Lecture 24: Approximation Algorithms

Michael Dinitz

November 21, 2024 601.433/633 Introduction to Algorithms

Introduction

What should we do if a problem is NP-hard?

- **•** Give up on efficiency?
- **▸** Give up on correctness?
- **▸** Give up on worst-case analysis?

Introduction

What should we do if a problem is NP-hard?

- **•** Give up on efficiency?
- **▸** Give up on correctness?
- **▸** Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Introduction

What should we do if a problem is NP-hard?

- **•** Give up on efficiency?
- **▸** Give up on correctness?
- **▸** Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: *approximation algorithms* (one of my main research areas!)

- **▸** Give up on correctness, but in a provable, bounded way.
- **▸** Applies to optimization problems only (not pure decision problems)
- **▸** Has to run in polynomial time, but can return answer that is *approximately* correct.

Main Definition

Definition

Let **A** be some (minimization) problem, and let *I* be an instance of that problem. Let *OPT***(***I* **)** be the cost of the optimal solution on that instance. Let *ALG* be a polynomial-time algorithm for **A**, and let *ALG***(***I* **)** denote the cost of the solution returned by *ALG* on instance *I*. Then we say that ALG is an α -approximation if

$$
\frac{\mathsf{ALG}(I)}{\mathsf{OPT}(I)} \leq \alpha
$$

for all instances *I* of **A**.

- **▸** Approximation always at least 1
- For maximization, can either require $\frac{ALG(I)}{OPT(I)} \ge \alpha$ (where $\alpha < 1$) or $\frac{OPT(I)}{ALG(I)} \le \alpha$ (where $\alpha > 1$

Main Definition

Definition

Let **A** be some (minimization) problem, and let *I* be an instance of that problem. Let *OPT***(***I* **)** be the cost of the optimal solution on that instance. Let *ALG* be a polynomial-time algorithm for **A**, and let *ALG***(***I* **)** denote the cost of the solution returned by *ALG* on instance *I*. Then we say that ALG is an α -approximation if

$$
\frac{\mathsf{ALG}(I)}{\mathsf{OPT}(I)} \leq \alpha
$$

for all instances *I* of **A**.

- **▸** Approximation always at least 1
- For maximization, can either require $\frac{ALG(I)}{OPT(I)} \ge \alpha$ (where $\alpha < 1$) or $\frac{OPT(I)}{ALG(I)} \le \alpha$ (where $\alpha > 1$
- **▸** Also gives "fine-grained" complexity: not all *NP*-hard problems are equally hard!

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph $G = (V, E)$. Find vertex cover S , minimize $|S|$.

Last time: VERTEX COVER **NP**-hard (reduction from INDEPENDENT SET)

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of $G = (V, E)$ if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph $G = (V, E)$. Find vertex cover S , minimize $|S|$.

Last time: VERTEX COVER **NP**-hard (reduction from INDEPENDENT SET)

So cannot expect to compute a minimum vertex cover efficiently. What about an *approximately* minimum vertex cover?

▸ Not an approximate vertex cover: still needs to be an actual vertex cover!

}

S **= ∅** while there is at least one uncovered edge *{* Pick arbitrary vertex **v** incident on at least one uncovered edge Add *v* to *S*

```
S = ∅
while there is at least one uncovered edge {
   Pick arbitrary vertex v incident on at least one uncovered edge
   Add v to S
```
Not a good approximation: star graph.

 \triangleright *OPT* = 1

}

 \blacktriangleright $ALG = n - 1$


```
S = ∅
```
while there is at least one uncovered edge *{* Let **v** be vertex incident on most uncovered edges

Add *v* to *S*

}

```
S = ∅
while there is at least one uncovered
edge {
   Let v be vertex incident on most
uncovered edges
  Add v to S
}
```
Better, but still not great.

```
S = ∅
while there is at least one uncovered
edge {
  Let v be vertex incident on most
uncovered edges
  Add v to S
}
```
Better, but still not great.

- **▸ ∣***U***∣ =** *t*
- **▸** For all *i* **∈ {**2*,* 3*,..., t***}**, divide *U* into $\lfloor t/i \rfloor$ disjoint sets of size *i*: $G^i_1, G^i_2, \ldots, G^i_{\lfloor t/i \rfloor}$
- **▸** Add vertex for each set, edge to all elements.

of size is a size in the size

^u i ^a ⁱ ⁱ i i

 \bigcap

 \mathbf{C}

```
S = ∅
while there is at least one uncovered
edge {
  Let v be vertex incident on most
uncovered edges
  Add v to S
}
```
Better, but still not great.

