
Lecture 24: Approximation Algorithms

Michael Dinitz

November 21, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 1 / 14

 



Introduction

What should we do if a problem is NP-hard?

� Give up on e�ciency?

� Give up on correctness?

� Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)

� Give up on correctness, but in a provable, bounded way.

� Applies to optimization problems only (not pure decision problems)

� Has to run in polynomial time, but can return answer that is approximately correct.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 2 / 14



Introduction

What should we do if a problem is NP-hard?

� Give up on e�ciency?

� Give up on correctness?

� Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)

� Give up on correctness, but in a provable, bounded way.

� Applies to optimization problems only (not pure decision problems)

� Has to run in polynomial time, but can return answer that is approximately correct.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 2 / 14



Introduction

What should we do if a problem is NP-hard?

� Give up on e�ciency?

� Give up on correctness?

� Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)

� Give up on correctness, but in a provable, bounded way.

� Applies to optimization problems only (not pure decision problems)

� Has to run in polynomial time, but can return answer that is approximately correct.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 2 / 14



Main Definition

Definition

Let A be some (minimization) problem, and let I be an instance of that problem. Let
OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time
algorithm for A, and let ALG(I) denote the cost of the solution returned by ALG on instance
I . Then we say that ALG is an ↵-approximation if

ALG(I)
OPT(I) ≤ ↵

for all instances I of A.

� Approximation always at least 1

� For maximization, can either require
ALG(I)
OPT(I) ≥ ↵ (where ↵ < 1) or OPT(I)

ALG(I) ≤ ↵ (where

↵ > 1)

� Also gives “fine-grained” complexity: not all NP-hard problems are equally hard!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 3 / 14



Main Definition

Definition

Let A be some (minimization) problem, and let I be an instance of that problem. Let
OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time
algorithm for A, and let ALG(I) denote the cost of the solution returned by ALG on instance
I . Then we say that ALG is an ↵-approximation if

ALG(I)
OPT(I) ≤ ↵

for all instances I of A.

� Approximation always at least 1

� For maximization, can either require
ALG(I)
OPT(I) ≥ ↵ (where ↵ < 1) or OPT(I)

ALG(I) ≤ ↵ (where

↵ > 1)
� Also gives “fine-grained” complexity: not all NP-hard problems are equally hard!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 3 / 14



Vertex Cover

Definition: S ⊆ V is a vertex cover of G = (V ,E) if S ∩ e ≠ � for all e ∈ E
Definition (Vertex Cover)

Instance is graph G = (V ,E). Find vertex cover S , minimize �S �.
Last time: Vertex Cover NP-hard (reduction from Independent Set)

So cannot expect to compute a minimum vertex cover e�ciently. What about an
approximately minimum vertex cover?

� Not an approximate vertex cover: still needs to be an actual vertex cover!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 4 / 14



Vertex Cover

Definition: S ⊆ V is a vertex cover of G = (V ,E) if S ∩ e ≠ � for all e ∈ E
Definition (Vertex Cover)

Instance is graph G = (V ,E). Find vertex cover S , minimize �S �.
Last time: Vertex Cover NP-hard (reduction from Independent Set)

So cannot expect to compute a minimum vertex cover e�ciently. What about an
approximately minimum vertex cover?

� Not an approximate vertex cover: still needs to be an actual vertex cover!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 4 / 14



Obvious Algorithm 1

S = �
while there is at least one uncovered edge {

Pick arbitrary vertex v incident on at least one uncovered edge
Add v to S

}

Not a good approximation: star graph.

� OPT = 1
� ALG = n − 1

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 5 / 14



Obvious Algorithm 1

S = �
while there is at least one uncovered edge {

Pick arbitrary vertex v incident on at least one uncovered edge
Add v to S

}

Not a good approximation: star graph.

� OPT = 1
� ALG = n − 1

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 5 / 14



Obvious Algorithm 2

S = �
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S

}

Better, but still not great.

� �U � = t

� For all i ∈ {2,3, . . . , t}, divide U into�t�i � disjoint sets of size i :
G

i

1,G
i

2, . . . ,G
i�t�i �� Add vertex for each set, edge to all

elements.

OPT = t

ALG = ∑t

i=2 � ti � ≥ ∑t

i=2 �12 ⋅ ti � =
t

2 ∑t

i=2 1
i
= ⌦(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = �
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S

}

Better, but still not great.

