Lecture 24: Approximation Algorithms

Michael Dinitz

November 21, 2024 601.433/633 Introduction to Algorithms

Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Introduction

What should we do if a problem is NP-hard?

- Give up on efficiency?
- Give up on correctness?
- Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)

- Give up on correctness, but in a provable, bounded way.
- Applies to optimization problems only (not pure decision problems)
- ▶ Has to run in polynomial time, but can return answer that is *approximately* correct.

Main Definition

Definition

Let \mathcal{A} be some (minimization) problem, and let I be an instance of that problem. Let OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for \mathcal{A} , and let ALG(I) denote the cost of the solution returned by ALG on instance I. Then we say that ALG is an α -approximation if

$$\frac{ALG(I)}{OPT(I)} \leq \alpha$$

for all instances I of \mathcal{A} .

- Approximation always at least 1
- ► For maximization, can either require $\frac{ALG(I)}{OPT(I)} \ge \alpha$ (where $\alpha < 1$) or $\frac{OPT(I)}{ALG(I)} \le \alpha$ (where $\alpha > 1$)

Main Definition

Definition

Let \mathcal{A} be some (minimization) problem, and let I be an instance of that problem. Let OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time algorithm for \mathcal{A} , and let ALG(I) denote the cost of the solution returned by ALG on instance I. Then we say that ALG is an α -approximation if

$$\frac{ALG(I)}{OPT(I)} \leq \alpha$$

for all instances I of \mathcal{A} .

- Approximation always at least 1
- ► For maximization, can either require $\frac{ALG(I)}{OPT(I)} \ge \alpha$ (where $\alpha < 1$) or $\frac{OPT(I)}{ALG(I)} \le \alpha$ (where $\alpha > 1$)
- Also gives "fine-grained" complexity: not all NP-hard problems are equally hard!

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of G = (V, E) if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph G = (V, E). Find vertex cover S, minimize |S|.

Last time: VERTEX COVER **NP**-hard (reduction from INDEPENDENT SET)

Vertex Cover

Definition: $S \subseteq V$ is a *vertex cover* of G = (V, E) if $S \cap e \neq \emptyset$ for all $e \in E$

Definition (VERTEX COVER)

Instance is graph G = (V, E). Find vertex cover S, minimize |S|.

Last time: VERTEX COVER **NP**-hard (reduction from INDEPENDENT SET)

So cannot expect to compute a minimum vertex cover efficiently. What about an *approximately* minimum vertex cover?

Not an approximate vertex cover: still needs to be an actual vertex cover!

S = Ø while there is at least one uncovered edge { Pick arbitrary vertex v incident on at least one uncovered edge Add v to S

```
S = Ø
while there is at least one uncovered edge {
    Pick arbitrary vertex v incident on at least one uncovered edge
    Add v to S
```

Not a good approximation: star graph.

- ▶ *OPT* = 1
- ▶ *ALG* = *n* − 1

 $\boldsymbol{S} = \boldsymbol{\varnothing}$

while there is at least one uncovered edge {

Let \boldsymbol{v} be vertex incident on most uncovered edges Add \boldsymbol{v} to \boldsymbol{S}

```
S = Ø
while there is at least one uncovered
edge {
   Let v be vertex incident on most
uncovered edges
   Add v to S
}
```

Better, but still not great.

S = Ø

while there is at least one uncovered edge $\{$

Let \boldsymbol{v} be vertex incident on most uncovered edges Add \boldsymbol{v} to \boldsymbol{S}

Better, but still not great.

- |U| = t
- For all $i \in \{2, 3, \dots, t\}$, divide U into $\lfloor t/i \rfloor$ disjoint sets of size i: $G_1^i, G_2^i, \dots, G_{\lfloor t/i \rfloor}^i$
- Add vertex for each set, edge to all elements.

S = Ø

while there is at least one uncovered edge $\{$

Let \boldsymbol{v} be vertex incident on most uncovered edges Add \boldsymbol{v} to \boldsymbol{S}

Better, but still not great.

