
Lecture 26: Algorithmic Learning Theory

Michael Dinitz

December 5, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 1 / 21

Introduction

Machine Learning from the point of view of theoretical computer science

▸ Proofs about performance

▸ Minimize assumptions

▸ Not going to talk about useful in practice, etc.

Today:

▸ Concept Learning

▸ Online Learning

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 2 / 21

Concept Learning

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 3 / 21

Concept Learning Intro

Trying to learn “Yes/No” labels

▸ Given a photo, does it have a dog in it?

▸ Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Example: spam

▸ Want to create a rule (hypothesis) that will tell us whether an email is spam

▸ Given some example emails with labels (Yes / No, Spam / Not Spam)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 4 / 21

Concept Learning Intro

Trying to learn “Yes/No” labels

▸ Given a photo, does it have a dog in it?

▸ Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Example: spam

▸ Want to create a rule (hypothesis) that will tell us whether an email is spam

▸ Given some example emails with labels (Yes / No, Spam / Not Spam)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 4 / 21

Example

sales apply Mr. bad spelling known-sender spam?

Y N Y Y N Y

N N N Y Y N

N Y N N N Y

Y N N N Y N

N N Y N Y N

Y N N Y N Y

N N Y N N N

N Y N Y N Y

Reasonable hypothesis:
spam if not known-sender
AND (apply OR sales)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 5 / 21

Example

sales apply Mr. bad spelling known-sender spam?

Y N Y Y N Y

N N N Y Y N

N Y N N N Y

Y N N N Y N

N N Y N Y N

Y N N Y N Y

N N Y N N N

N Y N Y N Y

Reasonable hypothesis:
spam if not known-sender
AND (apply OR sales)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 5 / 21

Questions

Question 1: Can we efficiently find working hypothesis for given labeled data?

▸ Mainly about efficiency; like many of the problems we’ve talked about

▸ Depends on what kinds of hypotheses we’re looking for (structure and quality)

Question 2: Can we be confident that our hypothesis will do well in the future?

▸ Not primarily about efficiency; about quality

▸ Requires knowing something about the future!

▸ Core of machine learning: use the past to make predictions about the future

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 6 / 21

Formalization: Beginning

Given sample set S = {(x1,y1), . . . (xm,ym)}. Size m called the sample complexity

▸ Each x i drawn from distribution D (not necessarily known)

▸ y i = f (x i) for some unknown f

Our goal: compute hypothesis h with low error on D:

err(h) ∶= Pr
x∼D
[h(x) ≠ f (x)] ≤ ϵ

Generally not possible unless m extremely large. Proof: random function f
▸ Knowing f (x i) on sample points doesn’t tell us anything about f (x) on points not

sampled

Need to restrict f .

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 7 / 21

Formalization: Beginning

Given sample set S = {(x1,y1), . . . (xm,ym)}. Size m called the sample complexity

▸ Each x i drawn from distribution D (not necessarily known)

▸ y i = f (x i) for some unknown f

Our goal: compute hypothesis h with low error on D:

err(h) ∶= Pr
x∼D
[h(x) ≠ f (x)] ≤ ϵ

Generally not possible unless m extremely large. Proof: random function f
▸ Knowing f (x i) on sample points doesn’t tell us anything about f (x) on points not

sampled

Need to restrict f .

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 7 / 21

Formalization: Beginning

Given sample set S = {(x1,y1), . . . (xm,ym)}. Size m called the sample complexity

▸ Each x i drawn from distribution D (not necessarily known)

▸ y i = f (x i) for some unknown f

Our goal: compute hypothesis h with low error on D:

err(h) ∶= Pr
x∼D
[h(x) ≠ f (x)] ≤ ϵ

Generally not possible unless m extremely large. Proof: random function f
▸ Knowing f (x i) on sample points doesn’t tell us anything about f (x) on points not

sampled

Need to restrict f .

