
Lecture 26: Algorithmic Learning Theory

Michael Dinitz

December 5, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 1 / 21

 



Introduction

Machine Learning from the point of view of theoretical computer science

� Proofs about performance

� Minimize assumptions

� Not going to talk about useful in practice, etc.

Today:

� Concept Learning

� Online Learning

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 2 / 21



Concept Learning

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 3 / 21



Concept Learning Intro

Trying to learn “Yes/No” labels

� Given a photo, does it have a dog in it?

� Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Example: spam

� Want to create a rule (hypothesis) that will tell us whether an email is spam

� Given some example emails with labels (Yes / No, Spam / Not Spam)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 4 / 21



Concept Learning Intro

Trying to learn “Yes/No” labels

� Given a photo, does it have a dog in it?

� Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Example: spam

� Want to create a rule (hypothesis) that will tell us whether an email is spam

� Given some example emails with labels (Yes / No, Spam / Not Spam)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 4 / 21



Example

sales apply Mr. bad spelling known-sender spam?

Y N Y Y N Y

N N N Y Y N

N Y N N N Y

Y N N N Y N

N N Y N Y N

Y N N Y N Y

N N Y N N N

N Y N Y N Y

Reasonable hypothesis:
spam if not known-sender
AND (apply OR sales)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 5 / 21



Example

sales apply Mr. bad spelling known-sender spam?

Y N Y Y N Y

N N N Y Y N

N Y N N N Y

Y N N N Y N

N N Y N Y N

Y N N Y N Y

N N Y N N N

N Y N Y N Y

Reasonable hypothesis:
spam if not known-sender
AND (apply OR sales)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 5 / 21



Questions

Question 1: Can we e�ciently find working hypothesis for given labeled data?

� Mainly about e�ciency; like many of the problems we’ve talked about

� Depends on what kinds of hypotheses we’re looking for (structure and quality)

Question 2: Can we be confident that our hypothesis will do well in the future?

� Not primarily about e�ciency; about quality

� Requires knowing something about the future!

� Core of machine learning: use the past to make predictions about the future

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 6 / 21



Formalization: Beginning

Given sample set S = {(x1,y1
), . . . (xm,ym

)}. Size m called the sample complexity

� Each x i drawn from distribution D (not necessarily known)

� y i
= f (x i

) for some unknown f

Our goal: compute hypothesis h with low error on D:

err(h) ∶= Pr
x∼D[h(x) ≠ f (x)] ≤ ✏

Generally not possible unless m extremely large. Proof: random function f
� Knowing f (x i

) on sample points doesn’t tell us anything about f (x) on points not
sampled

Need to restrict f .

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 7 / 21



Formalization: Beginning

Given sample set S = {(x1,y1
), . . . (xm,ym

)}. Size m called the sample complexity

� Each x i drawn from distribution D (not necessarily known)

� y i
= f (x i

) for some unknown f

Our goal: compute hypothesis h with low error on D:

err(h) ∶= Pr
x∼D[h(x) ≠ f (x)] ≤ ✏

Generally not possible unless m extremely large. Proof: random function f
� Knowing f (x i

) on sample points doesn’t tell us anything about f (x) on points not
sampled

Need to restrict f .

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 7 / 21



Formalization: Beginning

Given sample set S = {(x1,y1
), . . . (xm,ym

)}. Size m called the sample complexity

� Each x i drawn from distribution D (not necessarily known)

� y i
= f (x i

) for some unknown f

Our goal: compute hypothesis h with low error on D:

err(h) ∶= Pr
x∼D[h(x) ≠ f (x)] ≤ ✏

Generally not possible unless m extremely large. Proof: random function f
� Knowing f (x i

) on sample points doesn’t tell us anything about f (x) on points not
sampled

Need to restrict f .