- **▸ ∣***U***∣ =** *t*
- **▸** For all *i* **∈ {**2*,* 3*,..., t***}**, divide *U* into $\lfloor t/i \rfloor$ disjoint sets of size *i*: $G^i_1, G^i_2, \ldots, G^i_{\lfloor t/i \rfloor}$
- **▸** Add vertex for each set, edge to all elements.

 $OPT = t$

S **= ∅** while there is at least one uncovered edge *{* Let **v** be vertex incident on most uncovered edges Add *v* to *S }*

Better, but still not great.

- **▸ ∣***U***∣ =** *t*
- **▸** For all *i* **∈ {**2*,* 3*,..., t***}**, divide *U* into $\lfloor t/i \rfloor$ disjoint sets of size *i*: $G^i_1, G^i_2, \ldots, G^i_{\lfloor t/i \rfloor}$
- **▸** Add vertex for each set, edge to all elements.

 $OPT = t$

$$
ALG = \sum_{i=2}^{t} \left\lfloor \frac{t}{i} \right\rfloor \geq \sum_{i=2}^{t} \left(\frac{1}{2} \cdot \frac{t}{i} \right) = \frac{t}{2} \sum_{i=2}^{t} \frac{1}{i} = \Omega(t \log t)
$$

S **= ∅**

}

```
while there is at least one uncovered edge {
   Pick arbitrary uncovered edge {u, v}
  Add u and v to S
```
S **= ∅**

while there is at least one uncovered edge *{* Pick arbitrary uncovered edge **{***u, v***}** Add *u* and *v* to *S*

Theorem

}

This algorithm is a 2*-approximation.*

S **= ∅** while there is at least one uncovered edge *{* Pick arbitrary uncovered edge **{***u, v***}** Add *u* and *v* to *S }*

Theorem

This algorithm is a 2*-approximation.*

Suppose algorithm take *k* iterations. Let *L* be *edges* chosen by the algorithm, so **∣***L***∣ =** *k*.

S **= ∅** while there is at least one uncovered edge *{* Pick arbitrary uncovered edge **{***u, v***}** Add *u* and *v* to *S*

Theorem

}

This algorithm is a 2*-approximation.*

Suppose algorithm take *k* iterations. Let *L* be *edges* chosen by the algorithm, so **∣***L***∣ =** *k*. \implies $|S| = 2k$

S **= ∅**

while there is at least one uncovered edge *{* Pick arbitrary uncovered edge **{***u, v***}** Add *u* and *v* to *S*

Theorem

}

This algorithm is a 2*-approximation.*

Suppose algorithm take *k* iterations. Let *L* be *edges* chosen by the algorithm, so **∣***L***∣ =** *k*. \implies $|S| = 2k$ ø

L has structure: it is a matching!

$$
\frac{L}{\frac{1}{2}}\bigg\}\kappa
$$

S **= ∅**

while there is at least one uncovered edge *{* Pick arbitrary uncovered edge **{***u, v***}** Add *u* and *v* to *S*

Theorem

}

This algorithm is a 2*-approximation.*

Suppose algorithm take *k* iterations. Let *L* be *edges* chosen by the algorithm, so **∣***L***∣ =** *k*. \implies $|S| = 2k$

L has structure: it is a matching! \implies *OPT* > *k*

S **= ∅**

while there is at least one uncovered edge *{* Pick arbitrary uncovered edge **{***u, v***}** Add *u* and *v* to *S*

Theorem

}

This algorithm is a 2*-approximation.*

Suppose algorithm take *k* iterations. Let *L* be *edges* chosen by the algorithm, so **∣***L***∣ =** *k*. \implies $|S| = 2k$

L has structure: it is a matching!

 \implies *OPT* > *k*

\implies **ALG***|OPT* ≤ 2.

More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

More Complicated Algorithm: LP Rounding Write LP for vertex cover:

min
\n
$$
\sum_{v \in V} x_v
$$
\nsubject to
\n
$$
x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E
$$
\n
$$
0 \le x_u \le 1 \qquad \forall u \in V
$$

More Complicated Algorithm: LP Rounding Write LP for vertex cover:

min
\n
$$
\sum_{v \in V} x_v
$$
\nsubject to
\n
$$
x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E
$$
\n
$$
0 \le x_u \le 1 \qquad \forall u \in V
$$

Question: Is this enough?