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 7 / 21

Example: Decision Lists

Data point: x ∈ {0,1}n

Decision List:

▸ If x1 = 1 return 0

▸ Else if x4 = 1 return 1

▸ Else if x2 = 0 return 1

▸ Else return 0

Key features:

▸ Doesn’t branch

▸ Each “if” looks at one coordinate and either returns
or continues down list

Can we “learn” decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list
that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come
from?

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 8 / 21

Example: Decision Lists

Data point: x ∈ {0,1}n

Decision List:

▸ If x1 = 1 return 0

▸ Else if x4 = 1 return 1

▸ Else if x2 = 0 return 1

▸ Else return 0

Key features:

▸ Doesn’t branch

▸ Each “if” looks at one coordinate and either returns
or continues down list

Can we “learn” decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list
that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come
from?

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 8 / 21

Example: Decision Lists

Data point: x ∈ {0,1}n

Decision List:

▸ If x1 = 1 return 0

▸ Else if x4 = 1 return 1

▸ Else if x2 = 0 return 1

▸ Else return 0

Key features:

▸ Doesn’t branch

▸ Each “if” looks at one coordinate and either returns
or continues down list

Can we “learn” decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list
that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come
from?

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 8 / 21

Formalization

Definition: Let X be a collection of instances / data points (e.g., X = {0,1}n). A concept is
a boolean function h ∶ X → {0,1} (e.g., a decision list), and a concept class H is a collection
of concepts (e.g., all DLs).

Definition

A concept class H is PAC-learnable with sample complexity m(ϵ, δ) if there is an algorithm A
such that for all f ∈H:

1. Input of A is 0 < ϵ < 1/2 and 0 < δ < 1/2 and set S = {(x1,y1), . . . , (xm(ϵ,δ),ym(ϵ,δ))}
where y i = f (x i) for all i

2. A outputs a concept h that is “probably approximately correct”: for all distributions D
over data points,

Pr
S∼Dm(ϵ,δ)

[err(h) ≤ ϵ] = Pr
S∼Dm(ϵ,δ)

[Pr
x∼D
[h(x) ≠ f (x)] ≤ ϵ] ≥ 1 − δ

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 9 / 21

Formalization

Definition: Let X be a collection of instances / data points (e.g., X = {0,1}n). A concept is
a boolean function h ∶ X → {0,1} (e.g., a decision list), and a concept class H is a collection
of concepts (e.g., all DLs).

Definition

A concept class H is PAC-learnable with sample complexity m(ϵ, δ) if there is an algorithm A
such that for all f ∈H:

1. Input of A is 0 < ϵ < 1/2 and 0 < δ < 1/2 and set S = {(x1,y1), . . . , (xm(ϵ,δ),ym(ϵ,δ))}
where y i = f (x i) for all i

2. A outputs a concept h that is “probably approximately correct”: for all distributions D
over data points,

Pr
S∼Dm(ϵ,δ)

[err(h) ≤ ϵ] = Pr
S∼Dm(ϵ,δ)

[Pr
x∼D
[h(x) ≠ f (x)] ≤ ϵ] ≥ 1 − δ

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 9 / 21

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

S ′ = S,L = ∅
while(S ′ ≠ ∅) {

Find if-then rule α consistent with S ′ that labels at least 1 element of S ′

Add α to the bottom of L
Remove data labeled by α from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an α?

▸ By assumption, there is a DL f that labels S and so S ′

▸ Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

S ′ = S,L = ∅
while(S ′ ≠ ∅) {

Find if-then rule α consistent with S ′ that labels at least 1 element of S ′

Add α to the bottom of L
Remove data labeled by α from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an α?

▸ By assumption, there is a DL f that labels S and so S ′

▸ Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

S ′ = S,L = ∅
while(S ′ ≠ ∅) {

Find if-then rule α consistent with S ′ that labels at least 1 element of S ′

Add α to the bottom of L
Remove data labeled by α from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an α?

▸ By assumption, there is a DL f that labels S and so S ′

▸ Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21

Learning Decision Lists

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

S ′ = S,L = ∅
while(S ′ ≠ ∅) {

Find if-then rule α consistent with S ′ that labels at least 1 element of S ′

Add α to the bottom of L
Remove data labeled by α from S ′

}
Add “else return 0” to bottom of L
Return L

Correctness: Why can we always find such an α?