- |U| = t
- For all $i \in \{2, 3, \dots, t\}$, divide U into $\lfloor t/i \rfloor$ disjoint sets of size i: $G_1^i, G_2^i, \dots, G_{\lfloor t/i \rfloor}^i$
- Add vertex for each set, edge to all elements.

OPT = t

S = Ø

while there is at least one uncovered edge $\{$

Let \boldsymbol{v} be vertex incident on most uncovered edges Add \boldsymbol{v} to \boldsymbol{S}

Better, but still not great.

- |U| = t
- For all $i \in \{2, 3, \dots, t\}$, divide U into $\lfloor t/i \rfloor$ disjoint sets of size i: $G_1^i, G_2^i, \dots, G_{\lfloor t/i \rfloor}^i$
- Add vertex for each set, edge to all elements.

$$OPT = t$$

$$ALG = \sum_{i=2}^{t} \left\lfloor \frac{t}{i} \right\rfloor \ge \sum_{i=2}^{t} \left(\frac{1}{2} \cdot \frac{t}{i} \right) = \frac{t}{2} \sum_{i=2}^{t} \frac{1}{i} = \Omega(t \log t)$$

```
S = \emptyset
while there is at least one uncovered edge {
Pick arbitrary uncovered edge \{u, v\}
Add u and v to S
```

```
\begin{split} \boldsymbol{S} &= \boldsymbol{\varnothing} \\ \text{while there is at least one uncovered edge } \{ \\ & \text{Pick arbitrary uncovered edge } \{ \boldsymbol{u}, \boldsymbol{v} \} \\ & \text{Add } \boldsymbol{u} \text{ and } \boldsymbol{v} \text{ to } \boldsymbol{S} \end{split}
```

Theorem

This algorithm is a 2-approximation.

```
S = \emptyset
while there is at least one uncovered edge {
Pick arbitrary uncovered edge \{u, v\}
Add u and v to S
```

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be *edges* chosen by the algorithm, so |L| = k.

```
\begin{split} \boldsymbol{S} &= \boldsymbol{\varnothing} \\ \text{while there is at least one uncovered edge } \{ \\ & \text{Pick arbitrary uncovered edge } \{ \boldsymbol{u}, \boldsymbol{v} \} \\ & \text{Add } \boldsymbol{u} \text{ and } \boldsymbol{v} \text{ to } \boldsymbol{S} \end{split}
```

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be *edges* chosen by the algorithm, so |L| = k. $\implies |S| = 2k$

```
\begin{split} \boldsymbol{S} &= \boldsymbol{\varnothing} \\ \text{while there is at least one uncovered edge } \{ \\ & \text{Pick arbitrary uncovered edge } \{ \boldsymbol{u}, \boldsymbol{v} \} \\ & \text{Add } \boldsymbol{u} \text{ and } \boldsymbol{v} \text{ to } \boldsymbol{S} \end{split}
```

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be *edges* chosen by the algorithm, so |L| = k. $\implies |S| = 2k$

L has structure: it is a matching!

```
\begin{split} \boldsymbol{S} &= \boldsymbol{\varnothing} \\ \text{while there is at least one uncovered edge } \{ \\ & \text{Pick arbitrary uncovered edge } \{ \boldsymbol{u}, \boldsymbol{v} \} \\ & \text{Add } \boldsymbol{u} \text{ and } \boldsymbol{v} \text{ to } \boldsymbol{S} \end{split}
```

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be *edges* chosen by the algorithm, so |L| = k. $\implies |S| = 2k$

L has structure: it is a matching!

