Lecture 26: Algorithmic Learning Theory

Michael Dinitz

December 5, 2024 601.433/633 Introduction to Algorithms

Introduction

Machine Learning from the point of view of theoretical computer science

- Proofs about performance
- Minimize assumptions
- Not going to talk about useful in practice, etc.

Today:

- Concept Learning
- Online Learning

Concept Learning

Concept Learning Intro

Trying to learn "Yes/No" labels

- Given a photo, does it have a dog in it?
- Given an email, is it spam?

Given some labeled data. Create a good prediction rule (*hypothesis*) for future data.

Concept Learning Intro

Trying to learn "Yes/No" labels

- Given a photo, does it have a dog in it?
- Given an email, is it spam?

Given some labeled data. Create a good prediction rule (*hypothesis*) for future data.

Example: spam

- Want to create a rule (hypothesis) that will tell us whether an email is spam
- Given some example emails with labels (Yes / No, Spam / Not Spam)

Example

sales	apply	Mr.	bad spelling	known-sender	spam?	
Y	Ν	Y	Y	N	Y	
Ν	Ν	Ν	Y	Y	Ν	
Ν	Y	Ν	Ν	Ν	Y	
Y	Ν	Ν	Ν	Y	N	
Ν	Ν	Y	Ν	Y	N	
Y	Ν	Ν	Y	Ν	Y	
Ν	Ν	Y	Ν	Ν	Ν	
Ν	Y	Ν	Y	Ν	Y	
Michael Dinitz			Leo	Lecture 26: Algorithmic Learning Theory		

Example

sales	apply	Mr.	bad spelling	known-sender	spam?	
Y	Ν	Y	Y	Ν	Y	
Ν	Ν	Ν	Y	Y	Ν	
Ν	Y	Ν	Ν	Ν	Y	
Y	Ν	Ν	Ν	Y	Ν	
Ν	Ν	Y	Ν	Y	Ν	
Y	Ν	Ν	Y	Ν	Y	
Ν	Ν	Y	Ν	Ν	N	
Ν	Y	Ν	Y	Ν	Y	
Michael Dinitz			Lec	Lecture 26: Algorithmic Learning Theory		

Reasonable hypothesis: spam if not known-sender AND (apply OR sales)

December 5, 2024

Questions

 $\label{eq:Question 1: Can we efficiently find working hypothesis for given labeled data?$

- Mainly about efficiency; like many of the problems we've talked about
- Depends on what kinds of hypotheses we're looking for (structure and quality)

Question 2: Can we be confident that our hypothesis will do well in the future?

- Not primarily about efficiency; about quality
- Requires knowing something about the future!
- Core of machine learning: use the past to make predictions about the future

Formalization: Beginning

Given sample set $S = \{(x^1, y^1), \dots, (x^m, y^m)\}$. Size *m* called the *sample complexity*

- Each xⁱ drawn from distribution D (not necessarily known)
- $y^i = f(x^i)$ for some unknown f

Our goal: compute hypothesis **h** with low *error* on **D**:

 $err(h) \coloneqq \Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon$

Formalization: Beginning

Given sample set $S = \{(x^1, y^1), \dots, (x^m, y^m)\}$. Size *m* called the *sample complexity*

- Each xⁱ drawn from distribution D (not necessarily known)
- $y^i = f(x^i)$ for some unknown f

Our goal: compute hypothesis **h** with low *error* on **D**:

$$err(h) \coloneqq \Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon$$

Generally not possible unless m extremely large. Proof: random function f

Knowing f(xⁱ) on sample points doesn't tell us anything about f(x) on points not sampled

Formalization: Beginning

Given sample set $S = \{(x^1, y^1), \dots, (x^m, y^m)\}$. Size *m* called the *sample complexity*

- Each xⁱ drawn from distribution D (not necessarily known)
- $y^i = f(x^i)$ for some unknown f

Our goal: compute hypothesis **h** with low *error* on **D**:

$$err(h) \coloneqq \Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon$$

Generally not possible unless m extremely large. Proof: random function f

Knowing f(xⁱ) on sample points doesn't tell us anything about f(x) on points not sampled

Need to restrict **f**.

