Lecture 21: Linear Programming

Michael Dinitz

November 12, 2024 601.433/633 Introduction to Algorithms

Advertisement

Next semester: 601.438/638 Algorithmic Foundations of Differential Privacy

- Lots of fun algorithms!
- Very laid back: 3-4 homeworks, final project of your choosing

Differential Privacy: modern formal notion of privacy

- Super important in both practice and theory
- Used in US Census!
- ▶ I spent sabbatical at Google NYC working on privacy: fun theory, and really deployed!
- ▶ Allows us to think of privacy as a "resource" that we can analyze like other resources

Introduction

Today: What, why, and juste a taste of how

- Entire course on linear programming over in AMS. Super important topic!
- Fast algorithms in theory and in practice.

Introduction

Today: What, why, and juste a taste of how

- Entire course on linear programming over in AMS. Super important topic!
- Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!

- Max flow important in its own right, but also because it can be used to solve many other things (max bipartite matching)
- Linear programming: important in its own right, but also even more general than max-flow.
- Can model many, many problems!

168 hours in a week. How much time to spend:

- ► Studying (*S*)
- Partying (P)
- Everything else (*E*)

168 hours in a week. How much time to spend: Constraints:

- ► Studying (*S*)
- Partying (P)
- Everything else (*E*)

- E ≥ 56 (at least 8 hours/day sleep, shower, etc.)
- $P + E \ge 70$ (need to stay sane)
- $S \ge 60$ (to pass your classes)
- 2S + E 3P ≥ 150 (too much partying requires studying or sleep)

168 hours in a week. How much time to spend: Constraints:

- Studying (S)
- Partying (P)
- Everything else (*E*)

- E ≥ 56 (at least 8 hours/day sleep, shower, etc.)
- $P + E \ge 70$ (need to stay sane)
- S ≥ 60 (to pass your classes)
- 2S + E 3P ≥ 150 (too much partying requires studying or sleep)

Question: Is this possible? Is there a *feasible* solution?

168 hours in a week. How much time to spend: Constraints:

- Studying (S)
- Partying (P)
- Everything else (*E*)

- E ≥ 56 (at least 8 hours/day sleep, shower, etc.)
- $P + E \ge 70$ (need to stay sane)
- S ≥ 60 (to pass your classes)
- 2S + E 3P ≥ 150 (too much partying requires studying or sleep)

Question: Is this possible? Is there a *feasible* solution?

▶ Yes! *S* = 80, *P* = 20, *E* = 68

168 hours in a week. How much time to spend: Constraints:

- Studying (S)
- Partying (P)
- Everything else (*E*)

- E ≥ 56 (at least 8 hours/day sleep, shower, etc.)
- $P + E \ge 70$ (need to stay sane)
- S ≥ 60 (to pass your classes)
- 2S + E 3P ≥ 150 (too much partying requires studying or sleep)

Question: Is this possible? Is there a *feasible* solution?

Yes! S = 80, P = 20, E = 68

Question: Suppose "happiness" is 2P + 3E. Can we find a feasible solution maximizing this?

Linear Programming

Input (a "linear program"):

- *n* variables x_1, \ldots, x_n (take values in \mathbb{R})
- **m** non-strict linear inequalities in these variables (constraints)
 - E.g.: $3x_1 + 4x_2 \le 6$, $0 \le x_1 \le 3$ $x_2 3x_3 + 2x_7 = 17$
 - Not allowed (examples): $x_2 x_3 \ge 5$, $x_4 < 2$, $x_5 + \log x_2 \ge 4$
- Possibly a *linear* objective function

•
$$\max 2x_3 - 4x_5$$
, $\min \frac{5}{2}x_4 + x_2$, ...

Goals:

- Feasibility: Find values for x's that satisfy all constraints
- Optimization: Find feasible solutions maximizing/minimizing objective function Both achievable in polynomial time, reasonably fast!

