
601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz
Topic: Intro to Algorithmic Learning Theory Date: 12/5/24

26.1 Introduction

Today we’re going to talk about machine learning, but from an algorithms point of view. Ma-
chine learning is a pretty broad and interdisciplinary field, including ideas from AI, statistics, and
theoretical computer science. All of these are important ingredients, but we’re going to focus on
machine learning from a TCS point of view. This means in particular that we’re going to focus
on provable guarantees and we’ll try to make our analyses as worst-case as possible, as opposed to
more AI or stats-based points of view where the focus is on making probabilistic assumptions and
then designing algorithms that seem to work well (either provably or in practice).

26.2 Concept Learning

The following basic problem arises often in machine learning: there is some unknown set, and we
are given a sample of some elements and told whether or not each element is in the set (i.e. we are
given labeled data). From this data, we want to produce a good prediction rule (a hypothesis) for
future data.

A standard example of this problem is spam categorization. We want a computer program to help
us decide which emails are spam and which are important. We can assume that each email is
represented by n features (e.g., return address, keywords, size, etc.). Then we are given a sample
S of emails which have already been labeled as spam or not spam, and are asked to provide a rule
to use in the future. For example, our input set S might look like the following.

sales apply Mr. bad spelling known-sender spam?

Y N Y Y N Y
N N N Y Y N
N Y N N N Y
Y N N N Y N
N N Y N Y N
Y N N Y N Y
N N Y N N N
N Y N Y N Y

Given this data, a reasonable hypothesis might be “predict spam if unknown-sender AND (apply
OR sales)”.

In general, when we are given this kind of question there are two big questions, which are related
but distinct. First, how can we automatically generate good hypotheses from the data? It might
be a nontrivial computational problem even to find a hypothesis that works on S! Second, how

1



confident are we that our hypothesis will do well in the future? This is some kind of confidence
bound or sample complexity bound – for a given learning algorithm, how much data do we need to
see before we can make a guarantee about the future?

Let’s begin to formalize this. We are given a sample set S = {(x1, y1), . . . (xm, ym)}, where the
examples xi are drawn from some distribution D and the labels yi are produced by some (unknown)
target function f , i.e. yi = f(xi) for each i ∈ [m]. Our algorithm does some kind of optimization
over S to produce a hypothesis h, and the goal is to do well on the same distribution D. In other
words, we want to create an h so that Prx∼D[h(x) ̸= f(x)] ≤ ϵ. We call ϵ the error of h (with
respect to D).

26.2.1 Decision Lists

Let’s do an example: learning a decision list. A decision list (DL) is a function which is essentially
one long if/elseif chain, where the first if which is satisfied determines what to return. So, for
example, if x is a binary vector then a decision list might be something like “if x1 = 1 then return
0; otherwise if x4 = 1 then return 1; otherwise if x2 = 0 return 1; otherwise return 0”. The
important features of this are that it doesn’t branch (i.e. it’s a chain and not a tree), and each “if”
condition looks at just one coordinate.

So suppose that our target function f is a decision list (maybe we have some good reason external
to the formalization to suspect that it might be a DL). In order to learn f , we need to do two
things. First, we obviously need a way of finding a consistent decision list for our sample S (note
that one must exist since we are assuming that f is a DL). But now since we’re doing machine
learning, we need to also make a second guarantee: we want to say that whatever DL we find for S
is actually a good DL for the whole distribution D. In other words, we want to make a guarantee
about the future.

We can do this by proving that if |S| is “reasonable”, then

Pr[exists consistent DL h with err(h) > ϵ] < δ.

Thus the h that we find, since it will be consistent with S, will have error at most ϵ with probability
at least 1− δ. This is known as the PAC model, for “probably approximately correct”, and is due
to Valiant in a seminal paper “A theory of the learnable”.

In general, we have the following definition. This isn’t totally formal or correct, but will suffice for
this class.

