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Introduction

What should we do if a problem is NP-hard?
» Give up on efficiency?
» Give up on correctness?

» Give up on worst-case analysis?
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Introduction

What should we do if a problem is NP-hard?
» Give up on efficiency?
» Give up on correctness?

» Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)
» Give up on correctness, but in a provable, bounded way.
» Applies to optimization problems only (not pure decision problems)

» Has to run in polynomial time, but can return answer that is approximately correct.
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Main Definition
Definition

Let A be some (minimization) problem, and let I be an instance of that problem. Let
OPT (1) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time

algorithm for A, and let ALG (/) denote the cost of the solution returned by ALG on instance
I. Then we say that ALG is an a-approximation if

ALG(I) _
opT() -

for all instances I of A.

» Approximation always at least 1

o . . ALG(I PT (I
» For maximization, can either require Opg_((l)) > a (where ae< 1) or ZLT((I)) < a (where
a>1)
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Main Definition
Definition

Let A be some (minimization) problem, and let I be an instance of that problem. Let
OPT (1) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time

algorithm for A, and let ALG (/) denote the cost of the solution returned by ALG on instance
I. Then we say that ALG is an a-approximation if

ALG(I) _
opT() -

for all instances I of A.

» Approximation always at least 1

. . . ALG(I) OPT (1)
» For maximization, can either require oPT() 2 ¢ (where ae < 1) or AG() S @ (where

a>1)

» Also gives “fine-grained” complexity: not all NP-hard problems are equally hard!
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Vertex Cover

Definition: S c V is a vertex cover of G = (V,E) if Sne+ @ forallec E

Definition (VERTEX COVER)

Instance is graph G = (V, E). Find vertex cover S, minimize |S|.

Last time: VERTEX COVER NP-hard (reduction from INDEPENDENT SET)
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Vertex Cover

Definition: S c V is a vertex cover of G = (V,E) if Sne+ @ forallec E

Definition (VERTEX COVER)

Instance is graph G = (V, E). Find vertex cover S, minimize |S|.

Last time: VERTEX COVER NP-hard (reduction from INDEPENDENT SET)

So cannot expect to compute a minimum vertex cover efficiently. What about an
approximately minimum vertex cover?

» Not an approximate vertex cover: still needs to be an actual vertex cover!
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Obvious Algorithm 1

S=0
while there is at least one uncovered edge {

Pick arbitrary vertex v incident on at least one uncovered edge
Addvto S
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Obvious Algorithm 1

S=0
while there is at least one uncovered edge {

Pick arbitrary vertex v incident on at least one uncovered edge
Addvto S

Not a good approximation: star graph.
» OPT =1
» ALG=n-1
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Obvious Algorithm 2

S=¢
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
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Obvious Algorithm 2

S=¢
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.
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Obvious Algorithm 2

S=9
while there is at least one uncovered
edge {

Let v be vertex incident on most

uncovered edges
Addvto S

}

Better, but still not great.
> |U|=t
» Forallie{2,3,...,t}, divide U into
[t/i] disjoint sets of size i:
G}, Gy, .-, G[’t/ij
» Add vertex for each set, edge to all

elements.
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Obvious Algorithm 2

S=9
while there is at least one uncovered
edge {

Let v be vertex incident on most

uncovered edges
Addvto S
}

Better, but still not great.
» |U|=t
» Forallie{2,3,...,t}, divide U into
| t/i] disjoint sets of size i:
Gi, Gy Gy )
» Add vertex for each set, edge to all
elements.

OPT =t

ALG =31, |22, (5-) =
%Z’f:z%=§2(tlog t)
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Better Algorithm

S=0

while there is at least one uncovered edge {
Pick arbitrary uncovered edge {u, v}
Adduand vto S
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Better Algorithm

S=0

while there is at least one uncovered edge {
Pick arbitrary uncovered edge {u, v}
Adduand vto S

Theorem

This algorithm is a 2-approximation.
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Better Algorithm

S=0
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u, v}
Adduand vito S

}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so |L| = k.
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Better Algorithm

S=0
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}
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Better Algorithm

S=0
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u, v}
Adduand vito S

}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so |L| = k.
= |§| =2k

L has structure: it is a matching!
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Better Algorithm

S=0
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u, v}
Adduand vito S

}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so |L| = k.
= |§| =2k

L has structure: it is a matching!
= OPT >k

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 7/14



Better Algorithm

S=0
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u, v}
Adduand vito S

}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so |L| = k.
= |§| =2k

L has structure: it is a matching!
= OPT >k

—> ALG/OPT <2.
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More Complicated Algorithm: LP Rounding

Write LP for vertex cover:
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More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min Z Xy

veV
subject to Xy +xy 21 V{u,v} e E
0<x,<1 YueV
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More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min Z Xy

veV
subject to Xy +xy 21 V{u,v} e E
0<x,<1 YueV

Question: Is this enough?
» Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?
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More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min Z Xy

veV
subject to Xy +xy 21 V{u,v} e E
0<x,<1 YueV

Question: Is this enough?
» Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

)
‘L
> OPT =2
> OPT(LP) =3/2
Vv 2
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LP Structure

min Z Xy

veV
subject to Xy+x, 21
0<x,<1
Michael Dinitz

Lemma
V{u,v} e E OPT(LP)<OPT

YueV
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LP Structure

min Xy
v;/ Lemma
subject to Xy + Xy 21 V{u,v} e E OPT(LP)<OPT J

0<x,<1 VueV

Proof.