Planning your week as an LP

Variables: **P**, **E**, **S**

Planning your week as an LP

Variables: P, E, S

max 2*P* + *E*

Planning your week as an LP Variables: *P*, *E*, *S*

max 2P + Esubject to $E \ge 56$ $S \ge 60$ $2S + E - 3P \ge 150$ $P + E \ge 70$

Planning your week as an LP Variables: *P*, *E*, *S*

max 2P + Esubject to $E \ge 56$ *S* ≥ 60 $2S + E - 3P \ge 150$ $P + E \ge 70$ P + S + E = 168 $P \ge 0$ *S* > 0 $E \ge 0$

Planning your week as an LP Variables: *P*, *E*, *S*

max 2P + Esubject to $E \ge 56$ *S* ≥ 60 $2S + E - 3P \ge 150$ P + E > 70P + S + E = 168P > 0*S* ≥ 0 $E \ge 0$

When using an LP to model your problem, need to be sure that *all* aspects of your problem included!

Operations Research-style Example

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Operations Research-style Example

Four different manufacturing plants for making cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

- Need to produce at least 400 cars at plant 3 (labor agreement)
- Have 3300 total hours of labor, 4000 units of material
- Environmental law: produce at most 12000 pollution
- Make as many cars as possible

OR example as an LP

Four different manufacturing plants for making Variables: cars:

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Four different manufacturing plants for making Variables: $x_i = \#$ cars produced at plant i, for cars: $i \in \{1, 2, 3, 4\}$

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Objective:

I

	labor	materials	pollution	Objective: max $x_1 + x_2 + x_3 + x_4$
Plant 1	2	3	15	
Plant 2	3	4	10	
Plant 3	4	5	9	
Plant 4	5	6	7	

Four different manufacturing plants for making Variables: $x_i = \#$ cars produced at plant i, for cars: $i \in \{1, 2, 3, 4\}$

	labor	materials	pollution
Plant 1	2	3	15
Plant 2	3	4	10
Plant 3	4	5	9
Plant 4	5	6	7

Objective: max $x_1 + x_2 + x_3 + x_4$

Constraints:

OR example as an LP

I

Four different manufacturing plants for making **Variables:** $x_i = \#$ cars produced at plant *i*, for cars: $i \in \{1, 2, 3, 4\}$

	labor	materials	pollution	Objective: max $x_1 + x_2 + x_3 + x_4$
Plant 1	2	3	15	Constraints:
Plant 2	3	4	10	<i>x</i> ₃ ≥ 400
Plant 3	4	5	9	
Plant 4	5	6	7	

	labor	materials	pollution	Objective: max $x_1 + x_2 + x_3 + x_4$
Plant 1	2	3	15	Constraints:
Plant 2	3	4	10	$x_3 \ge 400$ $2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$
Plant 3	4	5	9	
Plant 4	5	6	7	

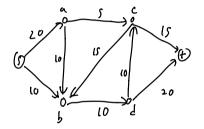
	labor	materials	pollution	Objective: max $x_1 + x_2 + x_3 + x_4$
Plant 1	2	3	15	Constraints:
				<i>x</i> ₃ ≥ 400
Plant 2	3	4	10	$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$
Plant 3	4	5	9	$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$
Plant 4	5	6	7	

L

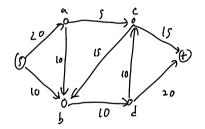
	labor	materials	pollution	Objective: max $x_1 + x_2 + x_3 + x_4$
Plant 1	2	3	15	Constraints:
				$x_3 \ge 400$
Plant 2	3	4	10	$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$
Plant 3	4	5	9	$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$ $15x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$
Plant 4	5	6	7	

1

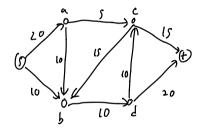
	labor	materials	pollution	Objective: max $x_1 + x_2 + x_3 + x_4$
Plant 1	2	3	15	Constraints:
				$x_3 \ge 400$
Plant 2	3	4	10	$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300$
Plant 3	4	5	9	$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000$ $15x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$
Plant 4	5	6	7	$x_i \ge 0 \qquad \forall i \in \{1, 2, 3, 4\}$