Definition 26.2.1 Let X be a collection of instances (for example, X = {0, 1}n). A concept is
a boolean function h : X → {0, 1} (e.g. a decision list), and a concept class H is a collection of
concepts (e.g the set of all decision lists). Let m : R2 → R. We say that H is PAC-learnable with
sample complexity m(ϵ, δ) there is an algorithm A where the following properties hold for every
concept f ∈ H:

1. The input of A is 0 < ϵ < 1/2 and 0 < δ < 1/2 and a set S = {(x1, y1), . . . , (xm(ϵ,δ), ym(ϵ,δ))}
where yi = f(xi) for all i.

2



2. A outputs a concept h such that h has error at most ϵ. More formally, for any distribution
D over X, if S was obtained by choosing each xi independently from D then

Pr
S

[
Pr
x∼D

[h(x) ̸= f(x)] ≤ ϵ

]
≥ 1− δ.

Let’s prove that decision lists are PAC-learnable with reasonable sample complexity. First, we need
an algorithm that generates a DL consistent with S (assuming that one exists). This is reasonably
straightforward. We start out with the full list, and find an if-then rule consistent with the data and
satisfied by at least one example. This can be done efficiently since there are at most 4n possible
“if” conditions, so we can just check each one. We then put this condition at the bottom of the list
so far, and cross off the examples it covered. We repeat until no examples remain. If this algorithm
fails, i.e. if at some point we cannot find a consistent “if” rule, then this clearly means that there is
no DL consistent with the remaining data and thus no DL consistent with the original data. Since
we are assuming that f is a DL, this can’t happen.

So now we have a hypothesis DL. Why do we expect it to do well in the future? Consider some DL
h with error more than ϵ that we’re worried about. Suppose that S has size m. Since each example
in S is drawn from distribution D and h has error larger than ϵ with respect to D, the probability
that h is consistent with S is at most (1−ϵ)m. Now let H be the total number of decision lists. Then
the union bound implies that Pr[some DL h with err(h) > ϵ is consistent with S] ≤ H(1− ϵ)m.

We want this value to be at most δ. So if we set m to be at least 1
ϵ (ln(H) + ln(1/δ)), then this is

satisfied, since then

H(1− ϵ)m ≤ He−ϵm

≤ He− ln(H)−ln(1/δ)

≤ δ

In our case we know that H ≤ n! ·4n since for each feature there are 4 possible rules, and no feature
will appear twice in a DL. So the number of samples we need in order to have a DL with error at
most ϵ with probability at least 1− δ is only Θ(1ϵ (n lnn+ ln(1/δ))).

26.2.2 Occam’s Razor

One really nice thing about this analysis is that it didn’t actually use anything special about
decision lists. All we needed was the number of decision lists to be reasonably small, in this case
approximately n!. So this analysis would work for any class of functions where there aren’t too
many possible functions to choose from! We just need the number of examples to be essentially
lnH, which is a huge improvement over a bound like H. Less formally, we proved that “if there
aren’t too many different rules to choose from, then it’s unlikely that one will fool us just by
chance”.

This leads to a nice formalization of the classical “Occam’s razor”. William of Occam, in approx-
imately 1320 AD, made the claim that in general, we should prefer simpler explanations to more
complicated ones. While this intuitively makes sense, why should we follow it? What’s the benefit
of simplicity?

3



Suppose that “simple” means that the description is at most s bits long. Then there can be at
most 2s simple explanations. Thus our analysis implies that if we see at least 1

ϵ (s ln(2) + ln(1/δ))
examples, it is unlikely that one will fool us just by chance. Of course, we don’t have any guarantee
that there will be a consistent simple explanation, but if there is one then we can be pretty confident
in it. Thus we should prefer simple explanations to complicated ones.

26.2.3 Followup work

There have been thousands of paper using this general framework and making various kinds of im-
provements. For example, one very interesting direction (at least to me) is replacing the ln(H) with
something like “effective number of degrees of freedom”. For example, consider linear separators.
There are an infinite number of linear separators (so H is infinite), but only a small number of
really distinct ones given S. This can be formalized, and other more refined analyses can be done.