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 7 / 21



Example: Decision Lists

Data point: x ∈ {0,1}n

Decision List:

� If x1 = 1 return 0

� Else if x4 = 1 return 1

� Else if x2 = 0 return 1

� Else return 0

Key features:

� Doesn’t branch

� Each “if” looks at one coordinate and either returns
or continues down list

Can we “learn” decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list
that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come
from?

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 8 / 21



Example: Decision Lists

Data point: x ∈ {0,1}n

Decision List:

� If x1 = 1 return 0

� Else if x4 = 1 return 1

� Else if x2 = 0 return 1

� Else return 0

Key features:

� Doesn’t branch

� Each “if” looks at one coordinate and either returns
or continues down list

Can we “learn” decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list
that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come
from?

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 8 / 21



Example: Decision Lists

Data point: x ∈ {0,1}n

Decision List:

� If x1 = 1 return 0

� Else if x4 = 1 return 1

� Else if x2 = 0 return 1

� Else return 0

Key features:

� Doesn’t branch

� Each “if” looks at one coordinate and either returns
or continues down list

Can we “learn” decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list
that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come
from?

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 8 / 21



Formalization

Definition: Let X be a collection of instances / data points (e.g., X = {0,1}n). A concept is
a boolean function h ∶ X → {0,1} (e.g., a decision list), and a concept class H is a collection
of concepts (e.g., all DLs).

Definition

A concept class H is PAC-learnable with sample complexity m(✏,�) if there is an algorithm A
such that for all f ∈H:

1. Input of A is 0 < ✏ < 1�2 and 0 < � < 1�2 and set S = {(x1,y1
), . . . , (xm(✏,�),ym(✏,�)

)}

where y i
= f (x i

) for all i
2. A outputs a concept h that is “probably approximately correct”: for all distributions D

over data points,

Pr
S∼Dm(✏,�) [err(h) ≤ ✏] = Pr

S∼Dm(✏,�) � Prx∼D [h(x) ≠ f (x)] ≤ ✏� ≥ 1 − �

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 9 / 21



Formalization

Definition: Let X be a collection of instances / data points (e.g., X = {0,1}n). A concept is
a boolean function h ∶ X → {0,1} (e.g., a decision list), and a concept class H is a collection
of concepts (e.g., all DLs).

Definition

A concept class H is PAC-learnable with sample complexity m(✏,�) if there is an algorithm A
such that for all f ∈H:

1. Input of A is 0 < ✏ < 1�2 and 0 < � < 1�2 and set S = {(x1,y1
), . . . , (xm(✏,�),ym(✏,�)

)}

where y i
= f (x i

) for all i
2. A outputs a concept h that is “probably approximately correct”: for all distributions D

over data points,

Pr
S∼Dm(✏,�) [err(h) ≤ ✏] = Pr

S∼Dm(✏,�) � Prx∼D [h(x) ≠ f (x)] ≤ ✏� ≥ 1 − �

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 9 / 21



Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and e�cient algorithms?

S ′ = S,L = �
while(S ′ ≠ �) {

Find if-then rule ↵ consistent with S ′ that labels at least 1 element of S ′
Add ↵ to the bottom of L
Remove data labeled by ↵ from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an ↵?

� By assumption, there is a DL f that labels S and so S ′
� Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21



Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and e�cient algorithms?

S ′ = S,L = �
while(S ′ ≠ �) {

Find if-then rule ↵ consistent with S ′ that labels at least 1 element of S ′
Add ↵ to the bottom of L
Remove data labeled by ↵ from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an ↵?

� By assumption, there is a DL f that labels S and so S ′
� Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21



Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and e�cient algorithms?

S ′ = S,L = �
while(S ′ ≠ �) {

Find if-then rule ↵ consistent with S ′ that labels at least 1 element of S ′
Add ↵ to the bottom of L
Remove data labeled by ↵ from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an ↵?

� By assumption, there is a DL f that labels S and so S ′
� Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21



Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and e�cient algorithms?

S ′ = S,L = �
while(S ′ ≠ �) {

Find if-then rule ↵ consistent with S ′ that labels at least 1 element of S ′
Add ↵ to the bottom of L
Remove data labeled by ↵ from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an ↵?

