
Lecture 21: Linear Programming

Michael Dinitz

November 12, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 1 / 21



Advertisement

Next semester: 601.438/638 Algorithmic Foundations of Differential Privacy

▸ Lots of fun algorithms!

▸ Very laid back: 3-4 homeworks, final project of your choosing

Differential Privacy: modern formal notion of privacy

▸ Super important in both practice and theory

▸ Used in US Census!

▸ I spent sabbatical at Google NYC working on privacy: fun theory, and really deployed!

▸ Allows us to think of privacy as a “resource” that we can analyze like other resources

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 2 / 21



Introduction

Today: What, why, and juste a taste of how

▸ Entire course on linear programming over in AMS. Super important topic!

▸ Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

▸ Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

▸ Linear programming: important in its own right, but also even more general than
max-flow.

▸ Can model many, many problems!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 3 / 21



Introduction

Today: What, why, and juste a taste of how

▸ Entire course on linear programming over in AMS. Super important topic!

▸ Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

▸ Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)

▸ Linear programming: important in its own right, but also even more general than
max-flow.

▸ Can model many, many problems!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 3 / 21



Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

▸ Studying (S)
▸ Partying (P)

▸ Everything else (E )

Constraints:

▸ E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

▸ P + E ≥ 70 (need to stay sane)

▸ S ≥ 60 (to pass your classes)

▸ 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

▸ Yes! S = 80, P = 20, E = 68

Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4 / 21



Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

▸ Studying (S)
▸ Partying (P)

▸ Everything else (E )

Constraints:

▸ E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

▸ P + E ≥ 70 (need to stay sane)

▸ S ≥ 60 (to pass your classes)

▸ 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

▸ Yes! S = 80, P = 20, E = 68

Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4 / 21



Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

▸ Studying (S)
▸ Partying (P)

▸ Everything else (E )

Constraints:

▸ E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

▸ P + E ≥ 70 (need to stay sane)

▸ S ≥ 60 (to pass your classes)

▸ 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

▸ Yes! S = 80, P = 20, E = 68

Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4 / 21



Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

▸ Studying (S)
▸ Partying (P)

▸ Everything else (E )

Constraints:

▸ E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

▸ P + E ≥ 70 (need to stay sane)

▸ S ≥ 60 (to pass your classes)

▸ 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

▸ Yes! S = 80, P = 20, E = 68

Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4 / 21



Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:

▸ Studying (S)
▸ Partying (P)

▸ Everything else (E )

Constraints:

▸ E ≥ 56 (at least 8 hours/day sleep,
shower, etc.)

▸ P + E ≥ 70 (need to stay sane)

▸ S ≥ 60 (to pass your classes)

▸ 2S + E − 3P ≥ 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

▸ Yes! S = 80, P = 20, E = 68

Question: Suppose “happiness” is 2P + 3E . Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4 / 21



Linear Programming

Input (a “linear program”):

▸ n variables x1, . . . ,xn (take values in R)
▸ m non-strict linear inequalities in these variables (constraints)

▸ E.g.: 3x1 + 4x2 ≤ 6, 0 ≤ x1 ≤ 3 x2 − 3x3 + 2x7 = 17
▸ Not allowed (examples): x2x3 ≥ 5, x4 < 2, x5 + log x2 ≥ 4

▸ Possibly a linear objective function
▸ max2x3 − 4x5, min 5

2
x4 + x2, . . .

Goals:

▸ Feasibility: Find values for x ’s that satisfy all constraints

▸ Optimization: Find feasible solutions maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 5 / 21



Planning your week as an LP

Variables: P,E ,S

max 2P + E
subject to E ≥ 56

S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6 / 21



Planning your week as an LP

Variables: P,E ,S

max 2P + E

subject to E ≥ 56
S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6 / 21



Planning your week as an LP

Variables: P,E ,S

max 2P + E
subject to E ≥ 56

S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70

P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6 / 21



Planning your week as an LP

Variables: P,E ,S

max 2P + E
subject to E ≥ 56

S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6 / 21



Planning your week as an LP

Variables: P,E ,S

max 2P + E
subject to E ≥ 56

S ≥ 60
2S + E − 3P ≥ 150
P + E ≥ 70
P + S + E = 168
P ≥ 0
S ≥ 0
E ≥ 0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6 / 21