 $\implies OPT \ge k$

```
\begin{split} \boldsymbol{S} &= \boldsymbol{\varnothing} \\ \text{while there is at least one uncovered edge } \{ \\ & \text{Pick arbitrary uncovered edge } \{ \boldsymbol{u}, \boldsymbol{v} \} \\ & \text{Add } \boldsymbol{u} \text{ and } \boldsymbol{v} \text{ to } \boldsymbol{S} \end{split}
```

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be *edges* chosen by the algorithm, so |L| = k. $\implies |S| = 2k$

L has structure: it is a matching!

 $\implies OPT \ge k$

```
\implies ALG/OPT \leq 2.
```

More Complicated Algorithm: LP Rounding

Write LP for vertex cover:

More Complicated Algorithm: LP Rounding Write LP for vertex cover:

$$\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$$

More Complicated Algorithm: LP Rounding Write LP for vertex cover:

$$\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$$

Question: Is this enough?

Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

More Complicated Algorithm: LP Rounding Write LP for vertex cover:

$$\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$$

Question: Is this enough?

Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

- ► *OPT* = 2
- ▶ *OPT*(*LP*) = 3/2

min

subject to

$$\sum_{v \in V} x_v$$

$$x_u + x_v \ge 1 \qquad \forall \{u, v\} \in E$$

$$0 \le x_u \le 1 \qquad \forall u \in V$$

Lemma OPT(LP) ≤ OPT

 $\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$

Lemma
$OPT(LP) \leq OPT$

Proof.

Let **S** be optimal vertex cover (so |S| = OPT). Let $x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$

 $\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$

Lemma	
$OPT(LP) \leq OPT$	

Proof.

Let **S** be optimal vertex cover (so |S| = OPT). Let $x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$ $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of **S**

 $0 \le x_v \le 1$ for all $v \in V$ by definition

 $\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$

Lemma	
$OPT(LP) \leq OPT$	

Proof.

Let **S** be optimal vertex cover (so |S| = OPT). Let $x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$ $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of **S** $0 \le x_v \le 1$ for all $v \in V$ by definition

 $\implies x$ feasible

 $\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 \qquad \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 \qquad \forall u \in V \end{array}$

Lemma	
$OPT(LP) \leq C$)PT

Proof.

Let **S** be optimal vertex cover (so |S| = OPT). Let $x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$ $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of **S**

 $0 \leq x_{\textit{v}} \leq 1$ for all $\textit{v} \in \textit{V}$ by definition

 $\implies x \text{ feasible} \\ \implies OPT(LP) \le \sum_{v \in V} x_v = |S| = OPT$

 $\begin{array}{ll} \min & \sum_{v \in V} x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$

Lemma	
$OPT(LP) \leq OPT$	

Proof.

Let **S** be optimal vertex cover (so |S| = OPT). Let $x_{\nu} = \begin{cases} 1 & \text{if } \nu \in S \\ 0 & \text{otherwise} \end{cases}$

 $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ by definition of S $0 \le x_v \le 1$ for all $v \in V$ by definition

 $\implies x \text{ feasible} \\ \implies OPT(LP) \le \sum_{v \in V} x_v = |S| = OPT$

• Solve LP to get
$$x^*$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return $S = \{ v \in V : x_v^* \ge 1/2 \}$

Solve LP to get
$$x^*$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return $S = \{ v \in V : x_v^* \ge 1/2 \}$

Polytime: ✓

Solve LP to get
$$x^*$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return $S = \{ v \in V : x_v^* \ge 1/2 \}$

Polytime: \checkmark

Lemma

S is a vertex cover.

