
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Approximation algorithms Date: 11/21/24

24.1 Introduction

We spent the last two lectures proving that for certain problems, we can’t expect to find the
optimal solution in polynomial time. What do we do in the face of NP-completeness? There are a
few options, including just giving up on proving theorems and designing algorithms that we hope
give “good-enough” solutions. Let’s not give up quite yet, though. Instead, let’s try to design
approximation algorithms: algorithms which run in polynomial time, and give solutions that are
provably not too far from the optimal solution. We might not be able to find the optimal solution
on polynomial time, but maybe we can find a solution that costs at most twice as much.

Definition 24.1.1 Let A be some (minimization) problem, and let I be an instance of that problem.
Let OPT (I) be the value of the optimal solution on that instance. Let ALG be a polynomial-time
algorithm for A, and let ALG(I) denote the value of the solution returned by ALG on instance I.
Then we say that ALG is an α-approximation if

ALG(I)

OPT (I)
≤ α

for all instances I of A.

One interesting thing to note is that, as we saw last week, the theory of NP-completeness tells us
that all NP-complete problems are in some sense equally hard – if we could solve one of them in
polynomial time, then we could solve all of them. However, it is not true that they are all equally
hard to approximate. Some can be approximated extremely well in polynomial time, and some
cannot be approximated at all. So sometimes it is useful to think of approximability as a more
“fine-grained” notion of hardness: while all NP-complete problems are hard, problems which can be
approximated within 2 are easier then problems which can only be approximated within Θ(log n),
which are easier than problems which can only be approximated within Θ(

√
n), etc.

24.2 Vertex Cover

For our first example, let’s go back to the vertex cover problem.

Definition 24.2.1 Let G = (V,E) be a graph. Then M ⊆ V is a vertex cover if for every edge
{u, v} ∈ E, at least one of u, v is in M .

In other words, a vertex cover is a set of vertices with the property that every edge has at least
one endpoint in the set. In the vertex cover problem, we are given a graph G = (V,E) and are
asked to find the smallest vertex cover. This problem is NP-complete by an easy reduction from
the Independent Set problem (which we didn’t quite have time for last lecture, but is in the lecture
notes). So we cannot expect to actually solve vertex cover. What can we do instead?

1

1. Idea 1: Pick an arbitrary vertex with at least one uncovered edge incident on it, add it to the
cover, and repeat. Unfortunately this is arbitrarily far from optimal: see the star graph.

2. Idea 2: Instead of picking arbitrarily, let’s try to pick smartly. In particular, an obvious thing
to try is the greedy algorithm: pick the vertex with the largest number of uncovered edges
incident to it, and add it to the cover. Repeat until all edges are covered.

While this is a better idea, it’s still not very good. We’ll give a quick overview of the
counterexample, but fleshing out the details is a good exercise to do at home. Consider a set
U of t nodes. For every i ∈ {2, 3, . . . , t}, divide U into ⌊t/i⌋ disjoint groups of size exactly i
(if i does not divide t, then there will be less than i nodes which are not in any group). Let
the groups for value i be Gi

1, G
i
2, . . . , G

i
⌊t/i⌋. For every i ∈ {2, . . . , t} and every j ∈ [⌊t/i⌋], we

create a vertex vij and add edges between vij and every node in Gi
j . We refer to the nodes

{vij}j∈[⌊t/i⌋] as layer i nodes.

It is easy to see that in this graph, every node in U has degree at most t−1 since it is adjacent
to at most one node from each layer. Every node in layer i has degree exactly i. So at the
beginning of the algorithm, the maximum degree node is the one node vt1 in layer t. After we
pick this node, the nodes in U now have degree at most t−2, so the algorithm woul next pick
the node in layer t − 1. It is easy to see by induction that this will continue: the algorithm
will always choose the nodes in the largest remaining layer rather than the nodes in U .

Notice that OPT (G) ≤ t, since U itself is a vertex cover of size t. On the other hand, we just
argued that

ALG(G) =

t∑
i=2

⌊
t

i

⌋
≥

i∑
i=2

(
1

2
· t
i

)
=

t

2

t∑
i=2

1

i
= Ω(t log t).

SinceALG(G)/OPT (G) ≥ log t is not a constant, the greedy algorithm is not an α-approximation
for any constant α.