Example: Decision Lists

Data point: $x \in \{0,1\}^n$

Decision List:

- If $x_1 = 1$ return 0
- Else if $x_4 = 1$ return 1
- Else if $x_2 = 0$ return 1
- Else return **0**

Key features:

- Doesn't branch
- Each "if" looks at one coordinate and either returns or continues down list

Example: Decision Lists

Data point: $x \in \{0,1\}^n$

Decision List:

- If $x_1 = 1$ return 0
- Else if $x_4 = 1$ return 1
- Else if $x_2 = 0$ return 1
- Else return **0**

Key features:

- Doesn't branch
- Each "if" looks at one coordinate and either returns or continues down list

Can we "learn" decision lists? Restrict f to be a DL.

Example: Decision Lists

Data point: $x \in \{0,1\}^n$

Decision List:

- If $x_1 = 1$ return 0
- Else if $x_4 = 1$ return 1
- Else if $x_2 = 0$ return 1
- Else return **0**

Key features:

- Doesn't branch
- Each "if" looks at one coordinate and either returns or continues down list

Can we "learn" decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution **D** that samples come from?

Formalization

Definition: Let **X** be a collection of instances / data points (e.g., $X = \{0, 1\}^n$). A *concept* is a boolean function $h: X \to \{0, 1\}$ (e.g., a decision list), and a *concept class* \mathcal{H} is a collection of concepts (e.g., all DLs).

Formalization

Definition: Let **X** be a collection of instances / data points (e.g., $X = \{0, 1\}^n$). A *concept* is a boolean function $h: X \to \{0, 1\}$ (e.g., a decision list), and a *concept class* \mathcal{H} is a collection of concepts (e.g., all DLs).

Definition

A concept class \mathcal{H} is *PAC-learnable* with sample complexity $m(\epsilon, \delta)$ if there is an algorithm A such that for all $f \in \mathcal{H}$:

- 1. Input of A is $0 < \epsilon < 1/2$ and $0 < \delta < 1/2$ and set $S = \{(x^1, y^1), \dots, (x^{m(\epsilon, \delta)}, y^{m(\epsilon, \delta)})\}$ where $y^i = f(x^i)$ for all i
- 2. **A** outputs a concept **h** that is "probably approximately correct": for all distributions **D** over data points,

$$\Pr_{S \sim D^{m(\epsilon,\delta)}} \left[err(h) \le \epsilon \right] = \Pr_{S \sim D^{m(\epsilon,\delta)}} \left[\Pr_{x \sim D} \left[h(x) \neq f(x) \right] \le \epsilon \right] \ge 1 - \delta$$

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S' = S, L = \emptyset
while(S' \neq \emptyset) {
Find if-then rule \alpha consistent with S' that labels at least 1 element of S'
Add \alpha to the bottom of L
Remove data labeled by \alpha from S'
}
Add "else return 0" to bottom of L
Return L
```

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S' = S, L = \emptyset

while(S' \neq \emptyset) {

Find if-then rule \alpha consistent with S' that labels at least 1 element of S'

Add \alpha to the bottom of L

Remove data labeled by \alpha from S'

}

Add "else return 0" to bottom of L

Return L
```

Correctness: Why can we always find such an α ?

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S' = S, L = \emptyset

while(S' \neq \emptyset) {

Find if-then rule \alpha consistent with S' that labels at least 1 element of S'

Add \alpha to the bottom of L

Remove data labeled by \alpha from S'

