Lecture 21: Linear Programming

Michael Dinitz

November 12, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

1/21

Advertisement

Next semester: 601.438/638 Algorithmic Foundations of Differential Privacy
» Lots of fun algorithms!

» Very laid back: 3-4 homeworks, final project of your choosing

Differential Privacy: modern formal notion of privacy

» Super important in both practice and theory

» Used in US Census!
» | spent sabbatical at Google NYC working on privacy: fun theory, and really deployed!
>

Allows us to think of privacy as a “resource” that we can analyze like other resources

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 2/21

Introduction

Today: What, why, and juste a taste of how
» Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 3/21

Introduction

Today: What, why, and juste a taste of how
» Entire course on linear programming over in AMS. Super important topic!

» Fast algorithms in theory and in practice.

Why: Even more general than max-flow, can still be solved in polynomial time!
» Max flow important in its own right, but also because it can be used to solve many other
things (max bipartite matching)
» Linear programming: important in its own right, but also even more general than
max-flow.

» Can model many, many problems!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 3/21

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend:
» Studying (S)

» Partying (P)
» Everything else (E)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4/21

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S >60 (to pass your classes)

» 25+ E - 3P > 150 (too much partying
requires studying or sleep)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4/21

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S >60 (to pass your classes)

» 25+ E - 3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4/21

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S >60 (to pass your classes)

» 25+ E - 3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
» Yes! §=80, P=20, E=68

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4/21

Example: Planning Your Week (pre-COVID)

168 hours in a week. How much time to spend: Constraints:
» E >56 (at least 8 hours/day sleep,

» Studying (S) shower, etc.)
» Partying (P) » P+ E >70 (need to stay sane)
» Everything else (E) » S >60 (to pass your classes)

» 25+ E - 3P > 150 (too much partying
requires studying or sleep)

Question: Is this possible? Is there a feasible solution?
» Yes! §=80, P=20, E=68

Question: Suppose “happiness” is 2P + 3E. Can we find a feasible solution maximizing this?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 4/21

Linear Programming

Input (a “linear program”):
» n variables xy,...,x, (take values in R)
» m non-strict linear inequalities in these variables (constraints)

» Eg.: 3x3+4xp <06, 0<x1<3 x2 - 3x3 +2x7 =17

» Not allowed (examples): xax3 > 5, Xy <2, x5 +logx, >4
» Possibly a /inear objective function

> max2x3; - 4xs, min 2x, + xo,

2

Goals:
» Feasibility: Find values for x's that satisfy all constraints

» Optimization: Find feasible solutions maximizing/minimizing objective function

Both achievable in polynomial time, reasonably fast!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

5/21

Planning your week as an LP
Variables: P,E,S

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6/21

Planning your week as an LP
Variables: P,E,S

max 2P+ E

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6/21

Planning your week as an LP
Variables: P,E,S

max 2P+ E
subject to E >56
5>60
2S+E-3P >150
P+E>T70

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

6/21

Planning your week as an LP
Variables: P,E,S

max 2P+ E

subject to E >56
5>60
2S+E-3P >150
P+E>T70
P+S+E=168
P>0
$>0
E>0

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

6/21

Planning your week as an LP
Variables: P,E,S

max 2P+ E

subject to E >56
5>60
2S+E-3P >150
P+E>T70
P+S+E=168
P>0
$>0
E>0

When using an LP to model your problem, need to be sure that all aspects of your problem
included!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 6/21

Operations Research-style Example

Four different manufacturing plants for making

cars:
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7
Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

7/21

Operations Research-style Example

Four different manufacturing plants for making

cars:

v

labor materials pollution Need to produce at least 400 cars at plant

Plant 1

Plant 2

Plant 3

Plant 4

3 (labor agreement)