� By assumption, there is a DL f that labels S and so S ′
� Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21



Running Time of Algorithm

Number of iterations: ≤ �S � =m(✏,�)

Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

� Number of possible rules (“if xi = 0�1, return 0�1”): 4n

Total time at most O(n ⋅m(✏,�)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ✏: want this to
happen with probability at most �.

� But the DL h we output labels S correctly!

� Want to show: since h labels S correctly, with probability at least 1−� has error at most ✏

� In other words: prove that with probability at least 1 − �, every DL h consistent with S
has error at most ✏

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21



Running Time of Algorithm

Number of iterations: ≤ �S � =m(✏,�)

Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

� Number of possible rules (“if xi = 0�1, return 0�1”): 4n

Total time at most O(n ⋅m(✏,�)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ✏: want this to
happen with probability at most �.

� But the DL h we output labels S correctly!

� Want to show: since h labels S correctly, with probability at least 1−� has error at most ✏

� In other words: prove that with probability at least 1 − �, every DL h consistent with S
has error at most ✏

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21



Running Time of Algorithm

Number of iterations: ≤ �S � =m(✏,�)

Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

� Number of possible rules (“if xi = 0�1, return 0�1”): 4n

Total time at most O(n ⋅m(✏,�)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ✏: want this to
happen with probability at most �.

� But the DL h we output labels S correctly!

� Want to show: since h labels S correctly, with probability at least 1−� has error at most ✏

� In other words: prove that with probability at least 1 − �, every DL h consistent with S
has error at most ✏

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21



Running Time of Algorithm

Number of iterations: ≤ �S � =m(✏,�)

Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

� Number of possible rules (“if xi = 0�1, return 0�1”): 4n

Total time at most O(n ⋅m(✏,�)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ✏: want this to
happen with probability at most �.

� But the DL h we output labels S correctly!

� Want to show: since h labels S correctly, with probability at least 1−� has error at most ✏

� In other words: prove that with probability at least 1 − �, every DL h consistent with S
has error at most ✏

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21



Sample Complexity

So suppose that h some DL with error at least ✏ (Prx∼D[h(x) ≠ f (x)] ≥ ✏), and let
m =m(✏,�) = �S �

�⇒ PrS∼Dm[h consistent with S] ≤ (1 − ✏)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ✏,h consistent with S] ≤ H(1 − ✏)m ≤ He−✏m

Set m = 1
✏
�lnH + ln � 1

�
��:

= He−✏m ≤ He−✏ 1
✏
�ln �H �+ln� 1

�
��
= He−�ln �H �+ln� 1

�
��
= H �

1

H
�� = �

So with probability at least 1 − �, every DL consistent with S has error at most ✏ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
�⇒ m =⇥ �1

✏
�n lnn + ln � 1

�
���

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21



Sample Complexity

So suppose that h some DL with error at least ✏ (Prx∼D[h(x) ≠ f (x)] ≥ ✏), and let
m =m(✏,�) = �S �
�⇒ PrS∼Dm[h consistent with S] ≤ (1 − ✏)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ✏,h consistent with S] ≤ H(1 − ✏)m ≤ He−✏m

Set m = 1
✏
�lnH + ln � 1

�
��:

= He−✏m ≤ He−✏ 1
✏
�ln �H �+ln� 1

�
��
= He−�ln �H �+ln� 1

�
��
= H �

1

H
�� = �

So with probability at least 1 − �, every DL consistent with S has error at most ✏ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
�⇒ m =⇥ �1

✏
�n lnn + ln � 1

�
���

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21



Sample Complexity

So suppose that h some DL with error at least ✏ (Prx∼D[h(x) ≠ f (x)] ≥ ✏), and let
m =m(✏,�) = �S �
�⇒ PrS∼Dm[h consistent with S] ≤ (1 − ✏)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ✏,h consistent with S] ≤ H(1 − ✏)m ≤ He−✏m