}

Add "else return 0" to bottom of L

Return L
```

Correctness: Why can we always find such an α ?

- By assumption, there is a DL f that labels S and so S'
- Highest rule in f not added to L will work!

Number of iterations: $\leq |\mathbf{S}| = \mathbf{m}(\epsilon, \delta)$

Number of iterations: $\leq |S| = m(\epsilon, \delta)$

Time per iteration: check every possible rule, see if consistent with S' (and labels at least one point)

Number of possible rules ("if $x_i = 0/1$, return 0/1"): 4n

Number of iterations: $\leq |S| = m(\epsilon, \delta)$

Time per iteration: check every possible rule, see if consistent with S' (and labels at least one point)

Number of possible rules ("if $x_i = 0/1$, return 0/1"): 4n

Total time at most $O(n \cdot m(\epsilon, \delta))$: pretty good if sample complexity small.

Number of iterations: $\leq |S| = m(\epsilon, \delta)$

Time per iteration: check every possible rule, see if consistent with S' (and labels at least one point)

Number of possible rules ("if $x_i = 0/1$, return 0/1"): 4n

Total time at most $O(n \cdot m(\epsilon, \delta))$: pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL **h** with $err(h) > \epsilon$: want this to happen with probability at most δ .

- But the DL h we output labels S correctly!
- Want to show: since **h** labels **S** correctly, with probability at least 1δ has error at most ϵ
- In other words: prove that with probability at least 1δ , every DL h consistent with S has error at most ϵ

So suppose that **h** some DL with error at least ϵ ($\Pr_{x\sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

So suppose that h some DL with error at least ϵ ($\Pr_{x\sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

 $\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m$

So suppose that **h** some DL with error at least ϵ ($\Pr_{x \sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

- \implies $\Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 \epsilon)^m$
- Let H = # decision lists.

decision lists. $Pr_{S\sim D^m}[\exists h \text{ s.t. } err(h) > \epsilon, h \text{ consistent with } S] \leq H(1-\epsilon)^m \leq He^{-\epsilon m}$

So suppose that **h** some DL with error at least ϵ ($\Pr_{x\sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

 $\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m$

Let H = # decision lists.

 $\Pr_{S \sim D^m}[\exists h \text{ s.t. } err(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq He^{-\epsilon m}$

Set $m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)$: = $He^{-\epsilon m} \le He^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H\left(\frac{1}{H} \right) \delta = \delta$

So suppose that **h** some DL with error at least ϵ ($\Pr_{x\sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

 $\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m$

Let H = # decision lists.

 $\Pr_{S \sim D^m}[\exists h \text{ s.t. } err(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq He^{-\epsilon m}$

Set
$$m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)$$
:
= $He^{-\epsilon m} \le He^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H\left(\frac{1}{H} \right) \delta = \delta$

So with probability at least $1 - \delta$, *every* DL consistent with S has error at most ϵ (including the one we output)!

So suppose that **h** some DL with error at least ϵ ($\Pr_{x\sim D}[h(x) \neq f(x)] \geq \epsilon$), and let $m = m(\epsilon, \delta) = |S|$

 $\implies \Pr_{S \sim D^m}[h \text{ consistent with } S] \leq (1 - \epsilon)^m$

Let H = # decision lists.

 $\Pr_{S \sim D^m}[\exists h \text{ s.t. } err(h) > \epsilon, h \text{ consistent with } S] \leq H(1 - \epsilon)^m \leq He^{-\epsilon m}$

Set
$$m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)$$
:
= $He^{-\epsilon m} \le He^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H\left(\frac{1}{H} \right) \delta = \delta$

So with probability at least $1 - \delta$, *every* DL consistent with S has error at most ϵ (including the one we output)!