2 3 15 » Have 3300 total hours of labor, 4000
units of material

3 4 10 » Environmental law: produce at most
12000 pollution

4 5 9 » Make as many cars as possible

5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 7/21

OR example as an LP

Four different manufacturing plants for making Variables:

cars:
labor pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 7
Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

cars: i€{1,2,3,4}
labor materials pollution
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

o ief{1,2,3,4)
labor materials pollution Objective:
Plant 1 2 3 15
Plant2 | 3 4 10
Plant 3 | 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

cars: ie{1,2,3,4)
labor materials pollution Objective: max x; +x2 + X3 + X4
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

cars: ie{1,2,3,4)
labor materials pollution Objective: max x1 + Xz + X3 + xa
Constraints:
Plant 1 2 3 15
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

cars: ie{1,2,3,4)
labor materials pollution Objective: max x1 + Xz + X3 + xa
Constraints:
Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

cars: ie{1,2,3,4)
labor materials pollution Objective: max x1 + Xz + X3 + xa
Constraints:
Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10 2x1 +3x2 +4x3 +5x4 <3300
Plant 3 4 5 9
Plant 4 5 6 7

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

OR example as an LP

Four different manufacturing plants for making Variables: x:
- 1

cars:
labor pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 7
Michael Dinitz

Lecture 21: Linear Programming

ie€{1,2,3,4}
Objective: max x; + x2 + X3 + Xa
Constraints:

x3 > 400

2x1 +3x2 +4x3 + 5x4 < 3300
3x1 +4xy +5x3 +6x4 <4000

November 12, 2024

= # cars produced at plant 1, for

8/21

OR example as an LP

Four different manufacturing plants for making Variables: x:
- 1

cars:
labor pollution
Plant 1 2 15
Plant 2 3 10
Plant 3 4 9
Plant 4 5 7
Michael Dinitz

Lecture 21: Linear Programming

ie€{1,2,3,4}
Objective: max x; + x2 + X3 + Xa

Constraints:

x3 > 400
2x1 +3x2 +4x3 + 5x4 < 3300
3x1 +4xy +5x3 +6x4 <4000
15x1 + 10xp + 9x3 + 7x4 < 12000

November 12, 2024

= # cars produced at plant 1, for

8/21

OR example as an LP

Four different manufacturing plants for making Variables: x; = # cars produced at plant i, for
DX = ,

cars: ie{1,2,3,4)
labor materials pollution Objective: max x1 + Xz + X3 + xa

Constraints:

Plant 1 2 3 15
x3 > 400
Plant 2 3 4 10 2x1 +3x2 +4x3 +5x4 <3300
4 <4

Plant3 | 4 5 9 3x1.+4xz + 5x3 + 0x4 < 4000

15x1 + 10xp + 9x3 + 7x4 < 12000
Plant 4 5 6 7 x;>0 vie{l,2,3,4}

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 8/21

Max Flow as LP

a 5 C
O/_)ﬂ
L0 s
lo v @')
()
o 0 20
b o d

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables:
a 5 C
o—79
L0 s
lo v @9
0
Lo 0 0
b o d
Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

9/21

Max Flow as LP

Variables: f(e) for all ec E

a 5 C
O/_)ﬂ
L0 s
lo v @')
()
o 0 20
b o d

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E

a N Objective:
L0 s
lo u [@')
(
bo o ~d

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E
Objective: max Y, f(s,v)-Y, f(v,s)

a 5 C
o——— 39
L0 s
(/ y ®
I0)
(] 20
’—’ﬂ
o 4

0
b

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E

@« 5 Objective: max}, f(s,v)-Y, f(v,s)

RN
L0 s
@/u y ®
\ 0 /
Lo 20
0 l d

0

Constraints:

b

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E
Objective: max Y, f(s,v)-Y, f(v,s)

o,;_):-
Lo s Constraints:
L v ®
© Y F(v,u)-) f(u,v)=0 VueV{s,t}
k‘ 20 v v
’—’ﬂ
o 4