OK, so now let’s find some algorithms which work better. Here’s an algorithm which sounds stupid
but is actually pretty good:

1. Pick an arbitrary edge which is not yet covered. Add both endpoints to the cover, and repeat.

I claim that this algorithm is a 2-approximation. To see this, suppose that our algorithm
took k iterations, and let L be the set of edges that it selected as uncovered and included
both of the endpoints (so |L| = k). The the algorithm returns a vertex cover of size 2k. On
the other hand, note that these edges form a matching, i.e. they all have distinct endpoints.
This means that any vertex cover needs to have size at least k, just in order to cover the
edges in L, and hence OPT ≥ k. Thus ALG = 2k ≤ 2×OPT , so it is a 2-approximation.

Now let’s see a more involved way to get a 2-approximation. At first this will seem unnecessarily
complicated, but we’ll see later why it is useful.

2

2. Let G = (V,E) be an instance of vertex cover, and consider the following linear program:

min
∑
u∈V

xu

subject to xu + xv ≥ 1 ∀{u, v} ∈ E

0 ≤ xu ≤ 1 ∀u ∈ V

Our algorithm solves this LP, and then for every vertex v we include v in our cover if xv ≥ 1/2.

We first claim that our algorithm does indeed give a vertex cover. To see this, consider an
arbitrary edge {u, v} ∈ E. Then the LP has a constraint xu + xv ≥ 1, so clearly either xu or
xv (or both) is at least 1/2. Thus at least one endpoint of the edge will be contained in the
cover. Since this holds true of all edges, we get a valid vertex cover.

So now we want to prove the the vertex cover we return is a 2-approximation. Let x⃗∗ be the
optimal solution to the above LP on G, let LP (G) =

∑
u∈V x∗u denote the value of the above

LP on G, let OPT (G) denote the size of the minimum vertex cover, and let ALG(G) denote
the size of the vertex that we return.

First, note that LP (G) ≤ OPT (G): this is true because for each vertex cover, there is an LP
solution with value exactly equal to the size of the cover (just set xu = 1 if u is in the cover
and xu = 0 otherwise). Since the LP is trying to minimize an objective, it does at least as
well as the smallest vertex cover. On the other hand, we claim that the algorithm does not
do too much worse than the LP. To see this let x̂u = 1 if x∗u ≥ 1/2 and let x̂u = 0 if x∗u < 1/2.
Note that x̂u ≤ 2x∗u. Hence

ALG(G) =
∑
u∈V

x̂u ≤ 2
∑
u∈V

x∗u = 2× LP (G).

Thus ALG(G) ≤ 2× LP (G) ≤ 2×OPT (G), so the algorithm is a 2-approximation.

The second algorithm is known as an LP rounding algorithm: we first solve an LP which if we
could enforce integrality would correspond exactly to the problem we want to solve. Since we can’t
enforce integrality we instead get back fractional value. Then we somehow want to round these
fractional values to integers (usually to 0 or 1). This algorithm is a version of threshold rounding,
since all we did was set a threshold and round up to 1 any value above the threshold and round
down to 0 any value below the threshold. But there are many other types of LP rounding. The
most famous is probably randomized rounding, where we interpret each LP variable as a probability
and set it to 1 with probability equal to its value.

Since we already had a super simple 2-approximation, why did we bother with the LP rounding
algorithm? One really nice feature of LP rounding algorithms is that they tend to be extremely
flexible to slight changes in the problem. For example, consider the weighted vertex cover problem,
in which each vertex v also has a positive weight wv and we try to find the minimum weight vertex
cover. It is not at all clear how to adapt our first algorithm to this setting. But with the LP
algorithm it’s trivial – we just change the objective function to min

∑
v∈V wvxv. Then the rest of

the analysis essentially goes through without change! Rounding with a threshold of 1/2 still gives
a 2-approximation!

3

Reductions and Approximation. One more note about Vertex Cover: remember that we
proved that Vertex Cover was NP-hard by reducing from Independent Set. However, the type of
reduction we did is not approximation-preserving : it’s true that if we could solve Vertex Cover then
we could solve Independent Set (we proved this), but it is not true that an α-approximation for
Vertex Cover implies an α-approximation for Independent Set. In fact, Independent Set is much
harder: unless P=NP, it is not possible even to approximate Independent Set better than n1−ε for
any constant ε > 0.