 $H \le n!4^n$, since at most n! orderings of coordinates, and at most 4 rules/coordinate $\implies m = \Theta\left(\frac{1}{\epsilon}\left(n\ln n + \ln\left(\frac{1}{\delta}\right)\right)\right)$

Michael Dinitz

"Prefer simple explanations to complicated ones"

Only thing we used about DL in sample complexity analysis: $H \le n!4^n$

"Simple" hypothesis: expressible in $\leq s$ bits

"Prefer simple explanations to complicated ones"

Only thing we used about DL in sample complexity analysis: $H \le n!4^n$

"Simple" hypothesis: expressible in $\leq s$ bits $\implies \leq 2^s$ simple hypotheses "Prefer simple explanations to complicated ones"

Only thing we used about DL in sample complexity analysis: $H \le n!4^n$

"Simple" hypothesis: expressible in $\leq s$ bits

⇒ $\leq 2^{s}$ simple hypotheses ⇒ after $\frac{1}{\epsilon} \left(s \ln 2 + \ln \left(\frac{1}{\delta} \right) \right)$ samples, unlikely for us to get fooled by a simple hypothesis that's actually wrong!

Online Learning

Learning over time, not just one-shot

- Similar to online algorithms: see data one piece at a time
- Instead of trying to minimize competitive ratio, trying to use the data to make decisions as we go.

Learning From Expert Advice

Intuition: stock market

- **n** experts
- Every day:
 - Every expert predicts up/down
 - Algorithm makes prediction
 - Find out what happened

What can/should we do? Can we always make an accurate prediction?

Learning From Expert Advice

Intuition: stock market

- **n** experts
- Every day:
 - Every expert predicts up/down
 - Algorithm makes prediction
 - Find out what happened

What can/should we do? Can we always make an accurate prediction?

No! Experts could all be essentially random, uncorrelated with market

Learning From Expert Advice

Intuition: stock market

- **n** experts
- Every day:
 - Every expert predicts up/down
 - Algorithm makes prediction
 - Find out what happened

What can/should we do? Can we always make an accurate prediction?

▶ No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

Don't try to learn the market: learn which expert knows the market best

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes **0** mistakes

We make:

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes 0 mistakes

We make: $O(\log n)$ mistakes

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize #mistakes?

Each day:

- Majority vote of remaining experts
- Remove incorrect experts

Best expert makes **0** mistakes

We make: $O(\log n)$ mistakes

Each mistake decreases # experts by 1/2

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
- M = # mistakes we've made
- m = # mistakes best expert has made
- $\boldsymbol{W} = \mathsf{total} \mathsf{ weight}$

Weighted Majority

- Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
- M = # mistakes we've made
- m = # mistakes best expert has made
- $\pmb{W} = \mathsf{total} \; \mathsf{weight}$

$W \ge (1/2)^m$

• Best expert has weight at least $(1/2)^m$

Weighted Majority

- \blacktriangleright Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half

M = # mistakes we've made

m = # mistakes best expert has made

 $\pmb{W} = \mathsf{total} \; \mathsf{weight}$

 $W \ge (1/2)^m$

• Best expert has weight at least $(1/2)^m$

 $W \leq n(3/4)^M$

Every time we make a mistake, at least 1/2 the total weight gets decreased by 1/2, so left with at most 3/4 of the original total weight

Weighted Majority

- \blacktriangleright Initialize all experts to weight 1
- Predict based on weighted majority vote
- Penalize mistakes by cutting weights in half
- M = # mistakes we've made m = # mistakes best expert has made W = total weight

 $W \ge (1/2)^m$

• Best expert has weight at least $(1/2)^m$

 $W \leq n(3/4)^M$

Every time we make a mistake, at least 1/2 the total weight gets decreased by 1/2, so left with at most 3/4 of the original total weight

$$\implies (1/2)^m \le n(3/4)^M \implies (4/3)^M \le n2^m$$