▸ By assumption, there is a DL f that labels S and so S ′

▸ Highest rule in f not added to L will work!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 10 / 21

Running Time of Algorithm

Number of iterations: ≤ ∣S ∣ =m(ϵ, δ)

Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

▸ Number of possible rules (“if xi = 0/1, return 0/1”): 4n

Total time at most O(n ⋅m(ϵ, δ)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ϵ: want this to
happen with probability at most δ.

▸ But the DL h we output labels S correctly!

▸ Want to show: since h labels S correctly, with probability at least 1−δ has error at most ϵ

▸ In other words: prove that with probability at least 1 − δ, every DL h consistent with S
has error at most ϵ

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21

Running Time of Algorithm

Number of iterations: ≤ ∣S ∣ =m(ϵ, δ)
Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

▸ Number of possible rules (“if xi = 0/1, return 0/1”): 4n

Total time at most O(n ⋅m(ϵ, δ)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ϵ: want this to
happen with probability at most δ.

▸ But the DL h we output labels S correctly!

▸ Want to show: since h labels S correctly, with probability at least 1−δ has error at most ϵ

▸ In other words: prove that with probability at least 1 − δ, every DL h consistent with S
has error at most ϵ

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21

Running Time of Algorithm

Number of iterations: ≤ ∣S ∣ =m(ϵ, δ)
Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

▸ Number of possible rules (“if xi = 0/1, return 0/1”): 4n

Total time at most O(n ⋅m(ϵ, δ)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ϵ: want this to
happen with probability at most δ.

▸ But the DL h we output labels S correctly!

▸ Want to show: since h labels S correctly, with probability at least 1−δ has error at most ϵ

▸ In other words: prove that with probability at least 1 − δ, every DL h consistent with S
has error at most ϵ

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21

Running Time of Algorithm

Number of iterations: ≤ ∣S ∣ =m(ϵ, δ)
Time per iteration: check every possible rule, see if consistent with S ′ (and labels at least one
point)

▸ Number of possible rules (“if xi = 0/1, return 0/1”): 4n

Total time at most O(n ⋅m(ϵ, δ)): pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with err(h) > ϵ: want this to
happen with probability at most δ.

▸ But the DL h we output labels S correctly!

▸ Want to show: since h labels S correctly, with probability at least 1−δ has error at most ϵ

▸ In other words: prove that with probability at least 1 − δ, every DL h consistent with S
has error at most ϵ

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 11 / 21

Sample Complexity
So suppose that h some DL with error at least ϵ (Prx∼D[h(x) ≠ f (x)] ≥ ϵ), and let
m =m(ϵ, δ) = ∣S ∣

Ô⇒ PrS∼Dm[h consistent with S] ≤ (1 − ϵ)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ϵ,h consistent with S] ≤ H(1 − ϵ)m ≤ He−ϵm

Set m = 1
ϵ
(lnH + ln (1

δ
)):

= He−ϵm ≤ He−ϵ
1
ϵ
(ln ∣H ∣+ln(1

δ
)) = He−(ln ∣H ∣+ln(

1
δ
)) = H (

1

H
)δ = δ

So with probability at least 1 − δ, every DL consistent with S has error at most ϵ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
Ô⇒ m =Θ (1

ϵ
(n lnn + ln (1

δ
)))

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

Sample Complexity
So suppose that h some DL with error at least ϵ (Prx∼D[h(x) ≠ f (x)] ≥ ϵ), and let
m =m(ϵ, δ) = ∣S ∣
Ô⇒ PrS∼Dm[h consistent with S] ≤ (1 − ϵ)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ϵ,h consistent with S] ≤ H(1 − ϵ)m ≤ He−ϵm

Set m = 1
ϵ
(lnH + ln (1

δ
)):