� �U � = t

� For all i ∈ {2,3, . . . , t}, divide U into�t�i � disjoint sets of size i :
G

i

1,G
i

2, . . . ,G
i�t�i �� Add vertex for each set, edge to all

elements.

OPT = t

ALG = ∑t

i=2 � ti � ≥ ∑t

i=2 �12 ⋅ ti � =
t

2 ∑t

i=2 1
i
= ⌦(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = �
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S

}

Better, but still not great.

� �U � = t

� For all i ∈ {2,3, . . . , t}, divide U into�t�i � disjoint sets of size i :
G

i

1,G
i

2, . . . ,G
i�t�i �� Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t

i=2 � ti � ≥ ∑t

i=2 �12 ⋅ ti � =
t

2 ∑t

i=2 1
i
= ⌦(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = �
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S

}

Better, but still not great.

� �U � = t

� For all i ∈ {2,3, . . . , t}, divide U into�t�i � disjoint sets of size i :
G

i

1,G
i

2, . . . ,G
i�t�i �� Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t

i=2 � ti � ≥ ∑t

i=2 �12 ⋅ ti � =
t

2 ∑t

i=2 1
i
= ⌦(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14

legit1

deg it



Obvious Algorithm 2

S = �
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S

}

Better, but still not great.

� �U � = t

� For all i ∈ {2,3, . . . , t}, divide U into�t�i � disjoint sets of size i :
G

i

1,G
i

2, . . . ,G
i�t�i �� Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t

i=2 � ti � ≥ ∑t

i=2 �12 ⋅ ti � =
t

2 ∑t

i=2 1
i
= ⌦(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .�⇒ �S � = 2k
L has structure: it is a matching!�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .�⇒ �S � = 2k
L has structure: it is a matching!�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .

�⇒ �S � = 2k
L has structure: it is a matching!�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14

i



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .�⇒ �S � = 2k

L has structure: it is a matching!�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .�⇒ �S � = 2k
L has structure: it is a matching!

�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14

k



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .�⇒ �S � = 2k
L has structure: it is a matching!�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14



Better Algorithm

S = �
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem
This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so �L� = k .�⇒ �S � = 2k
L has structure: it is a matching!�⇒ OPT ≥ k

�⇒ ALG�OPT ≤ 2.
Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7 / 14



More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Question: Is this enough?

� Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

� OPT = 2
� OPT(LP) = 3�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 8 / 14



More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Question: Is this enough?

� Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

� OPT = 2
� OPT(LP) = 3�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 8 / 14



More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Question: Is this enough?

� Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

� OPT = 2
� OPT(LP) = 3�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 8 / 14



More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Question: Is this enough?

� Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

More complicated alg LPrelaxation

Write LP for Vertex Cover

min xu

s t Xu t Xu 21 V ur c V

O Exa El Yue U

Qi Is this enough Is OPTUP OPT
A A

Lp opt c it the art cost

4L ORTIZ
ORTCLP 42

422042

But OPIUM E OPT

PI Let M oat solution
ALL

Let x
1 it em opt

0 otherwise OpTCLP

x feasible for LP
often Effa feint IMI ORT

� OPT = 2
� OPT(LP) = 3�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 8 / 14



LP Structure

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so �S � = OPT ).

Let xv =
�������
1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S

0 ≤ xv ≤ 1 for all v ∈ V by definition

�⇒ x feasible�⇒ OPT(LP) ≤ ∑v∈V xv = �S � = OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 9 / 14



LP Structure

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so �S � = OPT ).

Let xv =
�������
1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S

0 ≤ xv ≤ 1 for all v ∈ V by definition

�⇒ x feasible�⇒ OPT(LP) ≤ ∑v∈V xv = �S � = OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 9 / 14



LP Structure

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so �S � = OPT ).

Let xv =
�������
1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S

0 ≤ xv ≤ 1 for all v ∈ V by definition

�⇒ x feasible�⇒ OPT(LP) ≤ ∑v∈V xv = �S � = OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 9 / 14



LP Structure

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so �S � = OPT ).

Let xv =
�������
1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S

0 ≤ xv ≤ 1 for all v ∈ V by definition

�⇒ x feasible

�⇒ OPT(LP) ≤ ∑v∈V xv = �S � = OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 9 / 14



LP Structure

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so �S � = OPT ).