Solve LP to get
$$x^*$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return
$$S = \{ v \in V : x_v^* \ge 1/2 \}$$

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$. By LP constraint, $x_u^* + x_v^* \ge 1$ Polytime: ✓

Solve LP to get
$$x^*$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return
$$S = \{ v \in V : x_v^* \ge 1/2 \}$$

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$. By LP constraint, $x_u^* + x_v^* \ge 1$ $\implies \max(x_u^*, x_v^*) \ge 1/2$

Polytime: \checkmark

Solve LP to get
$$x^*$$
 (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return
$$S = \{ v \in V : x_v^* \ge 1/2 \}$$

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$. By LP constraint, $x_u^* + x_v^* \ge 1$ $\implies \max(x_u^*, x_v^*) \ge 1/2$ \implies At least one of u, v in S Polytime: ✓

Solve LP to get x^* (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return
$$S = \{ v \in V : x_v^* \ge 1/2 \}$$

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$. By LP constraint, $x_u^* + x_v^* \ge 1$ $\implies \max(x_u^*, x_v^*) \ge 1/2$ \implies At least one of u, v in S Lemma

 $|S| \leq 2 \cdot OPT$.

Solve LP to get x^* (so $\sum_{v \in V} x_v^* = OPT(LP)$)

• Return $S = \{ v \in V : x_v^* \ge 1/2 \}$

Lemma

S is a vertex cover.

Proof.

Let $\{u, v\} \in E$. By LP constraint, $x_u^* + x_v^* \ge 1$ $\implies \max(x_u^*, x_v^*) \ge 1/2$ \implies At least one of u, v in S Lemma

 $|S| \leq 2 \cdot OPT$.

Proof.
$$|S| = \sum_{v \in S} 1 \le \sum_{v \in S} 2x_v^* \le 2 \sum_{v \in V} x_v^*$$
$$= 2 \cdot OPT(LP) \le 2 \cdot OPT \qquad \Box$$

Important reason: much more flexible!

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

 $\begin{array}{ll} \min & \sum_{v \in V} w(v) x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

$$\begin{array}{ll} \min & \sum_{v \in V} w(v) x_v \\ \text{subject to} & x_u + x_v \ge 1 \quad \forall \{u, v\} \in E \\ 0 \le x_u \le 1 \quad \forall u \in V \end{array}$$

Solve LP to get x*

• Return
$$S = \{v \in V : x_v^* \ge 1/2\}$$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \to \mathbb{R}^+$. Find vertex cover *S* minimizing $\sum_{v \in S} w(v)$

$$\begin{array}{ll} \min & \sum_{v \in V} w(v) x_v \\ \text{subject to} & x_u + x_v \geq 1 & \forall \{u, v\} \in E \\ & 0 \leq x_u \leq 1 & \forall u \in V \end{array}$$

► Solve LP to get **x***

• Return
$$S = \{ v \in V : x_v^* \ge 1/2 \}$$

Still:

- Polytime
- **S** a vertex cover
- $OPT(LP) \leq OPT$

Important reason: much more flexible!

Weighted Vertex Cover. Also given $w : V \to \mathbb{R}^+$. Find vertex cover **S** minimizing $\sum_{v \in S} w(v)$

$$\begin{array}{c|c} \min & \sum_{v \in V} w(v) x_v \\ \text{subject to} & x_u + x_v \ge 1 & \forall \{u, v\} \in E \\ & 0 \le x_u \le 1 & \forall u \in V \end{array}$$

$$\begin{array}{c|c} \mathsf{Feturn} & Solve \ \mathsf{LP} \ \text{to get } x^* \\ \mathsf{Feturn} & S = \{v \in V : x_v^* \ge 1/2\} \\ \text{ill:} \\ \mathsf{Febutime} \end{array}$$

Polytime

Stil

- **S** a vertex cover
- $OPT(LP) \leq OPT$

$$\sum_{v \in S} w(v) \leq \sum_{v \in S} 2x_v^* w(v) \leq 2 \sum_{v \in V} w(v) x_v^* = 2 \cdot OPT(LP) \leq 2 \cdot OPT$$

Important reason: much more flexible!

Weighted Vertex Cover: Also given $w : V \to \mathbb{R}^+$. Find vertex cover **S** minimizing $\sum_{v \in S} w(v)$

• $OPT(LP) \leq OPT$

Higher level: LP provides *lower bound* on **OPT**. Often main difficulty!