= He−ϵm ≤ He−ϵ
1
ϵ
(ln ∣H ∣+ln(1

δ
)) = He−(ln ∣H ∣+ln(

1
δ
)) = H (

1

H
)δ = δ

So with probability at least 1 − δ, every DL consistent with S has error at most ϵ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
Ô⇒ m =Θ (1

ϵ
(n lnn + ln (1

δ
)))

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

Sample Complexity
So suppose that h some DL with error at least ϵ (Prx∼D[h(x) ≠ f (x)] ≥ ϵ), and let
m =m(ϵ, δ) = ∣S ∣
Ô⇒ PrS∼Dm[h consistent with S] ≤ (1 − ϵ)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ϵ,h consistent with S] ≤ H(1 − ϵ)m ≤ He−ϵm

Set m = 1
ϵ
(lnH + ln (1

δ
)):

= He−ϵm ≤ He−ϵ
1
ϵ
(ln ∣H ∣+ln(1

δ
)) = He−(ln ∣H ∣+ln(

1
δ
)) = H (

1

H
)δ = δ

So with probability at least 1 − δ, every DL consistent with S has error at most ϵ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
Ô⇒ m =Θ (1

ϵ
(n lnn + ln (1

δ
)))

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

Sample Complexity
So suppose that h some DL with error at least ϵ (Prx∼D[h(x) ≠ f (x)] ≥ ϵ), and let
m =m(ϵ, δ) = ∣S ∣
Ô⇒ PrS∼Dm[h consistent with S] ≤ (1 − ϵ)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ϵ,h consistent with S] ≤ H(1 − ϵ)m ≤ He−ϵm

Set m = 1
ϵ
(lnH + ln (1

δ
)):

= He−ϵm ≤ He−ϵ
1
ϵ
(ln ∣H ∣+ln(1

δ
)) = He−(ln ∣H ∣+ln(

1
δ
)) = H (

1

H
)δ = δ

So with probability at least 1 − δ, every DL consistent with S has error at most ϵ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
Ô⇒ m =Θ (1

ϵ
(n lnn + ln (1

δ
)))

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

Sample Complexity
So suppose that h some DL with error at least ϵ (Prx∼D[h(x) ≠ f (x)] ≥ ϵ), and let
m =m(ϵ, δ) = ∣S ∣
Ô⇒ PrS∼Dm[h consistent with S] ≤ (1 − ϵ)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ϵ,h consistent with S] ≤ H(1 − ϵ)m ≤ He−ϵm

Set m = 1
ϵ
(lnH + ln (1

δ
)):

= He−ϵm ≤ He−ϵ
1
ϵ
(ln ∣H ∣+ln(1

δ
)) = He−(ln ∣H ∣+ln(

1
δ
)) = H (

1

H
)δ = δ

So with probability at least 1 − δ, every DL consistent with S has error at most ϵ (including
the one we output)!

H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
Ô⇒ m =Θ (1

ϵ
(n lnn + ln (1

δ
)))

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

Sample Complexity
So suppose that h some DL with error at least ϵ (Prx∼D[h(x) ≠ f (x)] ≥ ϵ), and let
m =m(ϵ, δ) = ∣S ∣
Ô⇒ PrS∼Dm[h consistent with S] ≤ (1 − ϵ)m

Let H = # decision lists.

Pr
S∼Dm

[∃h s.t. err(h) > ϵ,h consistent with S] ≤ H(1 − ϵ)m ≤ He−ϵm

Set m = 1
ϵ
(lnH + ln (1

δ
)):

= He−ϵm ≤ He−ϵ
1
ϵ
(ln ∣H ∣+ln(1

δ
)) = He−(ln ∣H ∣+ln(

1
δ
)) = H (

1

H
)δ = δ

So with probability at least 1 − δ, every DL consistent with S has error at most ϵ (including
the one we output)!
H ≤ n!4n, since at most n! orderings of coordinates, and at most 4 rules/coordinate
Ô⇒ m =Θ (1

ϵ
(n lnn + ln (1

δ
)))