▸ Let *OPT***(***LP***)** denote value of optimal LP solution: does *OPT***(***LP***) =** *OPT*?

More Complicated Algorithm: LP Rounding Write LP for vertex cover:

min
$$
\sum_{v \in V} x_v
$$

\nsubject to $x_u + x_v \ge 1 \quad \forall \{u, v\} \in E$
\n $0 \le x_u \le 1 \quad \forall u \in V$

Question: Is this enough?

▸ Let *OPT***(***LP***)** denote value of optimal LP solution: does *OPT***(***LP***) =** *OPT*? optimal LP solution: does $OPT(LP) = OPT$?

- \triangleright *OPT* = 2
- $\rightarrow OPT(LP) = 3/2$

min **[∑]**

subject to *x^u* **+** *x^v* **≥** 1 **∀{***u, v***} ∈** *E*

$$
\sum_{v \in V} x_v
$$

\n
$$
x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E
$$

\n
$$
0 \le x_u \le 1 \qquad \forall u \in V
$$

Lemma *OPT***(***LP***) ≤** *OPT*

min **[∑]** *v***∈***V xv* subject to $x_u + x_v \ge 1$ $\forall \{u, v\} \in E$ $0 \leq x_u \leq 1$ $\forall u \in V$

Lemma *OPT***(***LP***) ≤** *OPT*

Proof.

Let *S* be optimal vertex cover (so $|S| = OPT$). Let *x^v* **=** \int **⎨** $\overline{\mathcal{L}}$ 1 if *v* **∈** *S* **0** otherwise

min **[∑]** *v***∈***V xv* subject to $x_u + x_v \ge 1$ $\forall \{u, v\} \in E$ $0 \leq x_{\mu} \leq 1$ $\forall u \in V$

Lemma *OPT***(***LP***) ≤** *OPT*

Proof.

Let *S* be optimal vertex cover (so $|S| = OPT$). Let *x^v* **=** \int **⎨** $\overline{\mathcal{L}}$ 1 if *v* **∈** *S* **0** otherwise $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of *S*

 $0 \leq x_v \leq 1$ for all $v \in V$ by definition

min **[∑]** *v***∈***V xv* subject to $x_u + x_v \ge 1$ $\forall \{u, v\} \in E$ $0 \leq x_u \leq 1$ $\forall u \in V$

Lemma *OPT***(***LP***) ≤** *OPT*

Proof.

Let *S* be optimal vertex cover (so $|S| = OPT$). Let *x^v* **=** \int **⎨** $\overline{\mathcal{L}}$ 1 if *v* **∈** *S* **0** otherwise $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of *S* $0 \leq x_v \leq 1$ for all $v \in V$ by definition

 \implies *x* **feasible**

min **[∑]** *v***∈***V xv* subject to $x_u + x_v \ge 1$ $\forall \{u, v\} \in E$ $0 \leq x_u \leq 1$ $\forall u \in V$

Lemma *OPT***(***LP***) ≤** *OPT*

Proof.

Let *S* be optimal vertex cover (so $|S| = OPT$). Let *x^v* **=** \int **⎨** $\overline{\mathcal{L}}$ 1 if *v* **∈** *S* **0** otherwise $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of *S*

- $0 \leq x_v \leq 1$ for all $v \in V$ by definition
- **!⇒** *x* feasible \implies *OPT*(*LP*) $\leq \sum_{v \in V} x_v = |S| = OPT$

min **[∑]** *v***∈***V xv* subject to $x_u + x_v \ge 1$ $\forall \{u, v\} \in E$ $0 \leq x_{\mu} \leq 1$ $\forall u \in V$

Proof.

Let *S* be optimal vertex cover (so $|S| = OPT$). Let *x^v* **=** \int **⎨** $\overline{\mathcal{L}}$ 1 if *v* **∈** *S* **0** otherwise But OPIUM ^E OPT

x^{*u*} + *x*^{*v*} ≥ 1 for all $\{u, v\}$ ∈ *E* by definition of *S* $0 \leq x_v \leq 1$ for all $v \in V$ by definition

!⇒ *x* feasible \implies *OPT*(*LP*) $\leq \sum_{v \in V} x_v = |S| = OPT$ often Effa feint III Organisation I

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]** *^v* **≥** 1**/**2**}**

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

^v **[≥]** ¹**/**2**}** Polytime: **✓**

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

^v **[≥]** ¹**/**2**}** Polytime: **✓**

Lemma

S is a vertex cover.