26.3 Online Learning

What if we don’t want to assume that there is some fixed distribution D? Then clearly we can
no longer talk about past performance predicting anything in the future. Is there anything at all
that we can say? A statistics-based view would probably say that we’re dead in the water – if the
adversary controls the examples we see and the future, then we can’t make any statistically-based
guarantees. But from an algorithmic point of view, we can actually make some very interesting
claims. The main idea is something called “regret bounds”, and the idea is to show that our
algorithm does nearly as well as the best predictor in some large class of predictors.

We’ll illustrate this using the classic setting of “using expert advice”. Suppose that we want to
predict whether the stock market will go up or down tomorrow. There are many experts who will
tell us what they think will happen, but obviously they might disagree with each other. But we
want to use their advice to make a prediction. Then the next day we will find out what happens,
each expert will make another prediction for the day after, and we will repeat this (either forever
or for some number of rounds).

How can we do this, and what kind of guarantees can we make? The basic question that we’ll
consider is whether we can do nearly as well as the best expert in hindsight. In other words, we will
look at how well each expert does over all time (in this simplified setting, the number of mistakes
that they make), and we will try to design an algorithm which does nearly as well as the best of
them. Note that this is seems extremely difficult to do – we don’t know anything about these n
experts, and the adversary can control what happens at every time point? So one expert might
be good for a while and then become terrible, and another expert might start off terrible but get
better, etc. Nevertheless, we’ll want to guarantee that we do almost as well as the best single
expert.

26.3.1 Perfect expert

Let’s start with a simpler setting: suppose that we know one of the experts is perfect (never
makes a mistake), we just don’t know which one. Is there a strategy which will let us identify this
always-correct expert without making too many mistakes?

4



Let’s do the following: each day, we take a majority vote of the experts and use that as our
prediction. Then we eliminate any experts that were wrong. It is easy to see that this algorithm
will only make at most log n mistakes. This is because every time it makes a mistake, that means
that at least half of the remaining experts made the incorrect prediction, so we will eliminate at
least half of the remaining experts. Since we started with n experts, we can only eliminate at least
half of the remaining experts log n times before we are left with one expert. And since we are
assuming that there is a perfect expert, this one will never be eliminated.

This gives a “mistake bound” of log n.

26.3.2 No perfect expert

If there is no perfect expert then making a mistake doesn’t completely disqualify an expert, so we
don’t want to completely eliminate experts who make a mistake. Instead, we’ll give each expert a
“weight”, and decrease the weight of experts who make mistakes.

This idea gives the Weighted Majority algorithm:

1. Initialize all experts to weight 1.

2. Predict based on weighted majority vote.

3. Penalize mistakes by cutting weights in half.

To analyze this, let M be the number of mistakes that we have made so far, let m be the number
of mistakes that the best expert has made so far, and let W be the total weight (which starts at
n and decreases throughout the algorithm). When we make a mistake, that means that at least
half of the current weight gets decreased by half, so W drops by at least 25%. So after we’ve made
M mistakes, W is at most n(3/4)m. On the other hand, the weight of the best expert is exactly
(1/2)m. Thus

(1/2)m ≤ n(3/4)M

(4/3)M ≤ n2m

M ≤ log4/3(n2
m) = (m+ log n)/ log(4/3) ≈ 2.4(m+ log n)

This is a pretty good result: the number of mistakes that we make is linear (with a reasonably small
constant) in the number of mistakes made by the best expert. But what if the best expert is still
wrong 20% of the time? Then our algorithm is only doing slightly better than random guessing!
(Even if we ignore the log n part, a mistake bound of 2.4m would mean that we make mistakes
48% of the time).