Operations Research-style Example

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

▸ Need to produce at least 400 cars at plant
3 (labor agreement)

▸ Have 3300 total hours of labor, 4000
units of material

▸ Environmental law: produce at most
12000 pollution

▸ Make as many cars as possible

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 7 / 21



Operations Research-style Example

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

▸ Need to produce at least 400 cars at plant
3 (labor agreement)

▸ Have 3300 total hours of labor, 4000
units of material

▸ Environmental law: produce at most
12000 pollution

▸ Make as many cars as possible

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 7 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables:

xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective:

max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400

2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300

3x1 + 4x2 + 5x3 + 6x4 ≤ 4000
15x1 + 10x2 + 9x3 + 7x4 ≤ 12000

xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000

xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



OR example as an LP

Four different manufacturing plants for making
cars:

labor materials pollution

Plant 1 2 3 15

Plant 2 3 4 10

Plant 3 4 5 9

Plant 4 5 6 7

Variables: xi = # cars produced at plant i , for
i ∈ {1,2,3,4}

Objective: max x1 + x2 + x3 + x4

Constraints:

x3 ≥ 400
2x1 + 3x2 + 4x3 + 5x4 ≤ 3300
3x1 + 4x2 + 5x3 + 6x4 ≤ 4000

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
xi ≥ 0 ∀i ∈ {1,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables:

f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective:

max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E

f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Max Flow as LP

Max f law

Is

it 20

b lo d

variables Fte Keef

Objective flsa fcc g

Constraints fan fkn 0 the VUH

f un ECG v U GulEE
f e 20 Vee E

Variables: f (e) for all e ∈ E

Objective: max∑v f (s,v) − ∑v f (v , s)

Constraints:

∑
v

f (v ,u) −∑
v

f (u,v) = 0 ∀u ∈ V ∖ {s, t}

f (e) ≤ c(e) ∀e ∈ E
f (e) ≥ 0 ∀e ∈ E

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables:

fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective:

max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Multicommodity Flow

Generalization of max-flow with
multiple commodities that can’t mix,
but use up same capacity

Setup:

▸ Directed graph G = (V ,E)
▸ Capacities c ∶ E → R≥0
▸ k source-sink pairs {(si , ti )}i∈[k]

Goal: send flow of commodity i from
si to ti , max total flow sent across all
commodities

Variables: fi (e) for all e ∈ E and for all i ∈ [k].
Flow of commodity i on edge e

Objective: max∑k
i=1 (∑v fi (si ,v) − ∑v fi (v , si ))

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10 / 21



Concurrent Flow

Multicommodity flow, but:

▸ Also given demands
d ∶ [k] → R≥0

▸ Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11 / 21



Concurrent Flow

Multicommodity flow, but:

▸ Also given demands
d ∶ [k] → R≥0

▸ Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11 / 21



Concurrent Flow

Multicommodity flow, but:

▸ Also given demands
d ∶ [k] → R≥0

▸ Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11 / 21



Concurrent Flow

Multicommodity flow, but:

▸ Also given demands
d ∶ [k] → R≥0

▸ Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11 / 21



Concurrent Flow

Multicommodity flow, but:

▸ Also given demands
d ∶ [k] → R≥0

▸ Question: Is there a
multicommodity flow
that sends at least d(i)
commodity-i flow from
si to ti for all i ∈ [k]?

Variables: fi (e) for all e ∈ E and for all i ∈ [k].

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ d(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11 / 21



Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Variables:

▸ fi (e) for all e ∈ E and for all i ∈ [k].
▸ λ

Objective: maxλ

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ λd(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 12 / 21



Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Variables:

▸ fi (e) for all e ∈ E and for all i ∈ [k].
▸ λ

Objective: maxλ

Constraints:

∑
v

fi (v ,u) −∑
v

fi (u,v) = 0 ∀i ∈ [k], ∀u ∈ V ∖ {si , ti}

k
∑
i=1

fi (e) ≤ c(e) ∀e ∈ E

fi (e) ≥ 0 ∀e ∈ E , ∀i ∈ [k]

∑
v

fi (si ,v) −∑
v

fi (v , si ) ≥ λd(i) ∀i ∈ [k]

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 12 / 21



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0

dv ≤ du + ℓ(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let d⃗∗ denote the optimal LP solution. Then d∗t = d(s, t)
Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible Ô⇒ d∗t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d∗vi