0
b

a

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E
Objective: max Y, f(s,v)-Y, f(v,s)

o—2
(/ Constraints:
l Y F(v,u)-) f(u,v)=0 VueV{s,t}

Ny
(5
| v ®
\) /
lo 0
O,—f—wqoé f(e) <c(e) VeeE
b

a

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E
Objective: max Y, f(s,v)-Y, f(v,s)

o—2
(/ Constraints:
l Y F(v,u)-) f(u,v)=0 VueV{s,t}

Ny
(5
| v ®
\) /
lo 0
O,—f—wqoé f(e) <c(e) VeeE
b

f(e)>0 VeecE

a

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Max Flow as LP

Variables: f(e) for all ec E

a ;¢ Objective: max}, f(s,v)-Y, f(v,s)

o—2 39
Le g Constraints:

lo v @')
\ w/ Y F(v,u)-) f(u,v)=0 VueV{s,t}
1 v v
’ O,—f—wqoé *0 f(e) <c(e) VeecE

b f(e)>0 VeecE

So can solve max-flow and min-cut (slower) by using generic LP solver

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 9/21

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can't mix,
but use up same capacity

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

10/21

Multicommodity Flow

Generalization of max-flow with
multiple commodities that can't mix,
but use up same capacity

Setup:
» Directed graph G = (V,E)
» Capacities c: E - Ryg
> k source-sink pairs {(sj, t;) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

10/21

Multicommodity Flow

Generalization of max-flow with Variables:
multiple commodities that can't mix,
but use up same capacity

Setup:
» Directed graph G = (V,E)
» Capacities c: E - Ryg
> k source-sink pairs {(sj, t;) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can’t mix, Flow of commodity i on edge e

but use up same capacity

Setup:
» Directed graph G = (V,E)
» Capacities c: E - Ryg
> k source-sink pairs {(sj, t;) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].

multiple commodities that can’t mix, Flow of commodity i on edge e
but use up same capacity

Objective:
Setup:

» Directed graph G = (V,E)
» Capacities c: E - Ryg
> k source-sink pairs {(sj, t;) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can’t mix, Flow of commodity i on edge e

but use up same capacity

Objective: max ¥~ (X, fi(si,v) - X, fi(v,s;))
Setup:

» Directed graph G = (V,E)
» Capacities c: E - Ryg
> k source-sink pairs {(sj, t;) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can’t mix, Flow of commodity i on edge e

but use up same capacity

Objective: max ¥~ (X, fi(si,v) - X, fi(v,s;))
Setup:

> Directed graph G = (V, E) Constraints:
» Capacities c: E - Ryg
> k source-sink pairs {(sj, t;) }ie[k]

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can’t mix, Flow of commodity i on edge e
but use up same capacity

Objective: max ¥~ (X, fi(si,v) - X, fi(v,s;))
Setup:

» Directed graph G = (V, E) Constraints:
» Capacities c: E - Ryp Zf;(v,U)-Zfi(",VFO Vie[k], Yue V{s,t;}
v

> k source-sink pairs {(sj, t;)}ie[k] v

Goal: send flow of commodity i from
s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can’t mix, Flow of commodity i on edge e

but use up same capacity

Objective: max ¥~ (X, fi(si,v) - X, fi(v,s;))
Setup:

» Directed graph G = (V, E) Constraints:
» Capacities c: E - Ryp Zfi(Va u

)-)_ fi(u,v)=0 VIG[k] VUEV\{s- t-}
» k source-sink pairs {(si?ti)}ie[k] - EV: i\u, , i

k
Goal: send flow of commodity i from ; fi(e) < c(e) VeckE

s; to t;, max total flow sent across all
commodities

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10/21

Multicommodity Flow

Generalization of max-flow with Variables: f;(e) for all e € E and for all i € [k].
multiple commodities that can’t mix, Flow of commodity i on edge e
but use up same capacity

Objective: max ¥~ (X, fi(si,v) - X, fi(v,s;))
Setup:

» Directed graph G = (V, E) Constraints:
» Capacities c: E - Ryp Zf;(v,U)-Zfi(",VFO Vie[k], Yue V{s,t;}
v

> k source-sink pairs {(sj, t;)}ie[k] v

k
Goal: send flow of commodity i from Z; fi(e) < c(e) VeckE
1=
s; to t;, max total flow sent across all f(e) >0 VecE, Vie[k]
commodities

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 10/21

Concurrent Flow

Multicommodity flow, but:

» Also given demands
d:[k] > Ry

» Question: Is there a
multicommodity flow
that sends at least d (i)
commodity-i flow from
s; to t; for all i € [k]?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11/21

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but:

» Also given demands
d:[k] > Rxo

» Question: Is there a
multicommodity flow
that sends at least d (i)
commodity-i flow from
s; to t; for all i € [k]?