Set m = 1
✏
�lnH + ln � 1

�
��:

= He−✏m ≤ He−✏ 1
✏
�ln �H �+ln� 1

�
��
= He−�ln �H �+ln� 1

�
��
= H �

1

H
�� = �

So with probability at least 1 − �, every DL consistent with S has error at most ✏ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
�⇒ m =⇥ �1

✏
�n lnn + ln � 1

�
���

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

union bound



Sample Complexity

So suppose that h some DL with error at least ✏ (Prx∼D[h(x) ≠ f (x)] ≥ ✏), and let
m =m(✏,�) = �S �
�⇒ PrS∼Dm[h consistent with S] ≤ (1 − ✏)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ✏,h consistent with S] ≤ H(1 − ✏)m ≤ He−✏m

Set m = 1
✏
�lnH + ln � 1

�
��:

= He−✏m ≤ He−✏ 1
✏
�ln �H �+ln� 1

�
��
= He−�ln �H �+ln� 1

�
��
= H �

1

H
�� = �

So with probability at least 1 − �, every DL consistent with S has error at most ✏ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
�⇒ m =⇥ �1

✏
�n lnn + ln � 1

�
���

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21



Sample Complexity

So suppose that h some DL with error at least ✏ (Prx∼D[h(x) ≠ f (x)] ≥ ✏), and let
m =m(✏,�) = �S �
�⇒ PrS∼Dm[h consistent with S] ≤ (1 − ✏)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ✏,h consistent with S] ≤ H(1 − ✏)m ≤ He−✏m

Set m = 1
✏
�lnH + ln � 1

�
��:

= He−✏m ≤ He−✏ 1
✏
�ln �H �+ln� 1

�
��
= He−�ln �H �+ln� 1

�
��
= H �

1

H
�� = �

So with probability at least 1 − �, every DL consistent with S has error at most ✏ (including
the one we output)!

H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
�⇒ m =⇥ �1

✏
�n lnn + ln � 1

�
���

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21



Sample Complexity

So suppose that h some DL with error at least ✏ (Prx∼D[h(x) ≠ f (x)] ≥ ✏), and let
m =m(✏,�) = �S �
�⇒ PrS∼Dm[h consistent with S] ≤ (1 − ✏)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ✏,h consistent with S] ≤ H(1 − ✏)m ≤ He−✏m

Set m = 1
✏
�lnH + ln � 1

�
��:

= He−✏m ≤ He−✏ 1
✏
�ln �H �+ln� 1

�
��
= He−�ln �H �+ln� 1

�
��
= H �

1

H
�� = �

So with probability at least 1 − �, every DL consistent with S has error at most ✏ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
�⇒ m =⇥ �1

✏
�n lnn + ln � 1

�
���

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21



Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: H ≤ n!4n

“Simple” hypothesis: expressible in ≤ s bits

�⇒ ≤ 2s simple hypotheses

�⇒ after 1
✏
�s ln 2 + ln � 1

�
�� samples, unlikely for us to get fooled by a simple hypothesis

that’s actually wrong!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 13 / 21



Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: H ≤ n!4n

“Simple” hypothesis: expressible in ≤ s bits

�⇒ ≤ 2s simple hypotheses

�⇒ after 1
✏
�s ln 2 + ln � 1

�
�� samples, unlikely for us to get fooled by a simple hypothesis

that’s actually wrong!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 13 / 21



Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: H ≤ n!4n

“Simple” hypothesis: expressible in ≤ s bits

�⇒ ≤ 2s simple hypotheses

�⇒ after 1
✏
�s ln 2 + ln � 1

�
�� samples, unlikely for us to get fooled by a simple hypothesis

that’s actually wrong!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 13 / 21



Online Learning

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 14 / 21



Online Learning

Learning over time, not just one-shot

� Similar to online algorithms: see data one piece at a time

� Instead of trying to minimize competitive ratio, trying to use the data to make decisions
as we go.