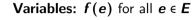


Variables:

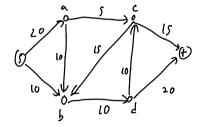


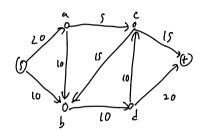
Variables: f(e) for all $e \in E$

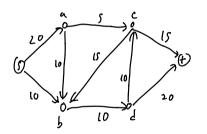




Objective:

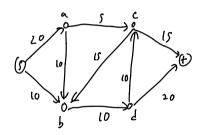




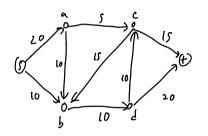




$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$

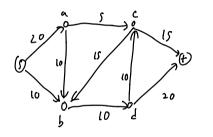


$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$
$$f(e) \le c(e) \qquad \forall e \in E$$



$$\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$$
$$f(e) \le c(e) \qquad \forall e \in E$$
$$f(e) \ge 0 \qquad \forall e \in E$$

Max Flow as LP



Variables: f(e) for all $e \in E$ Objective: $\max \sum_{v} f(s, v) - \sum_{v} f(v, s)$ Constraints: $\sum_{v} f(v, u) - \sum_{v} f(u, v) = 0 \qquad \forall u \in V \setminus \{s, t\}$ $f(e) \le c(e) \qquad \forall e \in E$ $f(e) \ge 0 \qquad \forall e \in E$

So can solve max-flow and min-cut (slower) by using generic LP solver

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Generalization of max-flow with multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph G = (V, E)
- Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with wariables: multiple commodities that can't mix, but use up same capacity

Setup:

- Directed graph G = (V, E)
- Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Setup:

- Directed graph G = (V, E)
- Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Objective:

Setup:

- Directed graph G = (V, E)
- Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Objective: max $\sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

- Directed graph G = (V, E)
- Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$

Generalization of max-flow with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Objective: max $\sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

- Directed graph G = (V, E) Constraints:
- Capacities $c: E \to \mathbb{R}_{\geq 0}$
- k source-sink pairs $\{(s_i, t_i)\}_{i \in [k]}$
- Goal: send flow of commodity i from s_i to t_i , max total flow sent across all commodities

Generalization of max-flow with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Objective: max $\sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Setup:

Directed graph G = (V, E) Constraints:

• Capacities
$$c: E \to \mathbb{R}_{\geq 0}$$

 $k \text{ source-sink pairs } \{(s_i, t_i)\}_{i \in [k]} \sum_{v}$

$$f_i(v, u) - \sum_{v} f_i(u, v) = 0 \qquad \forall i \in [k], \forall u \in V \setminus \{s_i, t_i\}$$

Generalization of max-flow with Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$. multiple commodities that can't mix, Flow of commodity *i* on edge *e* but use up same capacity

Setup:

• Directed graph G = (V, E)

• Capacities $c: E \to \mathbb{R}_{>0}$

• **k** source-sink pairs $\{(s_i, t_i)\}_{i \in [k]} \sum_{v}$

Objective: max $\sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

Constraints:

$$\begin{cases} f_i(v, u) - \sum_{v} f_i(u, v) = 0 & \forall i \in [k], \ \forall u \in V \setminus \{s_i, t_i\} \\ & \sum_{i=1}^k f_i(e) \le c(e) & \forall e \in E \end{cases}$$

Generalization of max-flow with multiple commodities that can't mix, Flow of commodity i on edge e but use up same capacity

Setup:

• Directed graph G = (V, E) Co

• Capacities $c: E \to \mathbb{R}_{\geq 0}$

 $k \text{ source-sink pairs } \{(s_i, t_i)\}_{i \in [k]} \bigvee_{v} f_i(t_i)$

Goal: send flow of commodity i from s_i to t_i , max total flow sent across all commodities

Objective: max $\sum_{i=1}^{k} (\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i))$

$$(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \ \forall u \in V \setminus \{s_{i}, t_{i}\}$$
$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$
$$f_{i}(e) \geq 0 \qquad \forall e \in E, \ \forall i \in [k]$$

