

augmenting paths P
min
e∈P

cf (e).

▸ “Widest” path: push as much flow as possible each iteration

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 10 / 18



Intuition

Bad example for Ford-Fulkerson:

Algorithms Lecture ��: Maximum Flows and Minimum Cuts [Fa’��]

Proof: We argue by induction that after each iteration of the augmenting path algorithm, all
flow values and residual capacities are integers. Before the first iteration, residual capacities are
the original capacities, which are integral by definition. In each later iteration, the induction
hypothesis implies that the capacity of the augmenting path is an integer, so augmenting changes
the flow on each edge, and therefore the residual capacity of each edge, by an integer.

In particular, the algorithm increases the overall value of the flow by a positive integer, which
implies that the augmenting path algorithm halts and returns a maximum flow. É

If every edge capacity is an integer, the algorithm halts after | f ⇤| iterations, where f ⇤ is
the actual maximum flow. In each iteration, we can build the residual graph Gf and perform a
whatever-first-search to find an augmenting path in O(E) time. Thus, for networks with integer
capacities, the Ford-Fulkerson algorithm runs in O(E| f ⇤|) time in the worst case.

The following example shows that this running time analysis is essentially tight. Consider
the �-node network illustrated below, where X is some large integer. The maximum flow in this
network is clearly 2X . However, Ford-Fulkerson might alternate between pushing � unit of flow
along the augmenting path s�u�v�t and then pushing � unit of flow along the augmenting path
s�v�u�t, leading to a running time of ⇥(X ) = ⌦(| f ⇤|).

ts

X

X

1

X

X
u

v

A bad example for the Ford-Fulkerson algorithm.

Ford and Fulkerson’s algorithm works quite well in many practical situations, or in settings
where the maximum flow value | f ⇤| is small, but without further constraints on the augmenting
paths, this is not an efficient algorithm in general. The example network above can be described
using only O(log X ) bits; thus, the running time of Ford-Fulkerson is actually exponential in the
input size.

��.� Irrational Capacities
If we multiply all the capacities by the same (positive) constant, the maximum flow increases
everywhere by the same constant factor. It follows that if all the edge capacities are rational,
then the Ford-Fulkerson algorithm eventually halts, although still in exponential time.

However, if we allow irrational capacities, the algorithm can actually loop forever, always
finding smaller and smaller augmenting paths! Worse yet, this infinite sequence of augmentations
may not even converge to the maximum flow, or even to a significant fraction of the maximum
flow! Perhaps the simplest example of this effect was discovered by Uri Zwick.

Consider the six-node network shown on the next page. Six of the nine edges have some
large integer capacity X , two have capacity 1, and one has capacity � = (p5�1)/2⇡ 0.618034,
chosen so that 1�� = �2. To prove that the Ford-Fulkerson algorithm can get stuck, we can
watch the residual capacities of the three horizontal edges as the algorithm progresses. (The
residual capacities of the other six edges will always be at least X � 3.)

Suppose the Ford-Fulkerson algorithm starts by choosing the central augmenting path, shown
in the large figure on the next page. The three horizontal edges, in order from left to right, now
have residual capacities 1, 0, and �. Suppose inductively that the horizontal residual capacities
are �k�1, 0, �k for some non-negative integer k.

�

If Ford-Fulkerson chooses bad augmenting
paths, super slow!

Obvious idea: Choose better paths!

Obvious path to pick:
argmax

augmenting paths P
min
e∈P

cf (e).

▸ “Widest” path: push as much flow as possible each iteration

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 10 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.

If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F .

Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.

Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



Edmonds-Karp #1
Edmonds-Karp #1: Ford-Fulkerson, always choose “widest” path.
▸ Correct, since FF. Running time?

Lemma

In any graph with max s − t flow F , there exists a path from s to t with capacity at least F /m

Proof.

Let X = {e ∈ E ∶ c(e) < F /m}.
If no s → t path in G ∖X , then X an (edge) cut. Let S = nodes reachable from s in G ∖X .

cap(S, S̄) ≤ cap(X) = ∑
e∈X

c(e) <m ⋅ (F /m) = F

Ô⇒ min (s, t) cut ≤ cap(S, S̄) < F . Contradiction.
Ô⇒ ∃s → t path P in G ∖X : every edge of P has capacity at least F /m

Does this implies at most m iterations?
Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 11 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?

▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0:

F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F

▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.

Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R

Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



EK 1 Running Time

Theorem

If F is the value of the maximum flow and all capacities are integers, # iterations of EK1 is at
most O(m logF)

How much flow remains to be be sent after iteration i?
▸ i = 0: F
▸ I = 1: Sent at least F /m, so at most F − F /m = F(1 − 1/m) remaining

▸ i = 2: Sent at least R/m if R was remaining after iteration 1, so at most
R −R/m = R(1 − 1/m) ≤ F(1 − 1/m)2 remaining

By induction: after iteration i , at most F(1 − 1/m)i flow remaining to be sent.
Super useful inequality: 1 + x ≤ ex for all x ∈ R
Ô⇒ If i >m lnF , amount remaining to be sent at most

F(1 − 1/m)i < F(1 − 1/m)m lnF ≤ F(e−1/m)m lnF = F ⋅ e− lnF = 1

But all capacities integers, so must be finished!
Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 12 / 18



Finishing EK1

Modified version of Dijkstra: find widest path in O(m logn) time

▸ Total time O(m logn ⋅m logF) = O(m2 logn logF)
▸ Polynomial time!

Question: can we get running time independent of F?

▸ Strongly polynomial-time algorithm.

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 13 / 18



Finishing EK1

Modified version of Dijkstra: find widest path in O(m logn) time

▸ Total time O(m logn ⋅m logF) = O(m2 logn logF)
▸ Polynomial time!