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 15 / 21



Learning From Expert Advice

Intuition: stock market

� n experts
� Every day:

� Every expert predicts up/down
� Algorithm makes prediction
� Find out what happened

What can/should we do? Can we always make an accurate prediction?

� No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

� Don’t try to learn the market: learn which expert knows the market best

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 16 / 21



Learning From Expert Advice

Intuition: stock market

� n experts
� Every day:

� Every expert predicts up/down
� Algorithm makes prediction
� Find out what happened

What can/should we do? Can we always make an accurate prediction?

� No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

� Don’t try to learn the market: learn which expert knows the market best

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 16 / 21



Learning From Expert Advice

Intuition: stock market

� n experts
� Every day:

� Every expert predicts up/down
� Algorithm makes prediction
� Find out what happened

What can/should we do? Can we always make an accurate prediction?

� No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

� Don’t try to learn the market: learn which expert knows the market best

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 16 / 21



Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

� Each mistake decreases # experts by 1�2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21



Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

� Each mistake decreases # experts by 1�2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21



Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

� Each mistake decreases # experts by 1�2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21



Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make:

O(logn) mistakes

� Each mistake decreases # experts by 1�2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21



Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

� Each mistake decreases # experts by 1�2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21



Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

� Majority vote of remaining experts

� Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

� Each mistake decreases # experts by 1�2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m

� Best expert has weight at least (1�2)m

W ≤ n(3�4)M

� Every time we make a mistake, at least
1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤ n(3�4)M �⇒ (4�3)M ≤ n2m

�⇒ M ≤ log4�3(n2m
) =

m + logn
log(4�3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m

� Best expert has weight at least (1�2)m

W ≤ n(3�4)M

� Every time we make a mistake, at least
1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤ n(3�4)M �⇒ (4�3)M ≤ n2m

�⇒ M ≤ log4�3(n2m
) =

m + logn
log(4�3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m

� Best expert has weight at least (1�2)m

W ≤ n(3�4)M

� Every time we make a mistake, at least
1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤ n(3�4)M �⇒ (4�3)M ≤ n2m

�⇒ M ≤ log4�3(n2m
) =

m + logn
log(4�3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m

� Best expert has weight at least (1�2)m

W ≤ n(3�4)M

� Every time we make a mistake, at least
1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤ n(3�4)M �⇒ (4�3)M ≤ n2m

�⇒ M ≤ log4�3(n2m
) =

m + logn
log(4�3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21



General case: no perfect expert

Weighted Majority

� Initialize all experts to weight 1

� Predict based on weighted majority vote

� Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1�2)m

� Best expert has weight at least (1�2)m

W ≤ n(3�4)M

� Every time we make a mistake, at least
1�2 the total weight gets decreased by
1�2, so left with at most 3�4 of the
original total weight

�⇒ (1�2)m ≤ n(3�4)M �⇒ (4�3)M ≤ n2m

�⇒ M ≤ log4�3(n2m
) =

m + logn
log(4�3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21



Improved Algorithm

How to do better?

Randomization! (and change 1�2 to (1 − ✏))

Randomized Weighted Majority

� Let Wi = 1 be weight of expert i , let W = ∑
n

i=1 Wi .

� Do what expert i says with probability Wi �W
� If expert i incorrect, set Wi ← (1 − ✏)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ✏ ≤ 1�2:

E [M] ≤ (1 + ✏)m +
1

✏
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21



Improved Algorithm

How to do better? Randomization!

(and change 1�2 to (1 − ✏))

Randomized Weighted Majority

� Let Wi = 1 be weight of expert i , let W = ∑
n

i=1 Wi .

� Do what expert i says with probability Wi �W
� If expert i incorrect, set Wi ← (1 − ✏)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ✏ ≤ 1�2:

E [M] ≤ (1 + ✏)m +
1

✏
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21



Improved Algorithm

How to do better? Randomization! (and change 1�2 to (1 − ✏))

Randomized Weighted Majority

� Let Wi = 1 be weight of expert i , let W = ∑
n

i=1 Wi .

