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Introduction

Class until now: difficulty was computational power
Today: difficulty is /lack of information

Online:
» Input / data arrives over time

» Need to make decisions without knowing future
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Ski Rental Problem

Want to go skiing, but don't know how many
times you'll be able to go this year.
Should you rent or buy?

» Renting skis: $50

» Buying skis: $500

» Every day you ski and haven't yet bought,
need to decide: rent or buy?
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Ski Rental Problem

Buy right away:
» If you only ski once, should have rented
($50), instead bought ($500)
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Ski Rental Problem

Want to go skiing, but don't know how many Buy right away:

times you'll be able to go this year. > If you only ski once, should have rented
$50), instead bought ($500
Should you rent or buy? (350), in ught ( )

» Renting skis: $50

Never buy:
> Buying skis: $500 » What if you ski M ~ oo times?
» Every day you ski and haven't yet bought, > Should have bought ($500), instead
need to decide: rent or buy? rented (M - $50)
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Ski Rental Problem

Want to go skiing, but don't know how many Buy right away:

times you'll be able to go this year. > If you only ski once, should have rented
$50), instead bought ($500
Should you rent or buy? (350), in ught ( )

» Renting skis: $50

Never buy:
> Buying skis: $500 » What if you ski M ~ oo times?
» Every day you ski and haven't yet bought, > Should have bought ($500), instead
need to decide: rent or buy? rented (M - $50)

What's the right strategy (for these costs)?
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Better Late Than Never

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.
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Better Late Than Never

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski <9 times: optimal

If ski > 10 times:
» ALG =450+500 =950
» OPT =500

Michael Dinitz Lecture 25: Online Algorithms

December 3, 2024

4/16



Better Late Than Never

Rent until you realize you should have bought!

BLTN: Rent 9 times, buy on 10'th.

If ski <9 times: optimal

If ski > 10 times:
» ALG =450+500 =950
» OPT =500

Never more than twice (actually i—g times) what we should have done!
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Competitive Ratio

Definition

The competitive ratio of algorithm ALG is the maximum over all inputs/futures o of
ALG (o)
OPT (o)’

where ALG (o) is the cost of ALG on o and OPT (o) is the optimal cost for o (knowing the

future).
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Competitive Ratio

Definition
The competitive ratio of algorithm ALG is the maximum over all inputs/futures o of
ALG (o)
OPT (o)’
where ALG (o) is the cost of ALG on o and OPT (o) is the optimal cost for o (knowing the
future).

So on ski rental problem with previous values, competitive ratio is %.
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Ski Rental: Generalized
$r to rent, $b to buy. Assume r divides b for simplicity.
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Ski Rental: Generalized
$r to rent, $b to buy. Assume r divides b for simplicity.

BLTN: Rent 2 -1 times, then buy.

Theorem
BLTN has competitive ratio at most 2 — i.
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Ski Rental: Generalized
$r to rent, $b to buy. Assume r divides b for simplicity.

BLTN: Rent 2 -1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 - %.

Case 1: Ski zsg—l times
» ALG=z-r
» OPT =min(z-r,b)=z-r

ALG _
= opr =1
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Ski Rental: Generalized
$r to rent, $b to buy. Assume r divides b for simplicity.

BLTN: Rent 2 -1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 - %.

Case 1: Ski zsg—l times
» ALG=z-r
» OPT =min(z-r,b)=z-r

ALG _
ot =1

Case 2: Ski z> % times
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Ski Rental: Generalized
$r to rent, $b to buy. Assume r divides b for simplicity.

BLTN: Rent 2 -1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 - %.

Case 1: Ski z < % -1 times Case 2: Ski z > % times

> ALG=z-r > ALG=r-(2-1)+b=b-r+b=2b
> OPT =min(z-r,b)=z-r » OPT =min(r-z,b)=b
ALG _ ALG _ 2b-r r
opr =1 — 0T =5 “27%
Michael Dinitz

Lecture 25: Online Algorithms December 3, 2024

-r

6/16



Ski Rental: Generalized
$r to rent, $b to buy. Assume r divides b for simplicity.