Question: can we get running time independent of F?

▸ Strongly polynomial-time algorithm.

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 13 / 18



Edmonds-Karp #2

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

▸ Ignore capacities, just find augmenting path with fewest hops!

▸ Easy to compute with BFS in O(m + n) time.

Main question: how many iterations?

Theorem

EK2 has at most O(mn) iterations, so at most O(m2n) running time (if m ≥ n)

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 14 / 18



Edmonds-Karp #2

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

▸ Ignore capacities, just find augmenting path with fewest hops!

▸ Easy to compute with BFS in O(m + n) time.

Main question: how many iterations?

Theorem

EK2 has at most O(mn) iterations, so at most O(m2n) running time (if m ≥ n)

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 14 / 18



Edmonds-Karp #2

Again use Ford-Fulkerson, but pick shortest augmenting path (unweighted)

▸ Ignore capacities, just find augmenting path with fewest hops!

▸ Easy to compute with BFS in O(m + n) time.

Main question: how many iterations?

Theorem

EK2 has at most O(mn) iterations, so at most O(m2n) running time (if m ≥ n)

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 14 / 18



Proof (sketch) of EK2

Idea: prove that distance from s to t (unweighted) goes up by at least one every ≤m
iterations.

▸ Distance initially ≥ 1 Ô⇒ distance > n after at most mn iterations

▸ Only distance larger than n is ∞: no s → t path

Ô⇒ Terminates after at most mn iterations.

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 15 / 18



Proof (sketch) of EK2

Idea: prove that distance from s to t (unweighted) goes up by at least one every ≤m
iterations.

▸ Distance initially ≥ 1 Ô⇒ distance > n after at most mn iterations

▸ Only distance larger than n is ∞: no s → t path

Ô⇒ Terminates after at most mn iterations.

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 15 / 18



Proof (sketch) of EK2 (continued)

Suppose s → t distance is d .
“Lay out” residual graph in levels by BFS (distance from s)

s t

L1 L2 L3 L4 L5 L6

Edge types:

▸ Forward edges: 1 level

▸ Edges inside level

▸ Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

▸ At least 1 forward edge gets removed, replaced with backwards edge.

▸ No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges Ô⇒ distance larger
than d !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 16 / 18



Proof (sketch) of EK2 (continued)

Suppose s → t distance is d .
“Lay out” residual graph in levels by BFS (distance from s)

s t

L1 L2 L3 L4 L5 L6

Edge types:

▸ Forward edges: 1 level

▸ Edges inside level

▸ Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

▸ At least 1 forward edge gets removed, replaced with backwards edge.

▸ No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges Ô⇒ distance larger
than d !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 16 / 18



Proof (sketch) of EK2 (continued)

Suppose s → t distance is d .
“Lay out” residual graph in levels by BFS (distance from s)

s t

L1 L2 L3 L4 L5 L6

Edge types:

▸ Forward edges: 1 level

▸ Edges inside level

▸ Backwards edges

What happens when we choose a shortest augmenting path?

Only uses forward edges!

▸ At least 1 forward edge gets removed, replaced with backwards edge.

▸ No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges Ô⇒ distance larger
than d !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 16 / 18



Proof (sketch) of EK2 (continued)

Suppose s → t distance is d .
“Lay out” residual graph in levels by BFS (distance from s)

s t

L1 L2 L3 L4 L5 L6

Edge types:

▸ Forward edges: 1 level

▸ Edges inside level

▸ Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

▸ At least 1 forward edge gets removed, replaced with backwards edge.

▸ No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges Ô⇒ distance larger
than d !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 16 / 18



Proof (sketch) of EK2 (continued)

Suppose s → t distance is d .
“Lay out” residual graph in levels by BFS (distance from s)

s t

L1 L2 L3 L4 L5 L6

Edge types:

▸ Forward edges: 1 level

▸ Edges inside level

▸ Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

▸ At least 1 forward edge gets removed, replaced with backwards edge.

▸ No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges Ô⇒ distance larger
than d !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 16 / 18



Proof (sketch) of EK2 (continued)

Suppose s → t distance is d .
“Lay out” residual graph in levels by BFS (distance from s)

s t

L1 L2 L3 L4 L5 L6

Edge types:

▸ Forward edges: 1 level

▸ Edges inside level

▸ Backwards edges

What happens when we choose a shortest augmenting path? Only uses forward edges!

▸ At least 1 forward edge gets removed, replaced with backwards edge.

▸ No backwards edges turned forward

So after m iterations (same layout): no path using only forward edges Ô⇒ distance larger
than d !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 16 / 18



Finishing EK2

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)

Total time: O(mn(m + n)) = O(m2n). Independent of F !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 17 / 18



Finishing EK2

So at most mn iterations. Each iteration unweighted shortest path: BFS, time O(m + n)

Total time: O(mn(m + n)) = O(m2n). Independent of F !

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 17 / 18



Extensions

Many better algorithms for max-flow: blocking flows (Dinitz’s algorithm (not me)),
push-relabel algorithms, etc.

▸ CLRS has a few of these.
▸ State of the art:

▸ Strongly polynomial: O(mn). Orlin [2013] & King, Rao, Tarjan [1994]
▸ Weakly Polynomial: O(m1+o(1) logU) (where U is maximum capacity). Chen, Kyng, Liu,

Peng, Gutenberg and Sachdeva [2022]

Many other variants of flows, some of which are just s − t max flow in disguise!

▸ Min-Cost Max-Flow: every edge also has a cost. Find minimum cost max-flow. Can be
solved with just normal max flow!

Michael Dinitz Lecture 20: Max-Flow II November 7, 2024 18 / 18