Multicommodity flow, but:

- Also given demands
 d: [k] → ℝ_{≥0}
- ► Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Multicommodity flow, but:

- Also given demands
 d: [k] → ℝ_{≥0}
- ► Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Multicommodity flow, but:

- Also given demands
 d: [k] → ℝ_{≥0}
- ► Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

Multicommodity flow, but:

- Also given demands
 d: [k] → ℝ_{≥0}
- ► Question: Is there a multicommodity flow that sends at least d(i) commodity-i flow from s_i to t_i for all i ∈ [k]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

$$\sum_{v} f_{i}(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \forall u \in V \setminus \{s_{i}, t_{i}\}$$
$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$
$$f_{i}(e) \geq 0 \qquad \forall e \in E, \forall i \in [k]$$

Multicommodity flow, but:

- Also given demands
 d: [k] → ℝ_{≥0}
- ► Question: Is there a multicommodity flow that sends at least *d(i)* commodity-*i* flow from *s_i* to *t_i* for all *i* ∈ [*k*]?

Variables: $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

$$\sum_{v} f_{i}(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \forall u \in V \setminus \{s_{i}, t_{i}\}$$
$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$
$$f_{i}(e) \geq 0 \qquad \forall e \in E, \forall i \in [k]$$
$$\sum_{v} f_{i}(s_{i}, v) - \sum_{v} f_{i}(v, s_{i}) \geq d(i) \qquad \forall i \in [k]$$

Maximum Concurrent Flow

If answer is no: how much do we need to scale down demands so that there is a multicommodity flow?

Maximum Concurrent Flow

Variables:

• $f_i(e)$ for all $e \in E$ and for all $i \in [k]$.

► **λ**

Objective: $\max \lambda$

If answer is no: how much do we need to scale down demands so that there is a multicommodity flow?

$$\sum_{v} f_{i}(v, u) - \sum_{v} f_{i}(u, v) = 0 \qquad \forall i \in [k], \ \forall u \in V \setminus \{s_{i}, t_{i}\}$$
$$\sum_{i=1}^{k} f_{i}(e) \leq c(e) \qquad \forall e \in E$$
$$f_{i}(e) \geq 0 \qquad \forall e \in E, \ \forall i \in [k]$$

$$\sum_{v} f_i(s_i, v) - \sum_{v} f_i(v, s_i) \ge \lambda d(i) \qquad \forall i \in [k]$$

Very surprising LP! Variables: d_v for all $v \in V$: shortest-path distance from s to v

$$\begin{array}{ll} \max & d_t \\ \text{subject to} & d_s = 0 \\ & d_v \leq d_u + \ell(u,v) \end{array} \quad \forall (u,v) \in E \end{array}$$

Very surprising LP! Variables: d_v for all $v \in V$: shortest-path distance from s to v

$$\begin{array}{ll} \max & d_t \\ \text{subject to} & d_s = 0 \\ & d_v \leq d_u + \ell(u,v) \end{array} \quad \forall (u,v) \in E \end{array}$$

Correctness Theorem: Let \vec{d}^* denote the optimal LP solution. Then $d_t^* = d(s, t)$

Very surprising LP! Variables: d_v for all $v \in V$: shortest-path distance from s to v

$$\begin{array}{ll} \max & d_t \\ \text{subject to} & d_s = 0 \\ & d_v \leq d_u + \ell(u,v) \end{array} \quad \forall (u,v) \in E \end{array}$$

Correctness Theorem: Let $\vec{d^*}$ denote the optimal LP solution. Then $d_t^* = d(s, t)$ **Proof Sketch:** \geq : Let $d_v = d(s, v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s, t)$.

Very surprising LP! Variables: d_v for all $v \in V$: shortest-path distance from s to v

$$\begin{array}{ll} \max & d_t \\ \text{subject to} & d_s = 0 \\ & d_v \leq d_u + \ell(u,v) \end{array} \quad \forall (u,v) \in E \end{array}$$

Correctness Theorem: Let $\vec{d^*}$ denote the optimal LP solution. Then $d_t^* = d(s, t)$ **Proof Sketch:** \geq : Let $d_v = d(s, v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s, t)$.