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER ⇒ polytime algorithm for INDEPENDENT SET

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER ⇒ polytime algorithm for INDEPENDENT SET

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

No!

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER ⇒ polytime algorithm for INDEPENDENT SET

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

No!

Theorem

Assuming $P \neq NP$, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$ -approximation for INDEPENDENT SET.

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER ⇒ polytime algorithm for INDEPENDENT SET

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

No!

Theorem

Assuming $P \neq NP$, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$ -approximation for INDEPENDENT SET.

So these two problems are actually very different!

Proved VERTEX COVER **NP**-hard by reduction from INDEPENDENT SET:

▶ Polytime algorithm for VERTEX COVER ⇒ polytime algorithm for INDEPENDENT SET

So does this mean that a 2-approximation for VERTEX COVER \implies 2-approximation for INDEPENDENT SET?

No!

Theorem

Assuming $P \neq NP$, for all constants $\epsilon > 0$ there is no polytime $n^{1-\epsilon}$ -approximation for INDEPENDENT SET.

So these two problems are actually very different!

There is a notion of "approximation-preserving reduction", but it is more involved than a normal reduction.

Michael Dinitz

Lecture 24: Approximation Algorithms

Recall 3-SAT: CNF formula (AND of ORs) where every clause has \leq 3 literals

• E3-SAT: Same, but every clause has *exactly* three literals (still **NP**-complete)

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

• E3-SAT: Same, but every clause has *exactly* three literals (still **NP**-complete)

Optimization version: Max-E3SAT

Find assignment to maximize # satisfied clauses

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

• E3-SAT: Same, but every clause has *exactly* three literals (still **NP**-complete)

Optimization version: Max-E3SAT

Find assignment to maximize # satisfied clauses

Easy *randomized* algorithm:

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

• E3-SAT: Same, but every clause has *exactly* three literals (still **NP**-complete)

Optimization version: Max-E3SAT

Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

• E3-SAT: Same, but every clause has *exactly* three literals (still **NP**-complete)

Optimization version: Max-E3SAT

Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

For each variable x_i , set $x_i = T$ with probability 1/2 and F with probability 1/2

Algorithm: Choose random assignment

Algorithm: Choose random assignment

Clause *i*: probability satisfied =

Algorithm: Choose random assignment

Clause *i*: probability satisfied = 7/8

Algorithm: Choose random assignment

Clause *i*: probability satisfied = 7/8

Random variables:

• For
$$i \in \{1, 2, ..., m\}$$
, let $X_i = \begin{cases} 1 & \text{if clause } i \text{ satisfied} \\ 0 & \text{otherwise} \end{cases}$
• $E[X_i] = 7/8$

Algorithm: Choose random assignment

Clause i: probability satisfied = 7/8

Random variables:

Algorithm: Choose random assignment

Clause *i*: probability satisfied = 7/8

Random variables:

Algorithm: Choose random assignment

Clause *i*: probability satisfied = 7/8

Random variables:

Can be derandomized (method of conditional expectations)

Algorithm: Choose random assignment

Clause i: probability satisfied = 7/8

Random variables:

For *i* ∈ {1,2,...,*m*}, let *X_i* =

$$\begin{cases}
1 & \text{if clause } i \text{ satisfied} \\
0 & \text{otherwise}
\end{cases}$$

E[*X_i*] = 7/8

Let *X* = # clauses satisfied = $\sum_{i=1}^{m} X_i$
 $E[X] = E\left[\sum_{i=1}^{m} X_i\right] = \sum_{i=1}^{m} E[X_i] = \sum_{i=1}^{m} \frac{7}{8} = \frac{7}{8}m \ge \frac{7}{8}OP$

Can be derandomized (method of conditional expectations)

Theorem (Håstad '01)

Assuming $P \neq NP$, for all constant $\epsilon > 0$ there is no polytime $(\frac{7}{8} + \epsilon)$ -approximation for Max-E3SAT.

Michael Dinitz

Т