≤ d(s,vi ) for all i
Base case: i = 0 ✓
Inductive step: d∗vi

≤ d∗vi−1
+ ℓ(vi−1,vi ) ≤ d(s,vi−1) + ℓ(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13 / 21



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0

dv ≤ du + ℓ(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let d⃗∗ denote the optimal LP solution. Then d∗t = d(s, t)

Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible Ô⇒ d∗t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d∗vi

≤ d(s,vi ) for all i
Base case: i = 0 ✓
Inductive step: d∗vi

≤ d∗vi−1
+ ℓ(vi−1,vi ) ≤ d(s,vi−1) + ℓ(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13 / 21



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0

dv ≤ du + ℓ(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let d⃗∗ denote the optimal LP solution. Then d∗t = d(s, t)
Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible Ô⇒ d∗t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d∗vi

≤ d(s,vi ) for all i
Base case: i = 0 ✓
Inductive step: d∗vi

≤ d∗vi−1
+ ℓ(vi−1,vi ) ≤ d(s,vi−1) + ℓ(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13 / 21



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0

dv ≤ du + ℓ(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let d⃗∗ denote the optimal LP solution. Then d∗t = d(s, t)
Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible Ô⇒ d∗t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d∗vi

≤ d(s,vi ) for all i

Base case: i = 0 ✓
Inductive step: d∗vi

≤ d∗vi−1
+ ℓ(vi−1,vi ) ≤ d(s,vi−1) + ℓ(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13 / 21



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0

dv ≤ du + ℓ(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let d⃗∗ denote the optimal LP solution. Then d∗t = d(s, t)
Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible Ô⇒ d∗t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d∗vi

≤ d(s,vi ) for all i
Base case: i = 0 ✓

Inductive step: d∗vi
≤ d∗vi−1

+ ℓ(vi−1,vi ) ≤ d(s,vi−1) + ℓ(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13 / 21



Shortest s − t path

Very surprising LP!
Variables: dv for all v ∈ V : shortest-path distance from s to v

max dt

subject to ds = 0

dv ≤ du + ℓ(u,v) ∀(u,v) ∈ E

Correctness Theorem: Let d⃗∗ denote the optimal LP solution. Then d∗t = d(s, t)
Proof Sketch: ≥: Let dv = d(s,v) for all v ∈ V . Feasible Ô⇒ d∗t ≥ dt = d(s, t).

≤: Let P = (s = v0,v1, . . . ,vk = t) be shortest s → t path.
Prove by induction: d∗vi

≤ d(s,vi ) for all i
Base case: i = 0 ✓
Inductive step: d∗vi

≤ d∗vi−1
+ ℓ(vi−1,vi ) ≤ d(s,vi−1) + ℓ(vi−1,vi ) = d(s,vi )

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13 / 21



Algorithms for LPs

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 14 / 21



Geometry

To get intuition: think of LPs geometrically

▸ Space: Rn (one dimension per variable

▸ Linear constraint: halfspace (one side of a hyperplane)

▸ Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Example: planning your week

▸ 3 variables S,P,E so R3

▸ But S +P + E = 168 Ô⇒
S = 168 −P − E

▸ Make this substitution, get
R2

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 15 / 21



Geometry

To get intuition: think of LPs geometrically

▸ Space: Rn (one dimension per variable

▸ Linear constraint: halfspace (one side of a hyperplane)

▸ Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Example: planning your week

▸ 3 variables S,P,E so R3

▸ But S +P + E = 168 Ô⇒
S = 168 −P − E

▸ Make this substitution, get
R2

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 15 / 21



Geometry (cont’d)

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Objective: feasible solution “furthest” along specified direction

▸ maxP: (56,26)

▸ max2P + E : (88.5,19.5)

Main theorem: optimal solution is always at a “corner” (also called a “vertex”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 16 / 21



Geometry (cont’d)

Algoritiganning
Think of LPs geometrically

in

space IR

constraint hyperplane halfspace

feasible region intersection of halfspaceg

p ope

EI planning your week

3 variahle Ibf so 112

Stat 168 5 168 P E
7Go AC 1108 25 IptC2150

2468 f El Ihf 150
PtE270 Spt EE 186

E
T

Objective: feasible solution “furthest” along specified direction

▸ maxP: (56,26)

