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Introduction

Last time: Definition of P, NP, reductions, NP-completeness. Proof that Circuit-SAT is
NP-complete.

Today: more NP-complete problems.

Definition
A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial
time algorithm V/ (I, X) (called the verifier) such that
1. If I'is a YES-instance of @, then there is some X (usually called the witness, proof, or
solution) with size polynomial in |/| so that V(/, X) = YES.
2. If I'is a NO-instance of Q, then V(/,X) = NO for all X.
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Reductions

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of
A and transforms them into instances of B so that

1. If x is a YES-instance of A then f(x) is a YES-instance of B.
2. If x is a NO-instance of A then f(x) is a NO-instance B.

3. f can be computed in polynomial time.

Definition
Problem Q is NP-hard if Q" <, Q for all problems Q" in NP. Problem Q is NP-complete if
it is NP-hard and in NP.
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Circuit-SAT

Definition
Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and
no loops (some inputs might be hardwired), is there a way of setting the inputs so that the

output of the circuit is 17 )
Theorem
Circuit-SAT is NP-complete. J
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3-SAT

Boolean formula:
» Boolean variables x1,...,Xp
> Literal: variable x; or negation X;
> AND: A OR: v
> x1V(xsAxz)A (X V(XgAX3))...
Conjunctive normal form (CNF): AND of ORs (clauses)

> (xpvxavxg)A(xavx3)A(Xx1VXaVXg)-...
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3-SAT

Boolean formula:
» Boolean variables x1,...,Xp %WﬁfL
> Literal: variable x; or negation X; DI—
> AND: A OR: v

> x1V(xsAxz)A (X V(XgAX3))...
Conjunctive normal form (CNF): AND of ORs (clauses) >

> (xpvxavxg)A(xavx3)A(Xx1VXaVXg)-...

Definition
3-SAT: Instance is 3CNF formula ¢ (every clause has < 3 literals). YES if there is assignment
where ¢ evaluates to True (satisfying assignment), NO otherwise.

Michael Dinitz Lecture 23: NP-Completeness Il November 19, 2024 5/17



3-SAT

Theorem
3-SAT is NP-complete. I
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3-SAT

Theorem

3-SAT is NP-complete.

3-SAT in NP:
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard:
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3-SAT

Theorem
3-SAT is NP-complete. J

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

> Don’t need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on
assignment.

3-SAT is NP-hard: Show Circuit-SAT <, 3-SAT.

> Don't need to show that A <, 3-SAT for arbitrary A € NP: already know that A <,
Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

» AND/OR/NOT universal, but so is just NAND!
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)
» AND/OR/NOT universal, but so is just NAND!

o~ "—C:)>/ So given circuit C, first transform it into
/_D”' "> NAND-only circuit.
Input:

/—[j’ /2 ':—D’—CD}/ > n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m

Dy " 6 - NANDI(s. ).
N\N\— :‘> {D’—‘_ g2 = NAND(g1,xs), . ..
» WLOG, g, is the “output gate”

Michael Dinitz Lecture 23: NP-Completeness Il November 19, 2024 7/17



Reduction to 3-SAT
So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Michael Dinitz Lecture 23: NP-Completeness Il November 19, 2024 8/17



Reduction to 3-SAT
So given as input a circuit C:

> n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m. Output gate gm
Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,....¥nsYn+ls Yn+2s« - - s Ynem (One for each wire)
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Reduction to 3-SAT
So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp
> m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where

it outputs 1.

Variables: y1,¥2,....¥nsYn+ls Yn+2s« - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;, yx), create clauses:
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where

it outputs 1.

Variables: y1,¥2,....¥nsYn+ls Yn+2s« - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;, yx), create clauses:
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,....¥nsYn+ls Yn+2s« - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;, yx), create clauses:

% > ¥ivyjVyk (if yj=0and ye =0 then y
— )o_y" > ¥iVyiVvyk (if yj=1and y, =0 theny;
— > Yivyj vk (if yj=0and ye =1 then y;

(

Ve
l > YiVyiVyk if yj=1and yx =1 then y;

1
O = et
N S N N
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Reduction to 3-SAT

So given as input a circuit C:
> n “input wires’ X1,X2,...,Xp

> m NAND gates: g1,...,8m. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF
formula f(C) such that f(C) has a satisfying assignment if and only if C has an input where
it outputs 1.