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

11/21

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but: .
) Constraints:
» Also given demands

d:[k] > Rxo

» Question: Is there a
multicommodity flow
that sends at least d (i)
commodity-i flow from
s; to t; for all i € [k]?

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

11/21

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].
Multicommodity flow, but:

Constraints:
» Also given demands onstraints
d:[k] >Ry Y fi(vou)-Y fi(u,v) =0 Vie[k], Vue V~{s;,t;}
» Question: Is there a v v
multicommodity flow k
that sends at least d (i) ’; fi(e) <c(e) veck
commodity-i flow from fi(e) >0 Ve cE, Vie[k]

s; to t; for all i € [k]?

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11/21

Concurrent Flow

Variables: f;(e) for all e € E and for all i € [k].

Multicommodity flow, but:

Constraints:
» Also given demands onstraints
d:[k] >Ry Y fi(vou)-Y fi(u,v) =0 Vie[k], Vue V~{s;,t;}
» Question: Is there a v v
multicommodity flow k
that sends at least d (i) ’; fie) < c(e) veck
commodity-1 fl?w from f(e) >0 Ve cE, Vie[k]
s; to t; for all i € [k]? .)
Zf,-(s,-,v)—Zf,-(v,s,-)Zd(l) Vi€ [k]
v v

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 11/21

Maximum Concurrent Flow

If answer is no: how much
do we need to scale down

demands so that there is a
multicommodity flow?

Michael Dinitz Lecture 21: Linear Programming

November 12, 2024

12/21

Maximum Concurrent Flow

If answer is no: how much
do we need to scale down
demands so that there is a
multicommodity flow?

Michael Dinitz

Variables:
> f;(e) for all e € E and for all i € [k].

> A

Objective: max A

Constraints:

Zﬂ-(v,u)-Zf;(u, v)=0 Vielk], Vue V~{s;,t;}
v v
k
Y fi(e) <c(e) Vee E
i=1
fi(e)>0 VeecE, Vice[k]
Y fi(si,v) =Y fi(v,s;) > Ad(i) Vi e [k]
Lecture 21: Linear Programming November 12, 2024 12/21

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds=0
d, <d,+£(u,v) V(u,v) e E

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13/21

Shortest s - t path

Very surprising LP!

Variables: d, for all v € V: shortest-path distance from s to v

max d;

subject to ds=0

d, <d,+£(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13/21

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds=0
d, <d,+£(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v € V. Feasible = d} >d; =d(s,t).

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

13/21

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds=0
d, <d,+£(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v € V. Feasible = d} >d; =d(s,t).

<: Let P=(s=wv,v1,...,Vg = t) be shortest s - t path.
Prove by induction: dy. < d(s,v;) for all i

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 13/21

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds=0
d, <d,+£(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v € V. Feasible = d} >d; =d(s,t).

<: Let P=(s=wv,v1,...,Vg = t) be shortest s - t path.
Prove by induction: dy. < d(s,v;) for all i
Base case: i =0 v

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

13/21

Shortest s - t path

Very surprising LP!
Variables: d, for all v € V: shortest-path distance from s to v

max d;
subject to ds=0
d, <d,+£(u,v) V(u,v) e E

Correctness Theorem: Let d* denote the optimal LP solution. Then di =d(s,t)
Proof Sketch: >: Let d, = d(s,v) for all v € V. Feasible = d} >d; =d(s,t).
<: Let P=(s=wv,v1,...,Vg = t) be shortest s - t path.

