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Introduction

Last time: Definition of P, NP, reductions, NP-completeness. Proof that Circuit-SAT is

NP-complete.

Today: more NP-complete problems.

Definition

A decision problem Q is in NP (nondeterministic polynomial time) if there exists a polynomial

time algorithm V (I ,X) (called the verifier) such that

1. If I is a YES-instance of Q, then there is some X (usually called the witness, proof, or

solution) with size polynomial in �I � so that V (I ,X) = YES.

2. If I is a NO-instance of Q, then V (I ,X) = NO for all X .
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Reductions

Definition
A Many-one or Karp reduction from A to B is a function f which takes arbitrary instances of

A and transforms them into instances of B so that

1. If x is a YES-instance of A then f (x) is a YES-instance of B.

2. If x is a NO-instance of A then f (x) is a NO-instance B.

3. f can be computed in polynomial time.

Definition

Problem Q is NP-hard if Q
′ ≤p Q for all problems Q

′
in NP. Problem Q is NP-complete if

it is NP-hard and in NP.
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Circuit-SAT

Definition
Circuit-SAT: Given a boolean circuit of AND, OR, and NOT gates, with a single output and

no loops (some inputs might be hardwired), is there a way of setting the inputs so that the

output of the circuit is 1?

Theorem
Circuit-SAT is NP-complete.
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3-SAT

Boolean formula:

� Boolean variables x1, . . . ,xn

� Literal: variable xi or negation x̄i

� AND: ∧ OR: ∨
� x1 ∨ (x̄5 ∧ x7) ∧ (x̄2 ∨ (x6 ∧ x̄3)) . . .

Conjunctive normal form (CNF): AND of ORs (clauses)

� (x1 ∨ x̄2 ∨ x̄4) ∧ (x2 ∨ x3) ∧ (x1 ∨ x4 ∨ x̄6) . . .

Definition

3-SAT: Instance is 3CNF formula � (every clause has ≤ 3 literals). YES if there is assignment

where � evaluates to True (satisfying assignment), NO otherwise.
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3-SAT

Theorem
3-SAT is NP-complete.

3-SAT in NP: witness is assignment, verifier checks that formula evaluates to True on

assignment.

3-SAT is NP-hard: Show Circuit-SAT ≤p 3-SAT.

� Don’t need to show that A ≤p 3-SAT for arbitrary A ∈ NP: already know that A ≤p
Circuit-SAT!

So start with circuit. Want to transform to 3-CNF formula.
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Transformation to NANDs

For simplicity, transform into a circuit with one type of gate: NAND (NOT AND)

� AND/OR/NOT universal, but so is just NAND!

NP hard

Goal show Circuit SAT Ep 3 SAT

first Change Circuit SAT to c ly NAND

Do Do
tano D

D EDO

So given circuit C first transform it

t only NANDS Cc

Iyati list of gate

g NAND X xs g NANNA 1

g NANDG sty g NAND g ga

onto t gate ga
n inputs x Xu

n gates g gym

So given circuit C , first transform it into

NAND-only circuit.

Input:

� n “input wires” x1,x2, . . . ,xn
� m NAND gates: g1, . . . ,gm

� g1 = NAND(x1,x3),
g2 = NAND(g1,x4), . . .

� WLOG, gm is the “output gate”
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Reduction to 3-SAT
So given as input a circuit C :

� n “input wires” x1,x2, . . . ,xn
� m NAND gates: g1, . . . ,gm. Output gate gm

Need to construct many-one reduction f to 3-SAT: in polynomial time, construct 3-CNF

formula f (C) such that f (C) has a satisfying assignment if and only if C has an input where

it outputs 1.

Variables: y1,y2, . . . ,yn,yn+1,yn+2, . . . ,yn+m (one for each wire)

Clauses: For every NAND gate yi = NAND(yj ,yk), create clauses:

� yi ∨ yj ∨ yk (if yj = 0 and yk = 0 then yi = 1)

� yi ∨ ȳj ∨ yk (if yj = 1 and yk = 0 then yi = 1)

� yi ∨ yj ∨ ȳk (if yj = 0 and yk = 1 then yi = 1)

� ȳi ∨ ȳj ∨ ȳk (if yj = 1 and yk = 1 then yi = 0)

Also add clause (ym+n) (want output gate to be 1)
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� yi ∨ ȳj ∨ yk (if yj = 1 and yk = 0 then yi = 1)
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Analysis

Theorem
This is a many-one reduction from Circuit-SAT to 3-SAT.

