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Introduction

What should we do if a problem is NP-hard?

▸ Give up on efficiency?

▸ Give up on correctness?

▸ Give up on worst-case analysis?

No right or wrong answer (other than giving up on analysis altogether).

Popular answer: approximation algorithms (one of my main research areas!)

▸ Give up on correctness, but in a provable, bounded way.

▸ Applies to optimization problems only (not pure decision problems)

▸ Has to run in polynomial time, but can return answer that is approximately correct.
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Main Definition

Definition

Let A be some (minimization) problem, and let I be an instance of that problem. Let
OPT(I) be the cost of the optimal solution on that instance. Let ALG be a polynomial-time
algorithm for A, and let ALG(I) denote the cost of the solution returned by ALG on instance
I . Then we say that ALG is an α-approximation if

ALG(I)
OPT(I)

≤ α

for all instances I of A.

▸ Approximation always at least 1

▸ For maximization, can either require
ALG(I)
OPT(I) ≥ α (where α < 1) or

OPT(I)
ALG(I) ≤ α (where

α > 1)

▸ Also gives “fine-grained” complexity: not all NP-hard problems are equally hard!
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Vertex Cover

Definition: S ⊆ V is a vertex cover of G = (V ,E) if S ∩ e ≠ ∅ for all e ∈ E

Definition (Vertex Cover)

Instance is graph G = (V ,E). Find vertex cover S , minimize ∣S ∣.

Last time: Vertex Cover NP-hard (reduction from Independent Set)

So cannot expect to compute a minimum vertex cover efficiently. What about an
approximately minimum vertex cover?

▸ Not an approximate vertex cover: still needs to be an actual vertex cover!
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Obvious Algorithm 1

S = ∅
while there is at least one uncovered edge {

Pick arbitrary vertex v incident on at least one uncovered edge
Add v to S

}

Not a good approximation: star graph.

▸ OPT = 1
▸ ALG = n − 1
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Obvious Algorithm 2

S = ∅
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.

▸ ∣U ∣ = t
▸ For all i ∈ {2,3, . . . , t}, divide U into
⌊t/i ⌋ disjoint sets of size i :
G i

1
,G i

2
, . . . ,G i

⌊t/i ⌋
▸ Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t
i=2 ⌊

t
i ⌋ ≥ ∑

t
i=2 (

1
2
⋅

t
i ) =

t
2 ∑

t
i=2

1
i = Ω(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = ∅
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.

▸ ∣U ∣ = t
▸ For all i ∈ {2,3, . . . , t}, divide U into
⌊t/i ⌋ disjoint sets of size i :
G i

1
,G i

2
, . . . ,G i

⌊t/i ⌋
▸ Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t
i=2 ⌊

t
i ⌋ ≥ ∑

t
i=2 (

1
2
⋅

t
i ) =

t
2 ∑

t
i=2

1
i = Ω(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = ∅
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.

▸ ∣U ∣ = t
▸ For all i ∈ {2,3, . . . , t}, divide U into
⌊t/i ⌋ disjoint sets of size i :
G i

1
,G i

2
, . . . ,G i

⌊t/i ⌋
▸ Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t
i=2 ⌊

t
i ⌋ ≥ ∑

t
i=2 (

1
2
⋅

t
i ) =

t
2 ∑

t
i=2

1
i = Ω(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = ∅
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.

▸ ∣U ∣ = t
▸ For all i ∈ {2,3, . . . , t}, divide U into
⌊t/i ⌋ disjoint sets of size i :
G i

1
,G i

2
, . . . ,G i

⌊t/i ⌋
▸ Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t
i=2 ⌊

t
i ⌋ ≥ ∑

t
i=2 (

1
2
⋅

t
i ) =

t
2 ∑

t
i=2

1
i = Ω(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Obvious Algorithm 2

S = ∅
while there is at least one uncovered
edge {

Let v be vertex incident on most
uncovered edges

Add v to S
}

Better, but still not great.

▸ ∣U ∣ = t
▸ For all i ∈ {2,3, . . . , t}, divide U into
⌊t/i ⌋ disjoint sets of size i :
G i

1
,G i

2
, . . . ,G i

⌊t/i ⌋
▸ Add vertex for each set, edge to all

elements.

Better but not great

this
tl divide hint His disiont sets

of size i hi hi ain

u i a i i i i

III it ti Intl

Better alg

OPT = t

ALG = ∑t
i=2 ⌊

t
i ⌋ ≥ ∑

t
i=2 (

1
2
⋅

t
i ) =

t
2 ∑

t
i=2

1
i = Ω(t log t)

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 6 / 14



Better Algorithm

S = ∅
while there is at least one uncovered edge {

Pick arbitrary uncovered edge {u,v}
Add u and v to S

}

Theorem

This algorithm is a 2-approximation.

Suppose algorithm take k iterations. Let L be edges chosen by the algorithm, so ∣L∣ = k .
Ô⇒ ∣S ∣ = 2k

L has structure: it is a matching!
Ô⇒ OPT ≥ k

Ô⇒ ALG/OPT ≤ 2.
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More Complicated Algorithm: LP Rounding
Write LP for vertex cover:

min ∑
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Question: Is this enough?