24.3 Max-E3SAT

Recall that in the 3SAT problem we are given a 3-CNF boolean formula (i.e. a formula which was
the AND of a collection of clauses, and each clause was the OR of at most 3 literals) and asked to
determine if there exists a satisfying assignment. A natural optimization version of this problem is
Max-3SAT, in which we are again given a collection of clauses, each of which is the OR of at most
3 literals, but where our goal is to find an assignment which maximizes the number of satisfied
clauses. So if there is a fully satisfying assignment then we hope to find it, but if not then we try
to find an assignment which satisfies as many clauses as possible. We’ll actually spend most of our
time discussing Max-E3SAT (or maximum exact 3SAT) in which every clause has exactly three
literals.

First, one technicality: since this is a maximization problem, we want to redefine an α-approximation
to mean that ALG(I)/OPT (I) ≥ α for all instances I (rather than ≤ α).

Here’s an easy randomized algorithm: simply use a random assignment! It turns out that this is a
pretty good approximation.

Theorem 24.3.1 A random assignment is (in expectation) a 7/8-approximation for Max-E3SAT.

Proof: Consider a clause. Since there are exactly 3 literals in it, there are exactly 23 = 8
possible assignments to it, of which 7 are satisfying. So the probability that a random assignment
satisfies it is exactly 7/8. Now linearity of expectations lets us apply this to all of the clauses: the
expected number of clauses satisfied is exactly (7/8)m, where m is the total number of clauses.
Since OPT (I) ≤ m, this implies that a random assignment is in expectation a 7/8-approximation.

What if we want a deterministic algorithm? This turns out to be reasonably simple based on a
derandomization of the randomized algorithm using what is known as the “method of conditional
expectations”.

Consider the first variable x1. If we set it to 0, then some clauses become satisfied (those with x̄1
as a literal) and some others can no longer be satisfied by x1 (those with x1 as a literal). So we can
calculate the number of expected clauses that would be satisfied if we set x1 to 0 and set all of the
other variables randomly. Similarly, we can calculate the number of expected clauses that would
be satisfied if we set x1 to 1 and set all of the other variables randomly. Then we’ll just set x1
according to whichever of these expectations is larger. And now that x1 is set we can do the same
thing with x2 (where now x1 is fixed), x3, etc., until in the end we have fixed an assignment. Since
we always pick whichever of the two expectations is larger, it never goes down, and thus stays at

4

least 7/8. So in the end we have satisfied at least 7/8 of the clauses.

Amazingly, this is essentially the best possible approximation!

Theorem 24.3.2 ([1]) Assuming P ̸= NP , for all constant ϵ > 0 there is no polytime
(
7
8 + ϵ

)
-

approximation for Max-E3SAT.

This turns out to be a consequence of an amazing theorem known as H̊astad’s 3-bit PCP Theo-
rem [1], which is unfortunately way outside the scope of this class.

24.4 Set Cover (likely not covered in lecture)

A fundamental problem which we have not really talked about yet is Set Cover. The input to Set
Cover is a set X of n items, and m subsets S1, . . . , Sm of X. The goal is to find the minimum
number of these subsets necessary to cover all of the items. In other words, we must find a set
A ⊆ [m] of indices so that ∪i∈ASi = X, and our goal is to minimize |A|. It’s known that Set Cover
is NP-complete.

24.4.1 Greedy Algorithm

It turns out that the simple greedy algorithm does pretty well. This algorithm picks the set which
covers the most items, throws out all of the items covered, and repeats. In other words, we just
always pick the set which covers the most uncovered items.

Theorem 24.4.1 The greedy algorithm is a (lnn)-approximation algorithm for Set Cover.

Proof: Suppose that the optimal set cover has size k. Then there must be some set which covers
at least a 1/k fraction of the items. Since we always pick the best remaining set, this means that
after the first iteration there are at most (1− 1

k)n items still uncovered. But now the logic continues
to hold! No matter what items have been covered already, the original optimal solution certainly
covers all of the remaining items (since it covers all items). So there must be some set from that
solution which covers at least a 1/k fraction of the remaining items.

Thus after i iterations, the number of uncovered items is at most (1− 1
k)

in. So after k lnn iterations,
the number of uncovered items is at most (1 − 1

k)
k lnnn < e− lnnn = 1. Thus we are finished after

k lnn iterations and so we chose at most k lnn sets, which immediately implies that it’s the greedy
algorithm is a (lnn)-approximation

Note that this analysis is quite similar to our analysis of Edmonds-Karp #1: we prove that in
each iteration, we can reduce the “amount to go” by some fraction x, and then use the inequality
(1− x)t ≤ e−xt to bound the “amount to go” after t iterations.