It turns out that we can do a bit better by using randomness. In particular, we will interpret weights
as probabilities: instead of deterministically taking the weighted majority vote, we will randomly
choose an expert according to its weight and then do whatever the expert does. Intuitively, this
“smoothes out” the worst case – if the weighted vote is close to balanced, then the adversary
won’t be able to force us to make a mistake. This is known as the Randomized Weighted Majority
algorithm. We will also change the penalty for being wrong: instead of removing 1/2 the weight

5



of experts who make a mistake, we will instead remove an ϵ fraction of their weight on a mistake.
Note that we can always go back to setting ϵ = 1/2 if we want.

Theorem 26.3.1 When ϵ ≤ 1/2, the expected number of mistakes M made by the randomized
weighted majority algorithm is at most (1 + ϵ)m+ 1

ϵ lnn.

Proof: Suppose that at time t there is an Ft fraction of the weight on experts who make a
mistake. Then since we always remove an ϵ fraction of the weight from experts who make mistakes,
the total weight after time 1 is F1n(1−ϵ)+(1−F1)n = n(1−F1+F1−ϵF1) = n(1−ϵF1). Similarly,
the total weight after time 2 is n(1 − ϵF1)(1 − ϵF2). In general, the total weight after t steps is
n
∏t

i=1(1− ϵFt). Let Wt be the total weight after t time steps. Then taking logs, we get that

ln(Wt) = lnn+

t∑
i=1

ln(1− ϵF1)

≤ lnn− ϵ
t∑

i=1

Ft,

where we used the fact that ln(1 − x) < −x. Now note that by linearity of expectations,
∑t

i=1 Ft

is exactly M , the expected number of mistakes that we make! Thus we have that

lnWt ≤ lnn− ϵM

If the best expert makes m mistakes, then its weight at time t will be (1 − ϵ)m. Thus lnWt ≥
m ln(1− ϵ), and thus lnn− ϵM ≥ m ln(1− ϵ). Solving for M , we get that

M ≤ 1

ϵ
(lnn−m ln(1− ϵ)) ≤ (1 + ϵ)m+

1

ϵ
lnn,

where we used the fact that that − ln(1−ϵ)
ϵ ≤ 1 + ϵ when ϵ ≤ 1/2.

By setting ϵ to be small, we can achieve a mistake bound that is almost the same as the optimal
expert plus something logarithmic in n!

This is a very useful tool to have. For example, we can think of each expert as a different algorithm,
and this lets us guarantee that we do almost as well as the best in hindsight. It can even be used
for seemingly far-removed applications, such as designing extremely fast approximate max-flow
algorithms (due to Garg and Konemann) and fast algorithms for approximately solving LPs. In
both of those settings, we essentially have an expert for each constraint and its weight is how much
it is violated. Following high-weight experts corresponds to satisfying those constraints.

There are also many extensions to the basic setting. For example, it is easy to extend to essentially
arbitrary payoff functions, rather than just yes/no decisions. And with that extension, we can
generalize to the so-called “bandit” setting where we only find out the payoff of the expert that
we actually choose – the payoffs of the other experts are unknown. We can also handle “sleeping”
experts, in which at every time only a subset of the experts actually make a prediction and we need
to compare to the best “coalition” of experts (this can be formalized, but we won’t do it here).
We can also handle things like movement costs, where there is a cost associated with switching the

6



expert that we choose. This is an active area of research with many applications, and there are
many, many more extensions. I, for example, have written a few papers that use experts algorithms
to maximize the throughput of a wireless network.

26.4 Final notes

There are many other models of machine learning in which we can actually design algorithms with
provable guarantees. For example, in “active learning” we are given a huge unlabeled sample S and
the algorithm can decide which examples to actually label. Similarly, we could allow the algorithm
to construct its own examples and ask for them to be labeled (these are called “membership
queries”).

7


	Introduction
	Concept Learning
	Decision Lists
	Occam's Razor
	Followup work

	Online Learning
	Perfect expert
	No perfect expert

	Final notes