Let S be optimal vertex cover (so |S| = OPT).
1 ifveS

Let x, = i
0 otherwise
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LP Structure

min Z Xy
veV Lemma

subject to Xy +Xxy 21 V{u,v} e E OPT(LP)<OPT

0<x,<1 VueV

Proof.

Let S be optimal vertex cover (so |S| = OPT).
1 ifveS

Let x, = i
0 otherwise

0< x, <1 for all v eV by definition

Xy + xy 2 1 for all {u, v} € E by definition of S
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LP Structure

min Z Xy
veV Lemma

subject to Xy +Xxy 21 V{u,v} e E OPT(LP)<OPT

0<x,<1 VueV

Proof.

Let S be optimal vertex cover (so |S| = OPT).
1 ifveS

Let x, = i
0 otherwise

0< x, <1 for all v eV by definition
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= x feasible
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LP Structure

min Z Xy
veV Lemma

subject to Xy +Xxy 21 V{u,v} e E OPT(LP)<OPT

0<x,<1 VueV

Proof.

Let S be optimal vertex cover (so |S| = OPT).
1 ifveS

Let x, = i
0 otherwise

0< x, <1 for all v eV by definition

Xy + xy 2 1 for all {u, v} € E by definition of S

= x feasible
= OPT(LP)<Y ,vx =|S|=0PT
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LP Structure

min Z Xy
veV Lemma

subject to Xy +Xxy 21 V{u,v} e E OPT(LP)<OPT

0<x,<1 VueV

Proof.

Let S be optimal vertex cover (so |S| = OPT).
1 ifveS

Let x, = i
0 otherwise

0< x, <1 for all v eV by definition

Xy + xy 2 1 for all {u, v} € E by definition of S

= x feasible
= OPT(LP)<Y ,vx =|S|=0PT
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LP Rounding Algorithm

» Solve LP to get x* (so ¥ ey Xy = OPT(LP))
» Return S={veV:x; >1/2}
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LP Rounding Algorithm

» Solve LP to get x* (so ¥ ey Xy = OPT(LP))

» Return S={veV:x; >1/2} Polytime: v/
Lemma
S is a vertex cover. J
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LP Rounding Algorithm

» Solve LP to get x* (so ¥ ey Xy = OPT(LP))
» Return S={veV:x; >1/2} Polytime: v/

Lemma

S is a vertex cover.

Proof.
Let {u,v} € E.
By LP constraint, x;; +x; > 1
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LP Rounding Algorithm

» Solve LP to get x* (so ¥ ey Xy = OPT(LP))
» Return S={veV:x; >1/2} Polytime: v/

Lemma

S is a vertex cover.

Proof.

Let {u,v} € E.

By LP constraint, x;; +x; > 1
= max(x,,x,) >1/2
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LP Rounding Algorithm

» Solve LP to get x* (so ¥ ey Xy = OPT(LP))
» Return S={veV:x; >1/2} Polytime: v/

Lemma

S is a vertex cover.

Proof.

Let {u,v} € E.

By LP constraint, x;; +x; > 1

= max(x,,x;)>1/2

= At least one of u,vin S O
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LP Rounding Algorithm

» Solve LP to get x* (so ¥ ey Xy = OPT(LP))
» Return S={veV:x; >1/2} Polytime: v/

Lemma Lemma

| |S|<2-O0OPT. J

S is a vertex cover.

Proof.

Let {u,v} € E.

By LP constraint, x;; +x; > 1

= max(x,,x;)>1/2

= At least one of u,vin S O
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LP Rounding Algorithm

» Solve LP to get x* (so ¥,y X
» Return S={veV:x; >1/2}

*
v

= OPT(LP))
Polytime: v/

Lemma

S is a vertex cover.

Proof.

Let {u,v} € E.

By LP constraint, x;; +x; > 1
= max(x;,x;) >1/2

= At least one of u,vin S

Michael Dinitz
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Why Use LP Rounding?

Important reason: much more flexible!
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Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w: V — R*. Find vertex cover S minimizing ¥ ,.s w(v)

min Y w(v)x,
veV
subject to Xy +x,21 V{u,v}eE

0<x,<1 VYueV
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Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w: V — R*. Find vertex cover S minimizing ¥ ,.s w(v)

min w(v)x
v;/ ’ » Solve LP to get x*
subject to Xy+x,21 V{u,v} e E » Return S={ve V:x; >1/2}

0<x,<1 VYueV
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Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w: V — R*. Find vertex cover S minimizing ¥ ,.s w(v)

e v;/ wivx » Solve LP to get x*
subject to Xy+x,21 V{u,v} e E » Return S={ve V:x; >1/2}
0<x,<1 VYueV
Still:
» Polytime