Let xv =
�������
1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S

0 ≤ xv ≤ 1 for all v ∈ V by definition

�⇒ x feasible�⇒ OPT(LP) ≤ ∑v∈V xv = �S � = OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 9 / 14



LP Structure

min �
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so �S � = OPT ).

Let xv =
�������
1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S

0 ≤ xv ≤ 1 for all v ∈ V by definition

�⇒ x feasible�⇒ OPT(LP) ≤ ∑v∈V xv = �S � = OPT

More complicated alg LPrelaxation

Write LP for Vertex Cover

min xu

s t Xu t Xu 21 V ur c V

O Exa El Yue U

Qi Is this enough Is OPTUP OPT
A A

Lp opt c it the art cost

4L ORTIZ
ORTCLP 42

422042

But OPIUM E OPT

PI Let M oat solution
ALL

Let x
1 it em opt

0 otherwise OpTCLP

x feasible for LP
often Effa feint IMI ORT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 9 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}

Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓

Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1

�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2

�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14



LP Rounding Algorithm

� Solve LP to get x
∗ (so ∑v∈V x

∗
v = OPT(LP))

� Return S = {v ∈ V ∶ x∗v ≥ 1�2} Polytime: ✓
Lemma
S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x

∗
u + x

∗
v ≥ 1�⇒ max(x∗u ,x∗v ) ≥ 1�2�⇒ At least one of u,v in S

Lemma

�S � ≤ 2 ⋅OPT .

Proof.

�S � = �
v∈S

1 ≤ �
v∈S

2x∗v ≤ 2 �
v∈V

x
∗
v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 10 / 14

EZE
In negativity



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)
min �

v∈V
w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}
Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)

min �
v∈V

w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}
Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)
min �

v∈V
w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}
Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)
min �

v∈V
w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}

Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)
min �

v∈V
w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}
Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)
min �

v∈V
w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}
Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14

I



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)
min �

v∈V
w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

� Solve LP to get x
∗

� Return S = {v ∈ V ∶ x∗v ≥ 1�2}
Still:

� Polytime

� S a vertex cover

� OPT(LP) ≤ OPT

�
v∈S

w(v) ≤ �
v∈S

2x∗v w(v) ≤ 2 �
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main di�culty!

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11 / 14



Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

� Polytime algorithm for Vertex Cover �⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover �⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ✏ > 0 there is no polytime n
1−✏-approximation for

Independent Set.

So these two problems are actually very di↵erent!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 12 / 14



Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

� Polytime algorithm for Vertex Cover �⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover �⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ✏ > 0 there is no polytime n
1−✏-approximation for

Independent Set.

So these two problems are actually very di↵erent!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 12 / 14



Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

� Polytime algorithm for Vertex Cover �⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover �⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ✏ > 0 there is no polytime n
1−✏-approximation for

Independent Set.

So these two problems are actually very di↵erent!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 12 / 14



Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

� Polytime algorithm for Vertex Cover �⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover �⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ✏ > 0 there is no polytime n
1−✏-approximation for

Independent Set.

So these two problems are actually very di↵erent!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 12 / 14



Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

� Polytime algorithm for Vertex Cover �⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover �⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ✏ > 0 there is no polytime n
1−✏-approximation for

Independent Set.

So these two problems are actually very di↵erent!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 12 / 14



Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

� E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

� Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

� For each variable xi , set xi = T with probability 1�2 and F with probability 1�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 13 / 14



Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

� E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

� Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

� For each variable xi , set xi = T with probability 1�2 and F with probability 1�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 13 / 14



Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

� E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

� Find assignment to maximize # satisfied clauses

Easy randomized algorithm:

Choose random assignment!

� For each variable xi , set xi = T with probability 1�2 and F with probability 1�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 13 / 14



Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

� E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

� Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

� For each variable xi , set xi = T with probability 1�2 and F with probability 1�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 13 / 14



Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

� E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

� Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

� For each variable xi , set xi = T with probability 1�2 and F with probability 1�2

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 13 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied =

7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8

Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8

� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14



Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7�8
Random variables:

� For i ∈ {1,2, . . . ,m}, let Xi =
�������
1 if clause i satisfied

0 otherwise� E[Xi ] = 7�8� Let X = # clauses satisfied = ∑m

i=1 Xi

E[X ] = E � m�
i=1

Xi� = m�
i=1

E[Xi ] = m�
i=1

7

8
= 7

8
m ≥ 7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ✏ > 0 there is no polytime �78 + ✏�-approximation for
Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14