� Do what expert i says with probability Wi �W
� If expert i incorrect, set Wi ← (1 − ✏)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ✏ ≤ 1�2:

E [M] ≤ (1 + ✏)m +
1

✏
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21



Improved Algorithm

How to do better? Randomization! (and change 1�2 to (1 − ✏))

Randomized Weighted Majority

� Let Wi = 1 be weight of expert i , let W = ∑
n

i=1 Wi .

� Do what expert i says with probability Wi �W
� If expert i incorrect, set Wi ← (1 − ✏)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ✏ ≤ 1�2:

E [M] ≤ (1 + ✏)m +
1

✏
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21



Improved Algorithm

How to do better? Randomization! (and change 1�2 to (1 − ✏))

Randomized Weighted Majority

� Let Wi = 1 be weight of expert i , let W = ∑
n

i=1 Wi .

� Do what expert i says with probability Wi �W
� If expert i incorrect, set Wi ← (1 − ✏)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ✏ ≤ 1�2:

E[M] ≤ (1 + ✏)m +
1

✏
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21



Randomized Weighted Majority Analysis

Let:

� Fi = fraction of weight at time i on experts who make mistake at time i
� Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ✏) + (1 − F1)W0 = F1n(1 − ✏) + (1 − F1)n
= n(F1 − ✏F1 + 1 − F1) = (1 − ✏F1)n

W2 = F2W1(1 − ✏) + (1 − F2)W1 = (1 − ✏F2)W1 = (1 − ✏F2)(1 − ✏F1)n
⋮

Wt = n
t

�

i=1
(1 − ✏Fi ) ≤ n

t

�

i=1
e−✏Fi = ne−✏∑t

i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21



Randomized Weighted Majority Analysis

Let:

� Fi = fraction of weight at time i on experts who make mistake at time i
� Wi = total weight after time i (at beginning of time i + 1)

W0 = n

W1 = F1W0(1 − ✏) + (1 − F1)W0 = F1n(1 − ✏) + (1 − F1)n
= n(F1 − ✏F1 + 1 − F1) = (1 − ✏F1)n

W2 = F2W1(1 − ✏) + (1 − F2)W1 = (1 − ✏F2)W1 = (1 − ✏F2)(1 − ✏F1)n
⋮

Wt = n
t

�

i=1
(1 − ✏Fi ) ≤ n

t

�

i=1
e−✏Fi = ne−✏∑t

i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21



Randomized Weighted Majority Analysis

Let:

� Fi = fraction of weight at time i on experts who make mistake at time i
� Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ✏) + (1 − F1)W0 = F1n(1 − ✏) + (1 − F1)n
= n(F1 − ✏F1 + 1 − F1) = (1 − ✏F1)n

W2 = F2W1(1 − ✏) + (1 − F2)W1 = (1 − ✏F2)W1 = (1 − ✏F2)(1 − ✏F1)n
⋮

Wt = n
t

�

i=1
(1 − ✏Fi ) ≤ n

t

�

i=1
e−✏Fi = ne−✏∑t

i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21



Randomized Weighted Majority Analysis

Let:

� Fi = fraction of weight at time i on experts who make mistake at time i
� Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ✏) + (1 − F1)W0 = F1n(1 − ✏) + (1 − F1)n
= n(F1 − ✏F1 + 1 − F1) = (1 − ✏F1)n

W2 = F2W1(1 − ✏) + (1 − F2)W1 = (1 − ✏F2)W1 = (1 − ✏F2)(1 − ✏F1)n

⋮

Wt = n
t

�

i=1
(1 − ✏Fi ) ≤ n

t

�

i=1
e−✏Fi = ne−✏∑t

i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21



Randomized Weighted Majority Analysis

Let:

� Fi = fraction of weight at time i on experts who make mistake at time i
� Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ✏) + (1 − F1)W0 = F1n(1 − ✏) + (1 − F1)n
= n(F1 − ✏F1 + 1 − F1) = (1 − ✏F1)n