▸ max2P + E : (88.5,19.5)

Main theorem: optimal solution is always at a “corner” (also called a “vertex”)
Michael Dinitz Lecture 21: Linear Programming November 12, 2024 16 / 21



Simplex Algorithm [Dantzig 1940’s]

Initialize x⃗ to an arbitrary corner
while(a neighboring corner x⃗ ′ of x⃗ has better objective value) {

x⃗ ← x⃗ ′

}
return x⃗

max p 56,261

nax Htt 88.5 19.5

Oct solution always at a corner vertex

Simplex Alg Dantzig 1940s

Start at arbitrary corner

look at all neighboring corners

If any of them better more to best

Repeat until n neighboring corner better

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 17 / 21



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

▸ Objective linear Ô⇒ optimal solution at a corner

▸ Feasible set convex + linear objective Ô⇒ any local opt is global opt

Ô⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

▸ Slow in theory
▸ Fast in practice!

▸ Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

▸ Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 / 21



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

▸ Objective linear Ô⇒ optimal solution at a corner

▸ Feasible set convex + linear objective Ô⇒ any local opt is global opt

Ô⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

▸ Slow in theory
▸ Fast in practice!

▸ Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

▸ Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 / 21



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

▸ Objective linear Ô⇒ optimal solution at a corner

▸ Feasible set convex + linear objective Ô⇒ any local opt is global opt

Ô⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

▸ Slow in theory
▸ Fast in practice!

▸ Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

▸ Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 / 21



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

▸ Objective linear Ô⇒ optimal solution at a corner

▸ Feasible set convex + linear objective Ô⇒ any local opt is global opt

Ô⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

▸ Slow in theory

▸ Fast in practice!
▸ Much of AMS LP course really about simplex: traditionally favorite algorithm of people who

want to actually solve LPs

▸ Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 / 21



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

▸ Objective linear Ô⇒ optimal solution at a corner

▸ Feasible set convex + linear objective Ô⇒ any local opt is global opt

Ô⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

▸ Slow in theory
▸ Fast in practice!

▸ Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

▸ Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 / 21



Simplex Analysis

Theorem: Simplex returns the optimal solution.

Proof Sketch:

▸ Objective linear Ô⇒ optimal solution at a corner

▸ Feasible set convex + linear objective Ô⇒ any local opt is global opt

Ô⇒ Once simplex terminates, at global opt

Problem: Exponential number of corners!

▸ Slow in theory
▸ Fast in practice!

▸ Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

▸ Some theory to explain discrepancy (“smoothed analysis”)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 / 21



Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question Ô⇒ can also solve optimization

▸ Start with ellipsoid E containing feasible
region P (if it exists)

▸ Let x be center of E
▸ While(x not feasible)

▸ Find a hyperplane H through x such
that all of P on one side

▸ Let E ′ be the half-ellipsoid of E defined
by H

▸ Find a new ellipsoid Ê containing E ′ so
that vol(Ê) ≤ (1 − 1

n )vol(E)
▸ Let E = Ê and let x be center of Ê

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 19 / 21



Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question Ô⇒ can also solve optimization

▸ Start with ellipsoid E containing feasible
region P (if it exists)

▸ Let x be center of E
▸ While(x not feasible)

▸ Find a hyperplane H through x such
that all of P on one side

▸ Let E ′ be the half-ellipsoid of E defined
by H

▸ Find a new ellipsoid Ê containing E ′ so
that vol(Ê) ≤ (1 − 1

n )vol(E)
▸ Let E = Ê and let x be center of Ê

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 19 / 21



Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1 − 1/n) of the volume of the original

▸ Using inequality from last time: after n iterations, volume drops by (1 − 1
n )

n
≤ 1/e factor

▸ Crucial fact: if volume “too small”, P must be empty

Ô⇒ Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 20 / 21



Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1 − 1/n) of the volume of the original

▸ Using inequality from last time: after n iterations, volume drops by (1 − 1
n )

n
≤ 1/e factor

▸ Crucial fact: if volume “too small”, P must be empty

Ô⇒ Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 20 / 21



Interior Point Methods (Karmarkar’s Algorithm)

Fast in both theory and practice!

If volume too small P does not exist

KarmarkaisAlg linterior point methods

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 21 / 21