Polytime: ✓

Suppose C YES of Circuit-SAT

�⇒ ∃ setting x of input wires so gm = 1

�⇒ ∃ assignment of y1, . . .ym+n so that all

clauses are satisfied:

� yi = xi if i ≤ n

� yi = gi−n if i > n

�⇒ f (C) YES of 3-SAT

Suppose f (C) YES of 3-SAT

�⇒ ∃ assignment y to variables so that all

clauses satisfied

�⇒ ∃ setting x of input wires so gm = 1:

� xi = yi
� Output of gate gi = yi+n (by

construction)

� So gm = 1 (since (ym+n) is a clause)

�⇒ C a YES instance of Circuit-SAT
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General Methodology to Prove Q NP-Complete

1. Show Q is in NP

� Can verify witness for YES

� Can catch false witness for NO (or contrapositive: if witness is verified, then a YES instance)

2. Find some NP-hard problem A. Reduce from A to Q:

� Given instance I of A, turn into f (I) of Q (in time polynomial in �I �)
� I YES of A if and only if f (I) YES of Q

Notes:

� Careful about direction of reduction!!!!

� Need to handle arbitrary instances of A, but can turn into very structured instances of Q

� Often easiest to prove NO direction via contrapositive, to turn into statement about YES:

� I YES of A �⇒ f (I) YES of Q

� f (I) YES of Q �⇒ I YES of A

� So proving “both directions”, but reduction only in one direction.
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Clique

Definition: A clique in an undirected graph G = (V ,E) is a set S ⊆ V such that {u,v} ∈ E
for all u,v ∈ S

Definition (Clique)

Instance is a graph G = (V ,E) and an integer k . YES if G contains a clique of size at least

k , NO otherwise.

Theorem
Clique is NP-complete.

In NP:

� Witness: S ⊆ V

� Verifier: Checks if S is a clique and �S � ≥ k

� If (G ,k) a YES instance: there is a clique S of size ≥ k on which verifier returns YES

� If (G ,k) a NO instance: S cannot be clique of size ≥ k , so verifier always returns NO
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Clique is NP-hard
Prove by reducing 3-SAT to Clique
� For arbitrary A ∈ NP, would have A ≤p Circuit-SAT ≤p 3-SAT ≤p Clique

Given 3-SAT formula F (with n variables and m clauses), set k =m and create graph

G = (V ,E):
� For every clause of F , for every satisfying assignment to the clause, create vertex

� Add an edge between consistent assignments

Example: F = (x1 ∨ x2 ∨ x̄4) ∧ (x̄3 ∨ x4) ∧ (x̄2 ∨ x̄3)
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3-SAT to Clique reduction analysis

Polytime: ✓

If F YES of 3-SAT:

� There is some satisfying assignment x

� For every clause, choose vertex corresponding to x . Let S be chosen vertices

� �S � =m = k , and clique since all consistent (since all from x)

�⇒ (G ,k) YES of Clique

If (G ,k) YES of Clique:

� There is some clique S of size k =m

� Must contain exactly one vertex from each clause (since clique of size m)

� Since clique, all assignments consistent �⇒ there is an assignment that satisfies all

clauses

�⇒ F YES of 3-SAT
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Independent Set

Definition: S ⊆ V is an independent set in G = (V ,E) if {u,v} �∈ E for all u,v ∈ S

Definition (Independent Set)

Instance is graph G = (V ,E) and integer k . YES if G has an independent set of size ≥ k , NO

otherwise.

Theorem
Independent Set is NP-complete.

In NP:

� Witness is S ⊆ V . Verifier checks that �S � ≥ k and no edges in S

� If (G ,k) a YES instance then such an S exists �⇒ verifier returns YES on it.

� If (G ,k) a NO then verifier will return NO on every S .
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Independent Set is NP-hard

Reduce from:

Clique

� Given instance (G ,k) of Clique, create “complement graph” H : same vertex set, with

{u,v} ∈ E(H) if and only if {u,v} �∈ E(G)
� Instance (H,k) of Independent Set

If (G ,k) YES of Clique:

�⇒ Clique S ⊆ V of G with �S � ≥ k

�⇒ S an independent set in H

If (H,k) YES of Independent Set:

�⇒ Independent set S ⊆ V in H with �S � ≥ k

�⇒ S a clique in G
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Vertex Cover

Definition: S ⊆ V is a vertex cover of G = (V ,E) if S ∩ e ≠ � for all e ∈ E

Definition (Vertex Cover)

Instance is graph G = (V ,E), integer k . YES if G has a vertex cover of size ≤ k , NO

otherwise.

Theorem
Vertex Cover is NP-complete

In NP:

� Witness is S ⊆ V . Verifier checks that �S � ≤ k and every edge has at least one endpoint in

S

� If (G ,k) a YES instance then such an S exists �⇒ verifier returns YES on it.

� If (G ,k) a NO then verifier will return NO on every S .
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Vertex Cover is NP-hard

Reduce from Independent Set

� Given instance (G = (V ,E),k) of Independent Set, create instance (G ,n − k) of

Vertex Cover (where n = �V �)

If (G ,k) a YES instance of Independent Set:

�⇒ G has an independent set S with �S � ≥ k

�⇒ V � S a vertex cover of G of size ≤ n − k

�⇒ (G ,n − k) a YES instance of Vertex Cover

If (G ,n − k) a YES instance of Vertex Cover:

�⇒ G has a vertex cover S of size at most n − k

�⇒ V � S an independent set of G of size at least k

�⇒ (G ,k) a YES instance of Independent Set
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