Variables: y1,¥2,....¥nsYn+ls Yn+2s« - - s Ynem (One for each wire)
Clauses: For every NAND gate y; = NAND(y;, yx), create clauses:

% > ¥ivyjVyk (if yj=0and ye =0 then y
— )o_y" > ¥iVyiVvyk (if yj=1and y, =0 theny;
— > Yivyj vk (if yj=0and ye =1 then y;

(

Ve
l > Yivyivyk (if yj=1and y, =1 then y;
Also add clause (Ym+n) (Want output gate to be 1)
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J

Polytime: v/
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT. J

Polytime: v
Suppose C YES of Circuit-SAT

—— 3 setting x of input wires so g, =1

—= 3 assignment of y1,...¥Ym+n SO that all
clauses are satisfied:

> yi=x;ifi<n
> ¥i=8i-nifi>n

— f(C) YES of 3-SAT
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: v
Suppose C YES of Circuit-SAT Suppose f(C) YES of 3-SAT
—— 3 setting x of input wires so g, =1 —= 3 assignment y to variables so that all
— 3 assignment of y1,...Ym+n S0 that all clauses satisfied
clauses are satisfied: — 3 setting x of input wires so gm = 1:
> yi=x;ifi<n > X; = Y;
> yYi=8i_nifi>n » Qutput of gate g; = yiwn (by
— f(C) YES of 3-SAT construction)

> So gm =1 (since (Ym+n) is a clause)

—= C a YES instance of Circuit-SAT
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

» Can verify witness for YES
> Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

> Given instance I of A, turn into f(I) of Q (in time polynomial in |/|)
> | YES of A if and only if (1) YES of Q
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

» Can verify witness for YES
> Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

> Given instance I of A, turn into f(I) of Q (in time polynomial in |/|)
> | YES of A if and only if (1) YES of Q

Notes:
» Careful about direction of reduction!!!!

> Need to handle arbitrary instances of A, but can turn into very structured instances of Q

» Often easiest to prove NO direction via contrapositive, to turn into statement about YES:

» I YESof A = f(I) YES of Q
» f(I) YESof Q = I YES of A
> So proving “both directions”, but reduction only in one direction.
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CLIQUE
Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E

forall u,ve$S
Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

&
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
forall u,ve$S

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete. J
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
forall u,ve$S

Definition (CLIQUE)

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete. J

In NP:
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CLIQUE

Definition: A clique in an undirected graph G = (V,E) is a set S € V such that {u,v} € E
forall u,ve$S

Definition (CLIQUE) |

Instance is a graph G = (V, E) and an integer k. YES if G contains a clique of size at least
k, NO otherwise.

Theorem
CLIQUE is NP-complete.

In NP:

> Witness: Sc V
» Verifier: Checks if S is a clique and |S| > k

> If (G, k) a YES instance: there is a clique S of size > k on which verifier returns YES
» If (G, k) a NO instance: S cannot be clique of size > k, so verifier always returns NO
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
> For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments
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CLIQUE is NP-hard

Prove by reducing 3-SAT to CLIQUE
> For arbitrary A € NP, would have A <, Circuit-SAT <, 3-SAT <, CLIQUE

Given 3-SAT formula F (with n variables and m clauses), set k = m and create graph
G=(V,E):
> For every clause of F, for every satisfying assignment to the clause, create vertex
» Add an edge between consistent assignments

Example: F = (x1VvxoVvxg)A(X3Vxg)A(X2VX3)

[U/(/)O) (U/l,U) (OII;,) ( lI”lo) ((/01'-) ({/‘ll// ((,l)l)

N7 €0:0)

(¢0) N~
(l‘/,[) < (otl)
L= =\ (4, 0)

(L)
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3-SAT to CLIQUE reduction analysis
Polytime: v
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3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:

> There is some satisfying assignment x
> For every clause, choose vertex corresponding to x. Let S be chosen vertices

> |S| = m =k, and clique since all consistent (since all from x)
— (G, k) YES of CLIQUE
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3-SAT to CLIQUE reduction analysis
Polytime: v
If F YES of 3-SAT:

> There is some satisfying assignment x

> For every clause, choose vertex corresponding to x. Let S be chosen vertices

> |S| = m =k, and clique since all consistent (since all from x)
— (G, k) YES of CLIQUE

If (G, k) YES of CLIQUE:
> There is some clique S of size k = m
> Must contain exactly one vertex from each clause (since clique of size m)

> Since clique, all assignments consistent == there is an assignment that satisfies all
clauses

—= F YES of 3-SAT
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INDEPENDENT SET

Definition: S ¢ V is an independent set in G = (V,E) if {u,v} ¢ E for all u,ve S

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.
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INDEPENDENT SET

Definition: S ¢ V is an independent set in G = (V,E) if {u,v} ¢ E for all u,ve S

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete. J
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INDEPENDENT SET

Definition: S ¢ V is an independent set in G = (V,E) if {u,v} ¢ E for all u,ve S

Definition (INDEPENDENT SET)

Instance is graph G = (V, E) and integer k. YES if G has an independent set of size > k, NO
otherwise.

Theorem
INDEPENDENT SET is NP-complete. J

In NP:
> Witness is § € V. Verifier checks that |S| > k and no edges in S

» If (G, k) a YES instance then such an § exists == verifier returns YES on it.
> If (G, k) a NO then verifier will return NO on every S.
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INDEPENDENT SET is NP-hard

Reduce from:
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

> Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
> Instance (H, k) of INDEPENDENT SET
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

> Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
> Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:
— Clique Sc V of G with |S| >k

—= § an independent set in H
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INDEPENDENT SET is NP-hard

Reduce from: CLIQUE

> Given instance (G, k) of CLIQUE, create “complement graph” H: same vertex set, with
{u,v} € E(H) if and only if {u,v} ¢ E(G)
> Instance (H, k) of INDEPENDENT SET

If (G, k) YES of CLIQUE:
— Clique Sc V of G with |S| >k

—= § an independent set in H

If (H,k) YES of INDEPENDENT SET:
—= Independent set S ¢ V in H with |S| > k

— S acliquein G
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VERTEX COVER
Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ee E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.
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VERTEX COVER

Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ee E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.

Theorem
VERTEX COVER is NP-complete J
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VERTEX COVER

Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ee E

Definition (VERTEX COVER)

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO
otherwise.

Theorem
VERTEX COVER is NP-complete J

In NP:
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VERTEX COVER

Definition: S ¢ V is a vertex cover of G = (V,E) if Sne+ & for all ee E

Instance is graph G = (V, E), integer k. YES if G has a vertex cover of size < k, NO

Definition (VERTEX COVER)
otherwise.

Theorem
VERTEX COVER is NP-complete \

In NP:

> Witness is S € V. Verifier checks that |S| < k and every edge has at least one endpoint in
S

» If (G, k) a YES instance then such an S exists == verifier returns YES on it.
> If (G, k) a NO then verifier will return NO on every S.
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

> Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n =|V]|)
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

> Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n =|V]|)

If (G, k) a YES instance of INDEPENDENT SET:

== G has an independent set S with |S| > k
= V \ S a vertex cover of G of size < n-k @/
— (G,n-k) a YES instance of VERTEX COVER /
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VERTEX COVER is NP-hard

Reduce from INDEPENDENT SET

> Given instance (G = (V, E), k) of INDEPENDENT SET, create instance (G, n - k) of
VERTEX COVER (where n =|V]|)

If (G, k) a YES instance of INDEPENDENT SET:
== G has an independent set S with |S| > k
= V \ S a vertex cover of G of size < n-k

— (G,n-k) a YES instance of VERTEX COVER

If (G,n-k) a YES instance of VERTEX COVER:
—= G has a vertex cover S of size at most n- k
—= V \ § an independent set of G of size at least k
— (G, k) a YES instance of INDEPENDENT SET
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