≤: Let $P = (s = v_0, v_1, ..., v_k = t)$ be shortest $s \to t$ path. Prove by induction: $d_{v_i}^* \le d(s, v_i)$ for all i

Very surprising LP! Variables: d_v for all $v \in V$: shortest-path distance from s to v

$$\begin{array}{ll} \max & d_t \\ \text{subject to} & d_s = 0 \\ & d_v \leq d_u + \ell(u,v) \end{array} \quad \forall (u,v) \in E \end{array}$$

Correctness Theorem: Let $\vec{d^*}$ denote the optimal LP solution. Then $d_t^* = d(s, t)$ **Proof Sketch:** \geq : Let $d_v = d(s, v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s, t)$.

≤: Let $P = (s = v_0, v_1, ..., v_k = t)$ be shortest $s \to t$ path. Prove by induction: $d_{v_i}^* \le d(s, v_i)$ for all iBase case: i = 0 ✓

Very surprising LP! Variables: d_v for all $v \in V$: shortest-path distance from s to v

$$\begin{array}{ll} \max & d_t \\ \text{subject to} & d_s = 0 \\ & d_v \leq d_u + \ell(u,v) \end{array} \quad \forall (u,v) \in E \end{array}$$

Correctness Theorem: Let $\vec{d^*}$ denote the optimal LP solution. Then $d_t^* = d(s, t)$ **Proof Sketch:** \geq : Let $d_v = d(s, v)$ for all $v \in V$. Feasible $\implies d_t^* \geq d_t = d(s, t)$.

 $\leq: \text{ Let } \boldsymbol{P} = (\boldsymbol{s} = \boldsymbol{v}_0, \boldsymbol{v}_1, \dots, \boldsymbol{v}_k = \boldsymbol{t}) \text{ be shortest } \boldsymbol{s} \to \boldsymbol{t} \text{ path.} \\ \text{Prove by induction: } \boldsymbol{d}_{\boldsymbol{v}_i}^* \leq \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{v}_i) \text{ for all } \boldsymbol{i} \\ \text{Base case: } \boldsymbol{i} = \boldsymbol{0} \checkmark \\ \text{Inductive step: } \boldsymbol{d}_{\boldsymbol{v}_i}^* \leq \boldsymbol{d}_{\boldsymbol{v}_{i-1}}^* + \ell(\boldsymbol{v}_{i-1}, \boldsymbol{v}_i) \leq \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{v}_{i-1}) + \ell(\boldsymbol{v}_{i-1}, \boldsymbol{v}_i) = \boldsymbol{d}(\boldsymbol{s}, \boldsymbol{v}_i) \end{aligned}$

Algorithms for LPs

Geometry

To get intuition: think of LPs geometrically

- Space: \mathbb{R}^n (one dimension per variable
- Linear constraint: halfspace (one side of a hyperplane)
- Feasible region: intersection of halfspaces. Convex Polytope (usually just called a polytope)

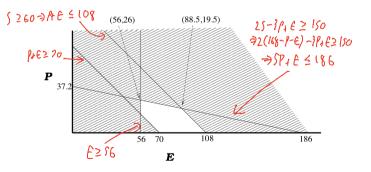
Geometry

To get intuition: think of LPs geometrically

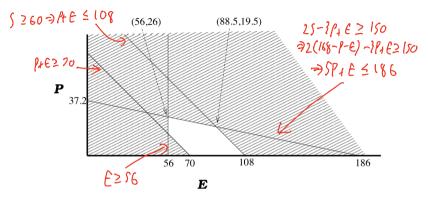
- Space: \mathbb{R}^n (one dimension per variable
- Linear constraint: halfspace (one side of a hyperplane)
- Feasible region: intersection of halfspaces. Convex Polytope (usually just called a polytope)

Example: planning your week

- ▶ 3 variables S, P, E so \mathbb{R}^3
- But $S + P + E = 168 \implies$ S = 168 - P - E
- Make this substitution, get \mathbb{R}^2