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 12 / 21

Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: H ≤ n!4n

“Simple” hypothesis: expressible in ≤ s bits

Ô⇒ ≤ 2s simple hypotheses

Ô⇒ after 1
ϵ
(s ln 2 + ln (1

δ
)) samples, unlikely for us to get fooled by a simple hypothesis

that’s actually wrong!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 13 / 21

Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: H ≤ n!4n

“Simple” hypothesis: expressible in ≤ s bits

Ô⇒ ≤ 2s simple hypotheses

Ô⇒ after 1
ϵ
(s ln 2 + ln (1

δ
)) samples, unlikely for us to get fooled by a simple hypothesis

that’s actually wrong!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 13 / 21

Occam’s Razor

“Prefer simple explanations to complicated ones”

Only thing we used about DL in sample complexity analysis: H ≤ n!4n

“Simple” hypothesis: expressible in ≤ s bits

Ô⇒ ≤ 2s simple hypotheses

Ô⇒ after 1
ϵ
(s ln 2 + ln (1

δ
)) samples, unlikely for us to get fooled by a simple hypothesis

that’s actually wrong!

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 13 / 21

Online Learning

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 14 / 21

Online Learning

Learning over time, not just one-shot

▸ Similar to online algorithms: see data one piece at a time

▸ Instead of trying to minimize competitive ratio, trying to use the data to make decisions
as we go.

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 15 / 21

Learning From Expert Advice

Intuition: stock market

▸ n experts
▸ Every day:

▸ Every expert predicts up/down
▸ Algorithm makes prediction
▸ Find out what happened

What can/should we do? Can we always make an accurate prediction?

▸ No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

▸ Don’t try to learn the market: learn which expert knows the market best

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 16 / 21

Learning From Expert Advice

Intuition: stock market

▸ n experts
▸ Every day:

▸ Every expert predicts up/down
▸ Algorithm makes prediction
▸ Find out what happened

What can/should we do? Can we always make an accurate prediction?

▸ No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

▸ Don’t try to learn the market: learn which expert knows the market best

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 16 / 21

Learning From Expert Advice

Intuition: stock market

▸ n experts
▸ Every day:

▸ Every expert predicts up/down
▸ Algorithm makes prediction
▸ Find out what happened

What can/should we do? Can we always make an accurate prediction?

▸ No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

▸ Don’t try to learn the market: learn which expert knows the market best

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 16 / 21

Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

▸ Each mistake decreases # experts by 1/2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21

Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

▸ Each mistake decreases # experts by 1/2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21

Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

▸ Each mistake decreases # experts by 1/2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21

Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make:

O(logn) mistakes

▸ Each mistake decreases # experts by 1/2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21

Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

▸ Each mistake decreases # experts by 1/2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21

Warmup

Assume best expert makes 0 mistakes: always correctly predicts the market.
How should we predict market to minimize #mistakes?

Each day:

▸ Majority vote of remaining experts

▸ Remove incorrect experts

Best expert makes 0 mistakes

We make: O(logn) mistakes

▸ Each mistake decreases # experts by 1/2

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 17 / 21

General case: no perfect expert

Weighted Majority

▸ Initialize all experts to weight 1

▸ Predict based on weighted majority vote

▸ Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1/2)m
▸ Best expert has weight at least (1/2)m

W ≤ n(3/4)M
▸ Every time we make a mistake, at least

1/2 the total weight gets decreased by
1/2, so left with at most 3/4 of the
original total weight

Ô⇒ (1/2)m ≤ n(3/4)M Ô⇒ (4/3)M ≤ n2m

Ô⇒ M ≤ log4/3(n2m) =
m + logn
log(4/3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21

General case: no perfect expert

Weighted Majority

▸ Initialize all experts to weight 1

▸ Predict based on weighted majority vote

▸ Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1/2)m
▸ Best expert has weight at least (1/2)m

W ≤ n(3/4)M
▸ Every time we make a mistake, at least

1/2 the total weight gets decreased by
1/2, so left with at most 3/4 of the
original total weight