> S a vertex cover
» OPT(LP) < OPT
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Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w: V — R*. Find vertex cover S minimizing ¥ ,.s w(v)

e v;/ wivx » Solve LP to get x*
subject to Xy+x,21 V{u,v} e E » Return S={ve V:x; >1/2}
0<x,<1 VYueV
Still:
» Polytime

Yw(v)< ) 2x;w(v) <2 ) w(v)x, =2-OPT(LP)<2-OPT
veS veS veV
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» OPT(LP) < OPT

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 11/14



Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w: V — R*. Find vertex cover S minimizing ¥ ,.s w(v)

e v;/ wivx » Solve LP to get x*
subject to Xy+x,21 V{u,v} e E » Return S={ve V:x; >1/2}
0<x,<1 VYueV
Still:
» Polytime

Yw(v)< ) 2x;w(v) <2 ) w(v)x, =2-OPT(LP)<2-OPT
veS veS veV

> S a vertex cover
» OPT(LP) < OPT

Higher level: LP provides lower bound on OPT. Often main difficulty!
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Reductions and Approximation
Proved VERTEX COVER NP-hard by reduction from INDEPENDENT SET:

» Polytime algorithm for VERTEX COVER = polytime algorithm for INDEPENDENT
SET

So does this mean that a 2-approximation for VERTEX COVER == 2-approximation for
INDEPENDENT SET?
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Reductions and Approximation
Proved VERTEX COVER NP-hard by reduction from INDEPENDENT SET:

» Polytime algorithm for VERTEX COVER = polytime algorithm for INDEPENDENT
SET

So does this mean that a 2-approximation for VERTEX COVER == 2-approximation for
INDEPENDENT SET?

No!

Theorem

=

Assuming P = NP, for all constants € > 0 there is no polytime n~€-approximation for

INDEPENDENT SET.
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So does this mean that a 2-approximation for VERTEX COVER == 2-approximation for
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No!

Theorem

=

Assuming P = NP, for all constants € > 0 there is no polytime n~€-approximation for

INDEPENDENT SET.

So these two problems are actually very different!
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Reductions and Approximation
Proved VERTEX COVER NP-hard by reduction from INDEPENDENT SET:

» Polytime algorithm for VERTEX COVER = polytime algorithm for INDEPENDENT
SET

So does this mean that a 2-approximation for VERTEX COVER == 2-approximation for
INDEPENDENT SET?

No!

Theorem

=

Assuming P = NP, for all constants € > 0 there is no polytime n~€-approximation for

INDEPENDENT SET.

So these two problems are actually very different!

There is a notion of “approximation-preserving reduction”, but it is more involved than a

normal reduction.
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Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has < 3 literals
» E3-SAT: Same, but every clause has exactly three literals (still NP-complete)
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Recall 3-SAT: CNF formula (AND of ORs) where every clause has < 3 literals
» E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

» Find assignment to maximize # satisfied clauses
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Optimization version: Max-E3SAT

» Find assignment to maximize # satisfied clauses
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Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has < 3 literals
» E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

» Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

» For each variable x;, set x; = T with probability 1/2 and F with probability 1/2
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Max-E3SAT: Analysis

Algorithm: Choose random assignment
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Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied =
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Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = 7/8
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Max-E3SAT: Analysis
Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8
Random variables:

1 if clause i satisfied
>Forie{1,2,...,m},letX,-={ Il clause 1 satistie

0 otherwise
> E[X;]=7/8
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Max-E3SAT: Analysis
Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8

Random variables:

1 ifcl j satisfied
> Forie{1,2,...,m} let X;={ | Cause ! sauste
0 otherwise
> E[X;]=7/8
» Let X = # clauses satisfied = ¥, X;
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Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = 7/8

Random variables:

1 ifcl i satisfied
> Forie{1,2,...,m}, let X; = Il clause 1 satistie
0 otherwise

> E[X;]=17/8
» Let X = # clauses satisfied = ¥, X;
my 7 7
E[X] = Zx ZE[X =Y. —=-m>_OPT
ia 18 8 8
Michael Dinitz
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Max-E3SAT: Analysis

Algorithm: Choose random assignment

Clause i: probability satisfied = 7/8

Random variables:

1 ifcl i satisfied
> Forie{1,2,...,m}, let X; = Il clause 1 satistie
0 otherwise

> E[X;]=7/8
» Let X = # clauses satisfied = ¥, X;
my 7 7
E[X] = Zx ZE[X =Z§=§m2§OPT

Can be derandomized (method of condltlonal expectations)
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Max-E3SAT: Analysis

Algorithm: Choose random assignment
Clause i: probability satisfied = 7/8
Random variables:

1 if clause i satisfied
>Fori€{1,2,...,m},letX,-={ Il clause 1 satistie

0 otherwise

> E[X;]=7/8
» Let X = # clauses satisfied = ¥, X;
my 7 7
E[X] = Zx ZE[X =Z§=§m2§OPT

Can be derandomized (method of condltlonal expectations)

Theorem (Hastad '01)

Assuming P # NP, for all constant € > 0 there is no polytime (% + e)-approximation for

Max-E3SAT.
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