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Introduction

Class until now: di�culty was computational power

Today: di�culty is lack of information

Online:

� Input / data arrives over time

� Need to make decisions without knowing future
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Ski Rental Problem

Want to go skiing, but don’t know how many
times you’ll be able to go this year.

Should you rent or buy?

� Renting skis: $50
� Buying skis: $500
� Every day you ski and haven’t yet bought,

need to decide: rent or buy?

Buy right away:

� If you only ski once, should have rented
($50), instead bought ($500)

Never buy:

� What if you ski M ≈∞ times?

� Should have bought ($500), instead
rented (M ⋅ $50)

What’s the right strategy (for these costs)?
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Better Late Than Never

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10’th.

If ski ≤ 9 times: optimal

If ski ≥ 10 times:

� ALG = 450 + 500 = 950
� OPT = 500

Never more than twice (actually 19
10 times) what we should have done!
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Competitive Ratio

Definition

The competitive ratio of algorithm ALG is the maximum over all inputs/futures � of

ALG(�)
OPT(�) ,

where ALG(�) is the cost of ALG on � and OPT(�) is the optimal cost for � (knowing the
future).

So on ski rental problem with previous values, competitive ratio is 19
10 .
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Ski Rental: Generalized

$r to rent, $b to buy. Assume r divides b for simplicity.

BLTN: Rent b

r
− 1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 − r

b
.

Case 1: Ski z ≤ b

r
− 1 times

� ALG = z ⋅ r
� OPT =min(z ⋅ r ,b) = z ⋅ r

�⇒ ALG

OPT
= 1

Case 2: Ski z ≥ b

r
times

� ALG = r ⋅ �b

r
− 1� + b = b − r + b = 2b − r

� OPT =min(r ⋅ z,b) = b

�⇒ ALG

OPT
= 2b−r

b
= 2 − r

b

So for all inputs / futures, ALG

OPT
≤ 2 − r

b
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG : “ski x times, then buy”.
Input: ski x + 1 times.

Case 1: x ≥ b�r
� OPT =min(b, (x + 1)r) = b

� ALG = xr + b ≥ 2b
�⇒ ALG

OPT
≥ 2 > 2 − r

b

Case 2: x ≤ b

r
− 1

� OPT =min(b, (x + 1)r) = (x + 1)r
� ALG = xr + b

ALG

OPT
= xr + b

(x + 1)r =
xr + b

xr + r
= 1 + b − r

xr + r

≥ 1 + b − r

(b
r
− 1)r + r

= 1 + b − r

b
= 2 − r

b
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Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.

� How long should we wait for the elevator?

� Example: E = 15,S = 45.

BLTN: Wait S − E seconds, then give up and take stairs

If elevator arrives at x ≤ S − E :

� OPT =min(S,x + E) = x + E

� ALG = x + E

�⇒ ALG

OPT
= 1

If elevator arrives at x > S − E :

� OPT =min(S,x + E) = S

� ALG = (S − E) + S = 2S − E

�⇒ ALG

OPT
= 2S−E

S
= 2 − E

S
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S
= 2 − E

S
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Extensions: Randomization

What if our algorithm is allowed to be randomized?

� Choose our buying time from some distribution p over days (purchase distribution)

� Adversary knows p, but not our random draw from p (oblivious adversary).

� Normalize so r = 1

Theorem (Karlin, Manasse, McGeoch, Owicki

(SODA ‘90))

If we set pt = �b−1
b
�b−t 1

b�1−�1− 1
b
�b� for all t ≤ b, then

� E[ALG(�)]
OPT(�) ≤ e

e−1 ≈ 1.58 for all �, and

� this is optimal.

Good in expectation, but what about probability of being bad (e.g., worse than BLTN)?
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Extensions: Randomization

Pr[worse than BLTN] ≈ 0.3775: quite large!

Definition

(�,�)-tail bound: probability at most � of having competitive ratio larger than �

We introduced and studied recently: Dinitz, Im, Lavastida, Moseley, Vassilvitskii [SODA ’24]� Given collection of tail bounds, algorithm to compute optimal randomized algorithm
satisfying them.� They can look crazy!
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Paging

Classical problem in computer systems/theory

� Disk (slow) with N pages

� Memory (fast) with room for k < N pages� If OS/application requests a page not in memory: “page fault”� Need to bring requested page into memory, evict a page from memory (if currently full)

� Question: What to evict?

Example: k = 3. Requests: 1,2,3,2,4,3,4,1,2,3,4

(Convention: initial page faults to fill table don’t count: only pay when we evict a page)
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LRU

Standard algorithm: “Least Recently Used” (LRU)

� Evict page from memory that hasn’t been used in the longest time

� Intuition:� Want to evict page that’s next used furthest in the future. But don’t know future!� Hope that since it hasn’t been used for a long time, won’t be requested again for a long time.

Is this a good algorithm? What’s the competitive ratio? Cost = # evictions.

� k = 3, N = 4
� Requests: 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4, . . .

So LRU has competitive ratio ≈ k

� LRU evicts every time, OPT evicts 1 out of every k times.
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k .

Let ALG be some deterministic algorithm. Set N = k + 1

Request sequence: Whatever is not in memory for ALG !

�⇒ ALG has an eviction every time (after initialization)

OPT : evict page whose next request is furthest in the future

� Every page in memory needs to be requested before next eviction. So next eviction is in
at least k steps.

�⇒ ALG

OPT
≥ k
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Marking Algorithm

Get around lower bound by using randomization

� Lower bound argument doesn’t apply because can’t set request sequence to ask for
whatever’s not in memory, since that involved randomness! (Oblivious adversary)

Assume memory initially 1,2, . . . ,k .
Set all pages in memory to be “unmarked”

When page requested:

� If already in memory, “mark” it� If not in memory:� If all pages in memory “marked”, unmark all� Choose an unmarked page uniformly at random to evict� Bring in new page, mark it
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Marking Analysis

Theorem

Expected competitive ratio at most O(log k):
E[ALG(�)]
OPT(�) ≤ O(log k) for all request sequences �.

Proof sketch for N = k + 1: full generality more complicated

Phase: time between “unmark all” events.

In each phase:

� OPT ≥ 1, since all N pages requested
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ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:

� If marked: in memory, no eviction� If unmarked: if currently i unmarked pages, then
Pr[eviction] = Pr[requested page not in memory] = 1�i� Becomes marked

At beginning of phase i = N , at end of phase i = 1. Goes down by one every time page gets
marked.

�⇒ expected cost in phase at most 1
N
+ 1

N−1 + 1
N−2 + ⋅ ⋅ ⋅ + 1

2 + 1 = O(logN) = O(log k)
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