Ô⇒ (1/2)m ≤ n(3/4)M Ô⇒ (4/3)M ≤ n2m

Ô⇒ M ≤ log4/3(n2m) =
m + logn
log(4/3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21

General case: no perfect expert

Weighted Majority

▸ Initialize all experts to weight 1

▸ Predict based on weighted majority vote

▸ Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1/2)m
▸ Best expert has weight at least (1/2)m

W ≤ n(3/4)M
▸ Every time we make a mistake, at least

1/2 the total weight gets decreased by
1/2, so left with at most 3/4 of the
original total weight

Ô⇒ (1/2)m ≤ n(3/4)M Ô⇒ (4/3)M ≤ n2m

Ô⇒ M ≤ log4/3(n2m) =
m + logn
log(4/3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21

General case: no perfect expert

Weighted Majority

▸ Initialize all experts to weight 1

▸ Predict based on weighted majority vote

▸ Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1/2)m
▸ Best expert has weight at least (1/2)m

W ≤ n(3/4)M
▸ Every time we make a mistake, at least

1/2 the total weight gets decreased by
1/2, so left with at most 3/4 of the
original total weight

Ô⇒ (1/2)m ≤ n(3/4)M Ô⇒ (4/3)M ≤ n2m

Ô⇒ M ≤ log4/3(n2m) =
m + logn
log(4/3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21

General case: no perfect expert

Weighted Majority

▸ Initialize all experts to weight 1

▸ Predict based on weighted majority vote

▸ Penalize mistakes by cutting weights in half

M = # mistakes we’ve made
m = # mistakes best expert has made
W = total weight

W ≥ (1/2)m
▸ Best expert has weight at least (1/2)m

W ≤ n(3/4)M
▸ Every time we make a mistake, at least

1/2 the total weight gets decreased by
1/2, so left with at most 3/4 of the
original total weight

Ô⇒ (1/2)m ≤ n(3/4)M Ô⇒ (4/3)M ≤ n2m

Ô⇒ M ≤ log4/3(n2m) =
m + logn
log(4/3)

≈ 2.4(m + logn)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 18 / 21

Improved Algorithm

How to do better?

Randomization! (and change 1/2 to (1 − ϵ))

Randomized Weighted Majority

▸ Let Wi = 1 be weight of expert i , let W = ∑n
i=1 Wi .

▸ Do what expert i says with probability Wi /W
▸ If expert i incorrect, set Wi ← (1 − ϵ)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ϵ ≤ 1/2:

E [M] ≤ (1 + ϵ)m +
1

ϵ
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21

Improved Algorithm

How to do better? Randomization!

(and change 1/2 to (1 − ϵ))

Randomized Weighted Majority

▸ Let Wi = 1 be weight of expert i , let W = ∑n
i=1 Wi .

▸ Do what expert i says with probability Wi /W
▸ If expert i incorrect, set Wi ← (1 − ϵ)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ϵ ≤ 1/2:

E [M] ≤ (1 + ϵ)m +
1

ϵ
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21

Improved Algorithm

How to do better? Randomization! (and change 1/2 to (1 − ϵ))

Randomized Weighted Majority

▸ Let Wi = 1 be weight of expert i , let W = ∑n
i=1 Wi .

▸ Do what expert i says with probability Wi /W
▸ If expert i incorrect, set Wi ← (1 − ϵ)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ϵ ≤ 1/2:

E [M] ≤ (1 + ϵ)m +
1

ϵ
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21

Improved Algorithm

How to do better? Randomization! (and change 1/2 to (1 − ϵ))

Randomized Weighted Majority

▸ Let Wi = 1 be weight of expert i , let W = ∑n
i=1 Wi .

▸ Do what expert i says with probability Wi /W
▸ If expert i incorrect, set Wi ← (1 − ϵ)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ϵ ≤ 1/2:

E [M] ≤ (1 + ϵ)m +
1

ϵ
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21

Improved Algorithm

How to do better? Randomization! (and change 1/2 to (1 − ϵ))

Randomized Weighted Majority

▸ Let Wi = 1 be weight of expert i , let W = ∑n
i=1 Wi .