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

^v **[≥]** ¹**/**2**}** Polytime: **✓**

Lemma

S is a vertex cover.

Proof.

Let **{***u, v***} ∈** *E*. By LP constraint, $x_u^* + x_v^* \ge 1$

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

Lemma

S is a vertex cover.

Proof.

Let **{***u, v***} ∈** *E*. By LP constraint, $x_u^* + x_v^* \ge 1$ \implies max $(x_u^*, x_v^*) \ge 1/2$

^v **[≥]** ¹**/**2**}** Polytime: **✓**

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

Lemma

S is a vertex cover.

Proof.

```
Let \{u, v\} \in E.
By LP constraint, x_u^* + x_v^* \ge 1\implies max(x_u^*, x_v^*) \ge 1/2!⇒ At least one of u, v in S
```
^v **[≥]** ¹**/**2**}** Polytime: **✓**

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

^v **[≥]** ¹**/**2**}** Polytime: **✓**

Lemma

S is a vertex cover.

Proof. Let $\{u, v\} \in E$. By LP constraint, $x_u^* + x_v^* \ge 1$ \implies max $(x_u^*, x_v^*) \ge 1/2$ **!⇒** At least one of *u, v* in *S*

Lemma

 $|S| \leq 2 \cdot OPT$.

Solve LP to get
$$
x^*
$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

▸ Return *S* **= {***v* **∈** *V* **∶** *x***[∗]**

^v **[≥]** ¹**/**2**}** Polytime: **✓**

Lemma

S is a vertex cover.

Proof.

Lemma

∣*S***∣ ≤** 2 **⋅** *OPT.*

Important reason: much more flexible!

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

min **[∑]** *w***(***v***)***x^v v***∈***V* subject to $x_u + x_v \ge 1$ $\forall \{u, v\} \in E$ $0 \leq x_u \leq 1$ $\forall u \in V$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

min
\n
$$
\sum_{v \in V} w(v) x_v
$$
\nsubject to
\n
$$
x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E
$$
\n
$$
0 \le x_u \le 1 \qquad \forall u \in V
$$

▸ Solve LP to get *x***[∗]**

$$
\blacktriangleright \text{ Return } S = \{v \in V : x_v^* \geq 1/2\}
$$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

min
\n
$$
\sum_{v \in V} w(v) x_v
$$
\nsubject to
\n
$$
x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E
$$
\n
$$
0 \le x_u \le 1 \qquad \forall u \in V
$$

▸ Solve LP to get *x***[∗]**

$$
\blacktriangleright \text{ Return } S = \{v \in V : x_v^* \geq 1/2\}
$$

Still:

- **▸** Polytime
- **▸** *S* a vertex cover
- **▸** *OPT***(***LP***) ≤** *OPT*

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

 $\overline{\mathcal{L}}$

min
\n
$$
\sum_{v \in V} w(v) x_v
$$
\nsubject to
\n
$$
x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E
$$
\n
$$
0 \le x_u \le 1 \qquad \forall u \in V
$$

▶ Solve LP to get
$$
x^*
$$

$$
\blacktriangleright \text{ Return } S = \{v \in V : x_v^* \geq 1/2\}
$$

Still:

- **▸** Polytime
- **▸** *S* a vertex cover
- **▸** *OPT***(***LP***) ≤** *OPT*

$$
\sum_{v \in S} w(v) \leq \sum_{v \in S} 2x_v^* w(v) \leq 2 \sum_{v \in V} w(v) x_v^* = 2 \cdot OPT(LP) \leq 2 \cdot OPT
$$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w: V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

min
\nsubject to
\n
$$
x_u + x_v \ge 1
$$
 $\forall \{u, v\} \in E$
\n $0 \le x_u \le 1$ $\forall u \in V$
\nStill:
\n \triangleright Polytime
\n $S = \{v \in V : x_v^* \ge 1/2\}$
\n \triangleright Polytime
\n $S = \{v \in V : x_v^* \ge 1/2\}$
\n \triangleright Polytime
\n $S = \{v \in V : x_v^* \ge 1/2\}$
\n \triangleright SDPT
\n \triangleright OPT
\n \triangleright OPT
\n $\bigcup_{v \in S} w(v) \le \sum_{v \in S} 2x_v^* w(v) \le 2 \sum_{v \in V} w(v) x_v^* = 2 \cdot OPT$
\n $\bigcup_{v \in V} w(v) \le 2 \cdot OPT$

Higher level: LP provides *lower bound* on *OPT*. Often main difficulty!