In fact, we know that this is the best possible approximation for Set Cover: it is NP-hard to give an
o(log n)-approximation ratio, and under a stronger complexity assumption (that problems in NP
cannot be solved in nO(log logn) time) the lower bound can be improved to (1− ϵ) lnn for arbitrarily
small constant ϵ > 0 (this is due to Uriel Feige).

5

24.4.2 LP Rounding 1

There are also algorithms for approximating Set Cover based on LP rounding. The obvious LP
relaxation for Set Cover is the following:

min
∑
i∈[m]

xi

subject to
∑

i∈[m]:e∈Si

xi ≥ 1 ∀e ∈ X

0 ≤ xi ≤ 1 ∀i ∈ [m]

As with vertex cover, let x∗ denote the optimal solution to the LP, let LP ∗ =
∑

i∈[m] xi denote
the cost of this optimal solution, let A∗ denote the optimal solution, and let OPT = |A∗| denote
the cost (number of subsets) of the optimal solution. Then as before, LP ∗ ≤ OPT since if we set
xi = 1 for all i ∈ A∗ and xi = 0 for all i ̸∈ A∗, we get a solution to the LP of cost OPT . So if
we want to prove that some algorithm is an α-approximation, it suffices to prove that it gives a
solution of cost at most α · LP ∗.

Consider the following threshold rounding algorithm. For every element e ∈ X, let f(e) = {i :
e ∈ Si} denote the frequency of e. Let f = maxe∈X f(e). Our algorithm first solves the LP (in
polynomial time), and then we let A = {i : xi ≥ 1/f}.
Theorem 24.4.2 Threshold rounding with threshold 1/f is an f -approximation to Set Cover.

Proof: This is very similar to the Vertex Cover analysis. First, note that the algorithm clearly
runs in polynomial time, since it solves an LP in polynomial time and thus does a simple threshold
rounding (taking at most polynomial time). Consider some element e ∈ X. Since f(e) ≤ f , and∑

i∈[m]:e∈Si
xi ≥ 1 (by the LP constraint), we know that xi ≥ 1/f(e) ≥ 1/f for at least one element

in {i : e ∈ Si}. Thus our solution A is indeed a set cover.

Now we just need to analyze its cost. Let x̂i = 1 iff i ∈ A, i.e., x̂i = 1 iff xi ≥ 1/t. Thus |A| =∑
i∈[m] x̂i ≤

∑
i∈[m] fxi = f

∑
i∈[m] xi = f · LP ∗, and thus the algorithm is an f -approximation.

24.4.3 LP Rounding 2

The previous LP rounding is all well and good, but the f -factor it gives is incomparable to the
log n of the greedy algorithm (it could be larger or smaller). Can we use the same LP to also get
an O(log n)-approximation. It turns out that the answer is yes, and moreover that this is relatively
easy if we use randomization.

Consider the following algorithm based on randomized rounding. Instead of doing threshold round-
ing, we instead include every index i ∈ [m] in A with probability min(2x∗i lnn, 1).

Theorem 24.4.3 A is a set cover with probability at least 1− 1/n, and E[|A|] ≤ 2 lnn · LP ∗.

Proof: Consider some element e. The probability that it is not covered by A is the probability
that none of the sets containing it are added to A. If some set Si containing e has xi ≥ 1/(2 lnn)

6

then this set is added to A with probability 1, so e is covered. Otherwise, the probability that e is
not covered is∏

i∈[m]:e∈Si

(1− 2x∗i lnn) ≤
∏

i∈[m]:e∈Si

e−2x∗
i lnn = e

−2 lnn
∑

i∈[m]:e∈Si
x∗
i ≤ e−2 lnn = 1/n2.

Now taking a union bound over all n elements implies that the probability that there exists an
uncovered element is at most n(1/n2) = 1/n, and thus A is a valid set cover with probability at
least 1− 1/n.

It is even easier to see the cost bound. Let Xi be an indicator random variable for the event that
i ∈ A. Then

E[|A|] = E

∑
i∈[m]

Xi

 =
∑
i∈[m]

E[Xi] ≤
∑
i∈[m]

2x∗i lnn = 2 lnn · LP ∗.

In other words, randomized rounding is an O(log n)-approximation (it’s a good exercise to do at
home to figure out why it’s OK to give a high probability bound on being a feasible solution with
an expectation bound on the cost).

References

[1] J. H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, jul 2001.

7

	Introduction
	Vertex Cover
	Max-E3SAT
	Set Cover (likely not covered in lecture)
	Greedy Algorithm
	LP Rounding 1
	LP Rounding 2