BLTN: Rent 2 -1 times, then buy.

Theorem

BLTN has competitive ratio at most 2 - %.

Case 1: Ski z < % -1 times Case 2: Ski z > % times

> ALG=z-r > ALG =r-(2-1)+b=b-r+b=2b-r
> OPT =min(z-r,b)=z-r » OPT =min(r-z,b)=b
ALG _ ALG _ 2b-r _ o _r
opr =1 — OPT =5 =27
So for all inputs / futures, g%fr <2-4
Michael Dinitz
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Lower Bound

Theorem
No (deterministic) algorithm has competitive ratio better than BLTN. J
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.

Case 1: x> b/r
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.

Case 1: x> b/r
» OPT =min(b,(x+1)r)=b
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.
Case 1: x> b/r
» OPT =min(b,(x+1)r)=b
» ALG=xr+b>2b

ALG
= OPT22>2——
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.
Case 1: x> b/r
» OPT =min(b,(x+1)r)=b
» ALG=xr+b>2b

ALG
= OPT22>2——

Case 2: x<=2-1

S~ |T
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.

Case 1: x > b/r Case 2:xs%—1
» OPT =min(b,(x+1)r)=b » OPT =min(b,(x+1)r) = (x+1)r

» ALG=xr+b>2b

ALG
= OPT22>2——
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.

Case 1: x > b/r Case 2:xs%—1
» OPT =min(b,(x+1)r)=b » OPT =min(b,(x+1)r) = (x+1)r
» ALG = xr+b>2b » ALG=xr+b
= 3,’;‘.;-. >2>2-+
Michael Dinitz
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Lower Bound

Theorem

No (deterministic) algorithm has competitive ratio better than BLTN.

Deterministic ALG: “ski x times, then buy”.
Input: ski x +1 times.

Case 1: x> b/r Case 2: xs%—l
» OPT =min(b,(x+1)r)=b » OPT =min(b,(x+1)r) = (x+1)r
» ALG=xr+b>2b » ALG=xr+b
ALG
— opr22>2-3 ALG xr+b xr+b b-r
= = = <+
OPT (x+1)r xr+r Xr+r
b-r b-r r
21+ =1+ =2 - —
(%—1)r+r b b
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Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.
» How long should we wait for the elevator?
» Example: E =15,5 =45.
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Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.
» How long should we wait for the elevator?

» Example: E =15,5 =45.

BLTN: Wait § - E seconds, then give up and take stairs

If elevator arrives at x < S - E:
» OPT =min(S,x+E)=x+E

» ALG=x+E
ALG _q
OPT
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Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.
» How long should we wait for the elevator?
» Example: E =15,5 =45.

BLTN: Wait § - E seconds, then give up and take stairs

If elevator arrives at x < S - E:

» OPT =min(S,x+E)=x+E

If elevator arrives at x > S - E:

» ALG=x+E
ALG _
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Elevator Problem

Trying to get up a building: takes E seconds by elevator, S seconds by stairs.
» How long should we wait for the elevator?

» Example: E =15,5 =45.

BLTN: Wait § - E seconds, then give up and take stairs

If elevator arrives at x < S - E:
» OPT =min(S,x+E)=x+E

» ALG=x+E
ALG _q
OPT

Michael Dinitz

If elevator arrives at x > S - E:
» OPT =min(S,x+E)=8
» ALG=(S-E)+S=2S-E
ALG _ 2S-E

_9_E
opT="5 =273
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Extensions: Randomization

What if our algorithm is allowed to be randomized?
» Choose our buying time from some distribution p over days (purchase distribution)
» Adversary knows p, but not our random draw from p (oblivious adversary).

» Normalizeso r=1
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Extensions: Randomization

What if our algorithm is allowed to be randomized?
» Choose our buying time from some distribution p over days (purchase distribution)

» Adversary knows p, but not our random draw from p (oblivious adversary).