▸ Let OPT(LP) denote value of optimal LP solution: does OPT(LP) = OPT?

More complicated alg LPrelaxation

Write LP for Vertex Cover

min xu

s t Xu t Xu 21 V ur c V

O Exa El Yue U

Qi Is this enough Is OPTUP OPT
A A

Lp opt c it the art cost

4L ORTIZ
ORTCLP 42

422042

But OPIUM E OPT

PI Let M oat solution
ALL

Let x
1 it em opt

0 otherwise OpTCLP

x feasible for LP
often Effa feint IMI ORT

▸ OPT = 2
▸ OPT(LP) = 3/2
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LP Structure

min ∑
v∈V

xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

Lemma

OPT(LP) ≤ OPT

Proof.

Let S be optimal vertex cover (so ∣S ∣ = OPT ).

Let xv =

⎧⎪⎪
⎨
⎪⎪⎩

1 if v ∈ S
0 otherwise

xu + xv ≥ 1 for all {u,v} ∈ E by definition of S
0 ≤ xv ≤ 1 for all v ∈ V by definition

Ô⇒ x feasible
Ô⇒ OPT(LP) ≤ ∑v∈V xv = ∣S ∣ = OPT

More complicated alg LPrelaxation

Write LP for Vertex Cover
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LP Rounding Algorithm

▸ Solve LP to get x∗ (so ∑v∈V x∗v = OPT(LP))
▸ Return S = {v ∈ V ∶ x∗v ≥ 1/2}

Polytime: ✓

Lemma

S is a vertex cover.

Proof.

Let {u,v} ∈ E .
By LP constraint, x∗u + x∗v ≥ 1
Ô⇒ max(x∗u ,x∗v ) ≥ 1/2
Ô⇒ At least one of u,v in S

Lemma

∣S ∣ ≤ 2 ⋅OPT .

Proof.

∣S ∣ = ∑
v∈S

1 ≤ ∑
v∈S

2x∗v ≤ 2 ∑
v∈V

x∗v

= 2 ⋅OPT(LP) ≤ 2 ⋅OPT
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Proof.
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Why Use LP Rounding?

Important reason: much more flexible!

Weighted Vertex Cover: Also given w ∶ V → R+. Find vertex cover S minimizing ∑v∈S w(v)

min ∑
v∈V

w(v)xv

subject to xu + xv ≥ 1 ∀{u,v} ∈ E
0 ≤ xu ≤ 1 ∀u ∈ V

▸ Solve LP to get x∗

▸ Return S = {v ∈ V ∶ x∗v ≥ 1/2}

Still:

▸ Polytime

▸ S a vertex cover

▸ OPT(LP) ≤ OPT

∑
v∈S

w(v) ≤ ∑
v∈S

2x∗v w(v) ≤ 2 ∑
v∈V

w(v)x∗v = 2 ⋅OPT(LP) ≤ 2 ⋅OPT

Higher level: LP provides lower bound on OPT . Often main difficulty!
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Reductions and Approximation
Proved Vertex Cover NP-hard by reduction from Independent Set:

▸ Polytime algorithm for Vertex Cover Ô⇒ polytime algorithm for Independent
Set

So does this mean that a 2-approximation for Vertex Cover Ô⇒ 2-approximation for
Independent Set?

No!

Theorem

Assuming P ≠ NP, for all constants ϵ > 0 there is no polytime n1−ϵ-approximation for
Independent Set.

So these two problems are actually very different!

There is a notion of “approximation-preserving reduction”, but it is more involved than a
normal reduction.
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Max-E3SAT

Recall 3-SAT: CNF formula (AND of ORs) where every clause has ≤ 3 literals

▸ E3-SAT: Same, but every clause has exactly three literals (still NP-complete)

Optimization version: Max-E3SAT

▸ Find assignment to maximize # satisfied clauses

Easy randomized algorithm: Choose random assignment!

▸ For each variable xi , set xi = T with probability 1/2 and F with probability 1/2
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Max-E3SAT: Analysis
Algorithm: Choose random assignment

Clause i : probability satisfied = 7/8

Random variables:

▸ For i ∈ {1,2, . . . ,m}, let Xi =

⎧⎪⎪
⎨
⎪⎪⎩

1 if clause i satisfied
0 otherwise

▸ E [Xi ] = 7/8

▸ Let X = # clauses satisfied = ∑m
i=1 Xi

E [X ] = E [
m
∑
i=1

Xi] =
m
∑
i=1

E [Xi ] =
m
∑
i=1

7

8
=
7

8
m ≥

7

8
OPT

Can be derandomized (method of conditional expectations)

Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ϵ > 0 there is no polytime (7
8
+ ϵ)-approximation for

Max-E3SAT.
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Theorem (Håstad ’01)

Assuming P ≠ NP, for all constant ϵ > 0 there is no polytime (7
8
+ ϵ)-approximation for

Max-E3SAT.

Michael Dinitz Lecture 24: Approximation Algorithms November 21, 2024 14 / 14