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER \implies **polytime algorithm for INDEPENDENT SET**

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER \implies **polytime algorithm for INDEPENDENT SET**

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

No!

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER \implies polytime algorithm for INDEPENDENT **SET**

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for Independent Set?

No!

Theorem

Assuming $P \neq NP$, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$ -approximation for Independent Set*.*

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER \implies polytime algorithm for INDEPENDENT **SET**

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for Independent Set?

No!

Theorem

Assuming $P \neq NP$, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$ -approximation for Independent Set*.*

So these two problems are actually very different!

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER \implies **polytime algorithm for INDEPENDENT SET**

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for Independent Set?

No!

Theorem

Assuming $P \neq NP$, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$ -approximation for Independent Set*.*

So these two problems are actually very different!

There is a notion of "approximation-preserving reduction", but it is more involved than a normal reduction.

▸ E3-SAT: Same, but every clause has *exactly* three literals (still *NP*-complete)

▸ E3-SAT: Same, but every clause has *exactly* three literals (still *NP*-complete)

Optimization version: Max-E3SAT

 \triangleright Find assignment to maximize $\#$ satisfied clauses

▸ E3-SAT: Same, but every clause has *exactly* three literals (still *NP*-complete)

Optimization version: Max-E3SAT

 \blacktriangleright Find assignment to maximize $\#$ satisfied clauses

Easy *randomized* algorithm:

▸ E3-SAT: Same, but every clause has *exactly* three literals (still *NP*-complete)

Optimization version: Max-E3SAT

 \triangleright Find assignment to maximize $\#$ satisfied clauses

Easy *randomized* algorithm: Choose random assignment!

▸ E3-SAT: Same, but every clause has *exactly* three literals (still *NP*-complete)

Optimization version: Max-E3SAT

▸ Find assignment to maximize # satisfied clauses

Easy *randomized* algorithm: Choose random assignment!

E For each variable x_i , set $x_i = T$ with probability $1/2$ and F with probability $1/2$

Algorithm: Choose random assignment

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=**

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=** 7**/**8

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=** 7**/**8

Random variables:

• For
$$
i \in \{1, 2, ..., m\}
$$
, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
\n• $E[X_i] = 7/8$

 $\overline{}$

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=** 7**/**8

Random variables:

\n- For
$$
i \in \{1, 2, \ldots, m\}
$$
, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
\n- Let $X = \#$ clauses satisfied = $\sum_{i=1}^{m} X_i$
\n

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=** 7**/**8

Random variables:

\n- For
$$
i \in \{1, 2, \ldots, m\}
$$
, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
\n- $E[X_i] = 7/8$
\n- Let $X = \#$ clauses satisfied = $\sum_{i=1}^{m} X_i$
\n- $E[X] = E\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \text{ or } \geq \frac{7}{8} \text{ OPT}$
\n

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=** 7**/**8

Random variables:

\n- For
$$
i \in \{1, 2, \ldots, m\}
$$
, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
\n- $E[X_i] = 7/8$
\n- Let $X = \#$ clauses satisfied = $\sum_{i=1}^{m} X_i$
\n- $E[X] = E\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} \text{ or } \geq \frac{7}{8} \text{ OPT}$
\n

Can be derandomized (method of conditional expectations)

Algorithm: Choose random assignment

Clause *i*: probability satisfied **=** 7**/**8

Random variables:

\n- For
$$
i \in \{1, 2, \ldots, m\}
$$
, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
\n- $E[X_i] = 7/8$
\n- Let $X = \#$ clauses satisfied = $\sum_{i=1}^{m} X_i$
\n- $E[X] = E\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8} m \geq \frac{7}{8} \text{OPT}$
\n

Can be derandomized (method of conditional expectations)

Theorem (Håstad '01)

Assuming $P \neq \textsf{NP}$, for all constant $\epsilon > 0$ there is no polytime $\left(\frac{7}{8} + \epsilon\right)$ -approximation for *Max-E3SAT.*