» Normalizeso r=1

Theorem (Karlin, Manasse, McGeoch, Owicki
(SODA ‘90)) 0.007
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Extensions: Randomization

What if our algorithm is allowed to be randomized?

» Choose our buying time from some distribution p over days (purchase distribution)

» Adversary knows p, but not our random draw from p (oblivious adversary).

» Normalizeso r=1

Theorem (Karlin, Manasse, McGeoch, Owicki
(SODA '90))

for all t < b, then

Probability Mass

b-t

If we set p; = (%)
b(l (1-- )
%G((:))]S ~ 1.58 for all o, and

> this is optimal.
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Good in expectation, but what about probability of being bad (e.g., worse than BLTN)?
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Extensions: Randomization
Pr[worse than BLTN] ~ 0.3775: quite large!
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Extensions: Randomization
Pr[worse than BLTN] ~ 0.3775: quite large!

Definition

(v, 0)-tail bound: probability at most & of having competitive ratio larger than ~

We introduced and studied recently: Dinitz, Im, Lavastida, Moseley, Vassilvitskii [SODA '24]
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Extensions: Randomization
Pr[worse than BLTN] ~ 0.3775: quite large!

Definition

(v, 8)-tail bound: probability at most § of having competitive ratio larger than

We introduced and studied recently: Dinitz, Im, Lavastida, Moseley, Vassilvitskii [SODA '24]

» Given collection of tail bounds, algorithm to compute optimal randomized algorithm
satisfying them.

» They can look crazy!
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Extensions: Randomization

Pr[worse than BLTN] ~ 0.3775: quite large!

Definition

(v, 0)-tail bound: probability at most & of having competitive ratio larger than ~

We introduced and studied recently: Dinitz, Im, Lavastida, Moseley, Vassilvitskii [SODA '24]
» Given collection of tail bounds, algorithm to compute optimal randomized algorithm

satisfying them.
» They can look crazy!
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Paging

Classical problem in computer systems/theory

v

Disk (slow) with N pages

v

Memory (fast) with room for k < N pages

v

If OS/application requests a page not in memory: “page fault”
> Need to bring requested page into memory, evict a page from memory (if currently full)

» Question: What to evict?
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Paging

Classical problem in computer systems/theory

v

Disk (slow) with N pages

v

Memory (fast) with room for k < N pages

v

If OS/application requests a page not in memory: “page fault”
> Need to bring requested page into memory, evict a page from memory (if currently full)

» Question: What to evict?

Example: k = 3. Requests: 1,2,3,2,4,3,4,1,2,3,4

(Convention: initial page faults to fill table don't count: only pay when we evict a page)
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LRU
Standard algorithm: “Least Recently Used” (LRU)

> Evict page from memory that hasn’t been used in the longest time
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LRU
Standard algorithm: “Least Recently Used” (LRU)

> Evict page from memory that hasn’t been used in the longest time
> [Intuition:

> Want to evict page that's next used furthest in the future. But don't know future!
> Hope that since it hasn’t been used for a long time, won't be requested again for a long time.
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> Want to evict page that's next used furthest in the future. But don't know future!
> Hope that since it hasn’t been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.
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Standard algorithm: “Least Recently Used” (LRU)

> Evict page from memory that hasn’t been used in the longest time
> [Intuition:

> Want to evict page that's next used furthest in the future. But don't know future!
> Hope that since it hasn’t been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.
» k=3, N=4
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Standard algorithm: “Least Recently Used” (LRU)

> Evict page from memory that hasn’t been used in the longest time
> [Intuition:

> Want to evict page that's next used furthest in the future. But don't know future!
> Hope that since it hasn’t been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.
» k=3, N=4
» Requests: 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,...
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LRU
Standard algorithm: “Least Recently Used” (LRU)

> Evict page from memory that hasn’t been used in the longest time
> [Intuition:

> Want to evict page that's next used furthest in the future. But don't know future!
> Hope that since it hasn’t been used for a long time, won't be requested again for a long time.