▸ Do what expert i says with probability Wi /W
▸ If expert i incorrect, set Wi ← (1 − ϵ)Wi

Theorem

Let M = # mistakes we’ve made, let m = # mistakes best expert has made.
When ϵ ≤ 1/2:

E [M] ≤ (1 + ϵ)m +
1

ϵ
lnn

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 19 / 21

Randomized Weighted Majority Analysis

Let:

▸ Fi = fraction of weight at time i on experts who make mistake at time i
▸ Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ϵ) + (1 − F1)W0 = F1n(1 − ϵ) + (1 − F1)n
= n(F1 − ϵF1 + 1 − F1) = (1 − ϵF1)n

W2 = F2W1(1 − ϵ) + (1 − F2)W1 = (1 − ϵF2)W1 = (1 − ϵF2)(1 − ϵF1)n
⋮

Wt = n
t
∏
i=1
(1 − ϵFi) ≤ n

t
∏
i=1

e−ϵFi = ne−ϵ∑
t
i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21

Randomized Weighted Majority Analysis

Let:

▸ Fi = fraction of weight at time i on experts who make mistake at time i
▸ Wi = total weight after time i (at beginning of time i + 1)

W0 = n

W1 = F1W0(1 − ϵ) + (1 − F1)W0 = F1n(1 − ϵ) + (1 − F1)n
= n(F1 − ϵF1 + 1 − F1) = (1 − ϵF1)n

W2 = F2W1(1 − ϵ) + (1 − F2)W1 = (1 − ϵF2)W1 = (1 − ϵF2)(1 − ϵF1)n
⋮

Wt = n
t
∏
i=1
(1 − ϵFi) ≤ n

t
∏
i=1

e−ϵFi = ne−ϵ∑
t
i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21

Randomized Weighted Majority Analysis

Let:

▸ Fi = fraction of weight at time i on experts who make mistake at time i
▸ Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ϵ) + (1 − F1)W0 = F1n(1 − ϵ) + (1 − F1)n
= n(F1 − ϵF1 + 1 − F1) = (1 − ϵF1)n

W2 = F2W1(1 − ϵ) + (1 − F2)W1 = (1 − ϵF2)W1 = (1 − ϵF2)(1 − ϵF1)n
⋮

Wt = n
t
∏
i=1
(1 − ϵFi) ≤ n

t
∏
i=1

e−ϵFi = ne−ϵ∑
t
i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21

Randomized Weighted Majority Analysis

Let:

▸ Fi = fraction of weight at time i on experts who make mistake at time i
▸ Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ϵ) + (1 − F1)W0 = F1n(1 − ϵ) + (1 − F1)n
= n(F1 − ϵF1 + 1 − F1) = (1 − ϵF1)n

W2 = F2W1(1 − ϵ) + (1 − F2)W1 = (1 − ϵF2)W1 = (1 − ϵF2)(1 − ϵF1)n

⋮

Wt = n
t
∏
i=1
(1 − ϵFi) ≤ n

t
∏
i=1

e−ϵFi = ne−ϵ∑
t
i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21

Randomized Weighted Majority Analysis

Let:

▸ Fi = fraction of weight at time i on experts who make mistake at time i
▸ Wi = total weight after time i (at beginning of time i + 1)

W0 = n
W1 = F1W0(1 − ϵ) + (1 − F1)W0 = F1n(1 − ϵ) + (1 − F1)n
= n(F1 − ϵF1 + 1 − F1) = (1 − ϵF1)n

W2 = F2W1(1 − ϵ) + (1 − F2)W1 = (1 − ϵF2)W1 = (1 − ϵF2)(1 − ϵF1)n
⋮

Wt = n
t
∏
i=1
(1 − ϵFi) ≤ n

t
∏
i=1

e−ϵFi = ne−ϵ∑
t
i=1 Fi

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 20 / 21

Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi Ô⇒ E [M] = ∑t
i=1 Fi

Ô⇒ lnWt ≤ ln (ne−ϵ∑
t
i=1 Fi) = lnn − ϵ

t
∑
i=1

Fi = lnn − ϵE [M]