$$\implies M \le \log_{4/3}(n2^m) = \frac{m + \log n}{\log(4/3)} \approx 2.4(m + \log n)$$

How to do better?

How to do better? Randomization!

How to do better? Randomization! (and change 1/2 to $(1 - \epsilon)$)

How to do better? Randomization! (and change 1/2 to $(1 - \epsilon)$)

Randomized Weighted Majority

- Let $W_i = 1$ be weight of expert *i*, let $W = \sum_{i=1}^n W_i$.
- Do what expert i says with probability W_i/W
- If expert *i* incorrect, set $W_i \leftarrow (1 \epsilon) W_i$

How to do better? Randomization! (and change 1/2 to $(1 - \epsilon)$)

Randomized Weighted Majority

- Let $W_i = 1$ be weight of expert *i*, let $W = \sum_{i=1}^n W_i$.
- Do what expert i says with probability W_i/W
- If expert *i* incorrect, set $W_i \leftarrow (1 \epsilon) W_i$

Theorem

Let M = # mistakes we've made, let m = # mistakes best expert has made. When $\epsilon \leq 1/2$:

$$E[M] \leq (1+\epsilon)m + \frac{1}{\epsilon}\ln n$$

- F_i = fraction of weight at time *i* on experts who make mistake at time *i*
- W_i = total weight *after* time *i* (at beginning of time *i* + 1)

Let:

- F_i = fraction of weight at time *i* on experts who make mistake at time *i*
- W_i = total weight *after* time *i* (at beginning of time *i* + 1)

 $W_0 = n$

- F_i = fraction of weight at time *i* on experts who make mistake at time *i*
- W_i = total weight *after* time *i* (at beginning of time *i* + 1)

$$W_0 = n$$

$$W_1 = F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n$$

$$= n(F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n$$

- F_i = fraction of weight at time *i* on experts who make mistake at time *i*
- W_i = total weight *after* time *i* (at beginning of time *i* + 1)

$$W_0 = n$$

$$W_1 = F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n$$

$$= n(F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n$$

$$W_2 = F_2 W_1 (1 - \epsilon) + (1 - F_2) W_1 = (1 - \epsilon F_2) W_1 = (1 - \epsilon F_2) (1 - \epsilon F_1) n$$

- F_i = fraction of weight at time *i* on experts who make mistake at time *i*
- W_i = total weight *after* time *i* (at beginning of time *i* + 1)

$$W_{0} = n$$

$$W_{1} = F_{1}W_{0}(1-\epsilon) + (1-F_{1})W_{0} = F_{1}n(1-\epsilon) + (1-F_{1})n$$

$$= n(F_{1}-\epsilon F_{1}+1-F_{1}) = (1-\epsilon F_{1})n$$

$$W_{2} = F_{2}W_{1}(1-\epsilon) + (1-F_{2})W_{1} = (1-\epsilon F_{2})W_{1} = (1-\epsilon F_{2})(1-\epsilon F_{1})n$$

$$\vdots$$

$$W_{t} = n\prod_{i=1}^{t} (1-\epsilon F_{i}) \le n\prod_{i=1}^{t} e^{-\epsilon F_{i}} = ne^{-\epsilon \sum_{i=1}^{t} F_{i}}$$

Note: probability we make mistake at time *i* is exactly $F_i \implies E[M] = \sum_{i=1}^t F_i$

Note: probability we make mistake at time *i* is exactly $F_i \implies E[M] = \sum_{i=1}^t F_i$

$$\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]$$

Note: probability we make mistake at time *i* is exactly $F_i \implies E[M] = \sum_{i=1}^t F_i$

$$\implies \ln W_t \le \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]$$

But best expert makes *m* mistakes

$$\implies W_t \ge (1-\epsilon)^m \implies \ln W_t \ge m \ln(1-\epsilon)$$

Note: probability we make mistake at time *i* is exactly $F_i \implies E[M] = \sum_{i=1}^t F_i$

$$\implies \ln W_t \le \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]$$

But best expert makes *m* mistakes

$$\implies W_t \ge (1-\epsilon)^m \implies \ln W_t \ge m \ln(1-\epsilon)$$

So $m \ln(1 - \epsilon) \leq \ln n - \epsilon E[M]$

Note: probability we make mistake at time *i* is exactly $F_i \implies E[M] = \sum_{i=1}^t F_i$

$$\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]$$

But best expert makes *m* mistakes

$$\implies W_t \ge (1-\epsilon)^m \implies \ln W_t \ge m \ln(1-\epsilon)$$

So $m \ln(1 - \epsilon) \leq \ln n - \epsilon E[M]$

$$\implies E[M] \leq \frac{1}{\epsilon} \left(\ln n - m \ln(1 - \epsilon) \right) \leq (1 + \epsilon)m + \frac{1}{\epsilon} \ln n$$

(using fact that $\frac{-\ln(1-\epsilon)}{\epsilon} \le 1 + \epsilon$ for all $0 < \epsilon \le 1/2$)