Is this a good algorithm? What's the competitive ratio? Cost = # evictions.
» k=3, N=4

» Requests: 1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4,...

So LRU has competitive ratio ~ k
» LRU evicts every time, OPT evicts 1 out of every k times.
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k. J

Let ALG be some deterministic algorithm. Set N = k +1
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No deterministic algorithm has competitive ratio less than k. J

Let ALG be some deterministic algorithm. Set N = k +1
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k.

Let ALG be some deterministic algorithm. Set N = k +1
Request sequence: Whatever is not in memory for ALG!
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k.

Let ALG be some deterministic algorithm. Set N = k +1
Request sequence: Whatever is not in memory for ALG!

== ALG has an eviction every time (after initialization)
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k.

Let ALG be some deterministic algorithm. Set N =k +1
Request sequence: Whatever is not in memory for ALG!

== ALG has an eviction every time (after initialization)

OPT: evict page whose next request is furthest in the future

» Every page in memory needs to be requested before next eviction. So next eviction is in

at least k steps.
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Lower Bound

Theorem

No deterministic algorithm has competitive ratio less than k.

Let ALG be some deterministic algorithm. Set N =k +1
Request sequence: Whatever is not in memory for ALG!

== ALG has an eviction every time (after initialization)

OPT: evict page whose next request is furthest in the future

» Every page in memory needs to be requested before next eviction. So next eviction is in
at least k steps.

ALG 5
OPT
Michael Dinitz
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Marking Algorithm

Get around lower bound by using randomization

» Lower bound argument doesn’t apply because can't set request sequence to ask for
whatever's not in memory, since that involved randomness! (Oblivious adversary)
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Marking Algorithm

Get around lower bound by using randomization

» Lower bound argument doesn’t apply because can't set request sequence to ask for
whatever's not in memory, since that involved randomness! (Oblivious adversary)

Assume memory initially 1,2,...,k
Set all pages in memory to be “unmarked”

When page requested:
» If already in memory, “mark” it
> |If not in memory:

> If all pages in memory “marked”, unmark all

» Choose an unmarked page uniformly at random to evict
» Bring in new page, mark it
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Marking Analysis

Theorem
Expected competitive ratio at most O(log k):

E[ALG(0)]

~0PT(0) S O(log k) for all request sequences o .
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Marking Analysis

Theorem
Expected competitive ratio at most O(log k):

%G((:))] < O(log k) for all request sequences o .

Proof sketch for N = k +1: full generality more complicated
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Marking Analysis

Theorem
Expected competitive ratio at most O(log k):

E[ALG(0)]

~0PT(0) S O(log k) for all request sequences o .

Proof sketch for N = k +1: full generality more complicated

Phase: time between “unmark all” events.
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Marking Analysis

Theorem
Expected competitive ratio at most O(log k):

E[ALG(0)]

0PT(0) S O(log k) for all request sequences o .

Proof sketch for N = k +1: full generality more complicated

Phase: time between “unmark all” events.
In each phase:

» OPT > 1, since all N pages requested
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ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.
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ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:
» If marked: in memory, no eviction

» If unmarked: if currently i unmarked pages, then
Pr[eviction] = Pr[requested page not in memory] =1/i
» Becomes marked
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ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:
» If marked: in memory, no eviction

» If unmarked: if currently i unmarked pages, then
Pr[eviction] = Pr[requested page not in memory] =1/i
» Becomes marked

At beginning of phase i = N, at end of phase i =1. Goes down by one every time page gets
marked.
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ALG in each phase

Key point: the one page not in memory is uniformly distributed among all unmarked pages.

When page requested:
» If marked: in memory, no eviction

» If unmarked: if currently i unmarked pages, then
Pr[eviction] = Pr[requested page not in memory] =1/i
» Becomes marked

At beginning of phase i = N, at end of phase i =1. Goes down by one every time page gets
marked.

== expected cost in phase at most % +ngt ﬁ oot % +1=0(log N) = O(log k)
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