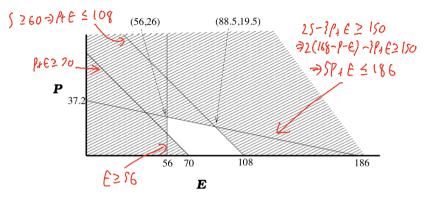
Geometry (cont'd)



Objective: feasible solution "furthest" along specified direction

- ▶ max *P*: (56, 26)
- ▶ max 2*P* + *E*: (88.5, 19.5)

Geometry (cont'd)



Objective: feasible solution "furthest" along specified direction

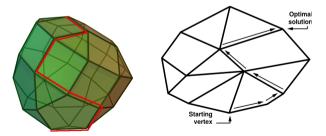
- ▶ max *P*: (56, 26)
- ▶ max 2*P* + *E*: (88.5, 19.5)

Main theorem: optimal solution is always at a "corner" (also called a "vertex")

Michael Dinitz

Simplex Algorithm [Dantzig 1940's]

```
Initialize \vec{x} to an arbitrary corner
while(a neighboring corner \vec{x}' of \vec{x} has better objective value) {
\vec{x} \leftarrow \vec{x}'
}
return \vec{x}
```



Theorem: Simplex returns the optimal solution.

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \implies optimal solution at a corner
- ▶ Feasible set convex + linear objective ⇒ any local opt is global opt
- → Once simplex terminates, at global opt

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \implies optimal solution at a corner
- ▶ Feasible set convex + linear objective ⇒ any local opt is global opt
- \implies Once simplex terminates, at global opt

Problem: Exponential number of corners!

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \implies optimal solution at a corner
- Feasible set convex + linear objective \implies any local opt is global opt
- \implies Once simplex terminates, at global opt

Problem: Exponential number of corners!

Slow in theory

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \implies optimal solution at a corner
- Feasible set convex + linear objective \implies any local opt is global opt
- \implies Once simplex terminates, at global opt

Problem: Exponential number of corners!

- Slow in theory
- Fast in practice!
 - Much of AMS LP course really about simplex: traditionally favorite algorithm of people who want to actually solve LPs

Theorem: Simplex returns the optimal solution.

Proof Sketch:

- Objective linear \implies optimal solution at a corner
- Feasible set convex + linear objective \implies any local opt is global opt
- \implies Once simplex terminates, at global opt

Problem: Exponential number of corners!

- Slow in theory
- Fast in practice!
 - Much of AMS LP course really about simplex: traditionally favorite algorithm of people who want to actually solve LPs
- Some theory to explain discrepancy ("smoothed analysis")

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm! Designed to just solve feasibility question \implies can also solve optimization

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!

Designed to just solve feasibility question \implies can also solve optimization

- Start with ellipsoid *E* containing feasible region *P* (if it exists)
- Let x be center of E
- While(x not feasible)
 - Find a hyperplane *H* through *x* such that all of *P* on one side
 - Let *E'* be the half-ellipsoid of *E* defined by *H*
 - Find a new ellipsoid \hat{E} containing E' so that $vol(\hat{E}) \leq (1 \frac{1}{n}) vol(E)$
 - Let $\boldsymbol{E} = \hat{\boldsymbol{E}}$ and let \boldsymbol{x} be center of $\hat{\boldsymbol{E}}$

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most (1 - 1/n) of the volume of the original

- Using inequality from last time: after *n* iterations, volume drops by $(1 \frac{1}{n})^n \leq 1/e$ factor
- Crucial fact: if volume "too small", P must be empty

→ Polynomial time!

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most (1 - 1/n) of the volume of the original

- Using inequality from last time: after *n* iterations, volume drops by $(1 \frac{1}{n})^n \leq 1/e$ factor
- Crucial fact: if volume "too small", P must be empty
- → Polynomial time!

In practice: horrible.

Interior Point Methods (Karmarkar's Algorithm)

Fast in both theory and practice!