But best expert makes m mistakes

Ô⇒ Wt ≥ (1 − ϵ)m Ô⇒ lnWt ≥m ln(1 − ϵ)

So m ln(1 − ϵ) ≤ lnn − ϵE [M]

Ô⇒ E [M] ≤
1

ϵ
(lnn −m ln(1 − ϵ)) ≤ (1 + ϵ)m +

1

ϵ
lnn

(using fact that
− ln(1−ϵ)

ϵ
≤ 1 + ϵ for all 0 < ϵ ≤ 1/2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21

Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi Ô⇒ E [M] = ∑t
i=1 Fi

Ô⇒ lnWt ≤ ln (ne−ϵ∑
t
i=1 Fi) = lnn − ϵ

t
∑
i=1

Fi = lnn − ϵE [M]

But best expert makes m mistakes

Ô⇒ Wt ≥ (1 − ϵ)m Ô⇒ lnWt ≥m ln(1 − ϵ)

So m ln(1 − ϵ) ≤ lnn − ϵE [M]

Ô⇒ E [M] ≤
1

ϵ
(lnn −m ln(1 − ϵ)) ≤ (1 + ϵ)m +

1

ϵ
lnn

(using fact that
− ln(1−ϵ)

ϵ
≤ 1 + ϵ for all 0 < ϵ ≤ 1/2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21

Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi Ô⇒ E [M] = ∑t
i=1 Fi

Ô⇒ lnWt ≤ ln (ne−ϵ∑
t
i=1 Fi) = lnn − ϵ

t
∑
i=1

Fi = lnn − ϵE [M]

But best expert makes m mistakes

Ô⇒ Wt ≥ (1 − ϵ)m Ô⇒ lnWt ≥m ln(1 − ϵ)

So m ln(1 − ϵ) ≤ lnn − ϵE [M]

Ô⇒ E [M] ≤
1

ϵ
(lnn −m ln(1 − ϵ)) ≤ (1 + ϵ)m +

1

ϵ
lnn

(using fact that
− ln(1−ϵ)

ϵ
≤ 1 + ϵ for all 0 < ϵ ≤ 1/2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21

Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi Ô⇒ E [M] = ∑t
i=1 Fi

Ô⇒ lnWt ≤ ln (ne−ϵ∑
t
i=1 Fi) = lnn − ϵ

t
∑
i=1

Fi = lnn − ϵE [M]

But best expert makes m mistakes

Ô⇒ Wt ≥ (1 − ϵ)m Ô⇒ lnWt ≥m ln(1 − ϵ)

So m ln(1 − ϵ) ≤ lnn − ϵE [M]

Ô⇒ E [M] ≤
1

ϵ
(lnn −m ln(1 − ϵ)) ≤ (1 + ϵ)m +

1

ϵ
lnn

(using fact that
− ln(1−ϵ)

ϵ
≤ 1 + ϵ for all 0 < ϵ ≤ 1/2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21

Randomized Weighted Majority Analysis (cont’d)

Note: probability we make mistake at time i is exactly Fi Ô⇒ E [M] = ∑t
i=1 Fi

Ô⇒ lnWt ≤ ln (ne−ϵ∑
t
i=1 Fi) = lnn − ϵ

t
∑
i=1

Fi = lnn − ϵE [M]

But best expert makes m mistakes

Ô⇒ Wt ≥ (1 − ϵ)m Ô⇒ lnWt ≥m ln(1 − ϵ)

So m ln(1 − ϵ) ≤ lnn − ϵE [M]

Ô⇒ E [M] ≤
1

ϵ
(lnn −m ln(1 − ϵ)) ≤ (1 + ϵ)m +

1

ϵ
lnn

(using fact that
− ln(1−ϵ)

ϵ
≤ 1 + ϵ for all 0 < ϵ ≤ 1/2)

Michael Dinitz Lecture 26: Algorithmic Learning Theory December 5, 2024 21 / 21