W2 = F2W1(1 − ✏) + (1 − F2)W1 = (1 − ✏F2)W1 = (1 − ✏F2)(1 − ✏F1)n
⋮

Wt = n
t

�

i=1
(1 − ✏Fi ) ≤ n

t

�

i=1
e−✏Fi = ne−✏∑t

i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21



Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi �⇒ E[M] = ∑t

i=1 Fi

�⇒ lnWt ≤ ln�ne−✏∑t

i=1 Fi � = lnn − ✏
t

�

i=1
Fi = lnn − ✏E[M]

But best expert makes m mistakes

�⇒ Wt ≥ (1 − ✏)
m
�⇒ lnWt ≥m ln(1 − ✏)

So m ln(1 − ✏) ≤ lnn − ✏E[M]

�⇒ E [M] ≤
1

✏
(lnn −m ln(1 − ✏)) ≤ (1 + ✏)m +

1

✏
lnn

(using fact that
− ln(1−✏)

✏
≤ 1 + ✏ for all 0 < ✏ ≤ 1�2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21



Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi �⇒ E[M] = ∑t

i=1 Fi

�⇒ lnWt ≤ ln�ne−✏∑t

i=1 Fi � = lnn − ✏
t

�

i=1
Fi = lnn − ✏E [M]

But best expert makes m mistakes

�⇒ Wt ≥ (1 − ✏)
m
�⇒ lnWt ≥m ln(1 − ✏)

So m ln(1 − ✏) ≤ lnn − ✏E[M]

�⇒ E [M] ≤
1

✏
(lnn −m ln(1 − ✏)) ≤ (1 + ✏)m +

1

✏
lnn

(using fact that
− ln(1−✏)

✏
≤ 1 + ✏ for all 0 < ✏ ≤ 1�2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21



Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi �⇒ E[M] = ∑t

i=1 Fi

�⇒ lnWt ≤ ln�ne−✏∑t

i=1 Fi � = lnn − ✏
t

�

i=1
Fi = lnn − ✏E [M]

But best expert makes m mistakes

�⇒ Wt ≥ (1 − ✏)
m
�⇒ lnWt ≥m ln(1 − ✏)

So m ln(1 − ✏) ≤ lnn − ✏E[M]

�⇒ E [M] ≤
1

✏
(lnn −m ln(1 − ✏)) ≤ (1 + ✏)m +

1

✏
lnn

(using fact that
− ln(1−✏)

✏
≤ 1 + ✏ for all 0 < ✏ ≤ 1�2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21



Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi �⇒ E[M] = ∑t

i=1 Fi

�⇒ lnWt ≤ ln�ne−✏∑t

i=1 Fi � = lnn − ✏
t

�

i=1
Fi = lnn − ✏E [M]

But best expert makes m mistakes

�⇒ Wt ≥ (1 − ✏)
m
�⇒ lnWt ≥m ln(1 − ✏)

So m ln(1 − ✏) ≤ lnn − ✏E[M]

�⇒ E [M] ≤
1

✏
(lnn −m ln(1 − ✏)) ≤ (1 + ✏)m +

1

✏
lnn

(using fact that
− ln(1−✏)

✏
≤ 1 + ✏ for all 0 < ✏ ≤ 1�2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21



Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi �⇒ E[M] = ∑t

i=1 Fi

�⇒ lnWt ≤ ln�ne−✏∑t

i=1 Fi � = lnn − ✏
t

�

i=1
Fi = lnn − ✏E [M]

But best expert makes m mistakes

�⇒ Wt ≥ (1 − ✏)
m
�⇒ lnWt ≥m ln(1 − ✏)

So m ln(1 − ✏) ≤ lnn − ✏E[M]

�⇒ E[M] ≤
1

✏
(lnn −m ln(1 − ✏)) ≤ (1 + ✏)m +

1

✏
lnn

(using fact that
− ln(1−✏)

✏
≤ 1 + ✏ for all 0 < ✏ ≤ 1�2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21