Prove by induction: dy. < d(s,v;) for all i

Base case: i =0 v

Inductive step: dy. < dy._ +£(vj_1,v;) < d(s,vi1)+£(vi-1,v;) = d(s,v;)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

13/21

Algorithms for LPs

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 14 /21

Geometry

To get intuition: think of LPs geometrically
» Space: R" (one dimension per variable
» Linear constraint: halfspace (one side of a hyperplane)

» Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 15/21

Geometry

To get intuition: think of LPs geometrically
» Space: R" (one dimension per variable
» Linear constraint: halfspace (one side of a hyperplane)

» Feasible region: intersection of halfspaces. Convex Polytope (usually just called a
polytope)

260ME £10% , 5.19.
Example: planning your week ; o 2 19;%2 15-ip e 2 Iso
> 3 variables S, P, E so R3 e 20 . ;/Zé%/;?z(/ss-f‘é) ~ls€2 [0
ot S e Pk 168 > 70 P4k 4 §6
> Bbut S+ F+E-= - P
S-168-P-E 37 :)
>]ll\g;ke this substitution, get })

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 15/21

Geometry (cont'd)

§2609E 2107 566 (88.5,19.5)

2 ‘
pr€2 70 _EX /% %;%Wﬁﬁ‘%
= ' _

4
= _
= ___
N '?? //,/
______ —
= = 2
56 70 108 186
£256 E

Objective: feasible solution “furthest” along specified direction
» max P: (56,26)
» max2P + E: (88.5,19.5)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

16 /21

Geometry (cont'd)

§ 260 E £ 109 (56.26)

Hex70 5 ///////?//"a S5P4E 41§56
~ -« i
P 7 44522222232255222}/////z////////////////// -

= = <= =
- -
e = 2
56 70 108 186
£256 E

Objective: feasible solution “furthest” along specified direction
» max P: (56,26)
» max2P + E: (88.5,19.5)

Main theorem: optimal solution is always at a “corner” (also called a "vertex")

Michael Dinitz Lecture 21: Linear Programming November 12, 2024

16 /21

Simplex Algorithm [Dantzig 1940's]

Initialize X to an arbitrary corner

while(a neighboring corner X" of X has better objective value) {
> >/
X« X

return X

Optimal
solution

Starting
vertex _‘

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 17 /21

Simplex Analysis

Theorem: Simplex returns the optimal solution.

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 /21

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear = optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 /21

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear = optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 /21

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear = optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

» Slow in theory

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 /21

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear = optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

» Slow in theory
» Fast in practice!

> Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 /21

Simplex Analysis

Theorem: Simplex returns the optimal solution.
Proof Sketch:
» Objective linear = optimal solution at a corner
> Feasible set convex + linear objective == any local opt is global opt

== Once simplex terminates, at global opt

Problem: Exponential number of corners!

» Slow in theory
» Fast in practice!

> Much of AMS LP course really about simplex: traditionally favorite algorithm of people who
want to actually solve LPs

» Some theory to explain discrepancy (“smoothed analysis™)

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 18 /21

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimization

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 19/21

Ellipsoid Algorithm [Khachiyan 1980]

First polytime algorithm!
Designed to just solve feasibility question == can also solve optimization

» Start with ellipsoid E containing feasible
region P (if it exists)
> Let x be center of E
» While(x not feasible)
> Find a hyperplane H through x such
that all of P on one side
> Let E’ be the half-ellipsoid of E defined
by H)
> Find a new ellipsoid E containing E’ so
that vol(E) < (1- 1) vol(E)
» Let E = E and let x be center of E

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 19/21

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1-1/n) of the volume of the original
» Using inequality from last time: after n iterations, volume drops by (1 - %)n < 1/e factor
» Crucial fact: if volume “too small”, P must be empty
== Polynomial time!

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 20/21

Analysis

Extremely complicated!

Geometry of ellipsoids: can always find an ellipsoid containing a half-ellipsoid with at most
(1-1/n) of the volume of the original
» Using inequality from last time: after n iterations, volume drops by (1 - %)n < 1/e factor
» Crucial fact: if volume “too small”, P must be empty
== Polynomial time!

In practice: horrible.

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 20/21

Interior Point Methods (Karmarkar's Algorithm)

Fast in both theory and practice!

A

Simplex Algorithm

Karmarkar’s Algorithm

Feasible Region

Michael Dinitz Lecture 21: Linear Programming November 12, 2024 21/21

