Lecture 26: Algorithmic Learning Theory

Michael Dinitz

December 5, 2024 601.433/633 Introduction to Algorithms

Introduction

Machine Learning from the point of view of theoretical computer science

- **▸** Proofs about performance
- **▸** Minimize assumptions
- **▸** Not going to talk about useful in practice, etc.

Today:

- **▸** Concept Learning
- **▸** Online Learning

Concept Learning

Concept Learning Intro

Trying to learn "Yes/No" labels

- **▸** Given a photo, does it have a dog in it?
- **▸** Given an email, is it spam?

Given some labeled data. Create a good prediction rule (hypothesis) for future data.

Concept Learning Intro

Trying to learn "Yes/No" labels

- **▸** Given a photo, does it have a dog in it?
- **▸** Given an email, is it spam?

Given some labeled data. Create a good prediction rule (*hypothesis*) for future data.

Example: spam

- **▸** Want to create a rule (hypothesis) that will tell us whether an email is spam
- **▸** Given some example emails with labels (Yes / No, Spam / Not Spam)

Example

Example

÷.

Reasonable hypothesis: spam if not known-sender AND (apply OR sales)

Questions

Question 1: Can we efficiently find working hypothesis for given labeled data?

- **▸** Mainly about efficiency; like many of the problems we've talked about
- **▸** Depends on what kinds of hypotheses we're looking for (structure and quality)

Question 2: Can we be confident that our hypothesis will do well in the future?

- **▸** Not primarily about efficiency; about quality
- **▸** Requires knowing something about the future!
- **▸** Core of machine learning: use the past to make predictions about the future

Formalization: Beginning

Given sample set $\bm{S} = \{(\bm{x}^1, \bm{y}^1), \dots (\bm{x}^m, \bm{y}^m)\}$. Size \bm{m} called the sample complexity

- **▶ Each xⁱ drawn from distribution D** (not necessarily known)
- $\mathbf{y}^i = f(\mathbf{x}^i)$ for some unknown **f**

Our goal: compute hypothesis h with low error on D :

 $err(h) := \Pr_{x \sim D}[h(x) \neq f(x)]$ ≤ ϵ

Formalization: Beginning

Given sample set $\bm{S} = \{(\bm{x}^1, \bm{y}^1), \dots (\bm{x}^m, \bm{y}^m)\}$. Size \bm{m} called the sample complexity

- **▶ Each xⁱ drawn from distribution D** (not necessarily known)
- $\mathbf{y}^i = f(\mathbf{x}^i)$ for some unknown **f**

Our goal: compute hypothesis h with low error on D :

 $err(h) := \Pr_{x \sim D}[h(x) \neq f(x)]$ ≤ ϵ

Generally not possible unless m extremely large. Proof: random function f

 \triangleright Knowing $f(x^i)$ on sample points doesn't tell us anything about $f(x)$ on points not sampled

Formalization: Beginning

Given sample set $\bm{S} = \{(\bm{x}^1, \bm{y}^1), \dots (\bm{x}^m, \bm{y}^m)\}$. Size \bm{m} called the sample complexity

- **▶ Each xⁱ drawn from distribution D** (not necessarily known)
- $\mathbf{y}^i = f(\mathbf{x}^i)$ for some unknown **f**

Our goal: compute hypothesis h with low error on D :

 $err(h) := \Pr_{x \sim D}[h(x) \neq f(x)]$ ≤ ϵ

Generally not possible unless m extremely large. Proof: random function f

 \triangleright Knowing $f(x^i)$ on sample points doesn't tell us anything about $f(x)$ on points not sampled

Need to restrict f

Example: Decision Lists

Data point: x **∈ {**0, 1**}** n

Decision List:

- \triangleright If $x_1 = 1$ return 0
- \blacktriangleright Else if $x_4 = 1$ return 1
- \blacktriangleright Else if $x_2 = 0$ return 1
- **▸** Else return 0

Key features:

- **▸** Doesn't branch
- **▸** Each "if" looks at one coordinate and either returns or continues down list

Example: Decision Lists

Data point: x **∈ {**0, 1**}** n

Decision List:

- \triangleright If $x_1 = 1$ return 0
- \blacktriangleright Else if $x_4 = 1$ return 1
- **Else if** $x_2 = 0$ **return 1**
- **▸** Else return 0

Key features:

- **▸** Doesn't branch
- **▸** Each "if" looks at one coordinate and either returns or continues down list

Can we "learn" decision lists? Restrict f to be a DL.

Example: Decision Lists

Data point: x **∈ {**0, 1**}** n

Decision List:

- \blacktriangleright If $x_1 = 1$ return 0
- **E**lse if $x_4 = 1$ return 1
- \blacktriangleright Else if $x_2 = 0$ return 1
- **▸** Else return 0

Key features:

- **▸** Doesn't branch
- **▸** Each "if" looks at one coordinate and either returns or continues down list

Can we "learn" decision lists? Restrict f to be a DL.

Question 1: Given sample data points labeled by some decision list, can we find a decision list that correctly labels the sample?

Question 2: Can we give an error bound with respect to distribution D that samples come from?

Formalization

Definition: Let X be a collection of instances / data points (e.g., X = $\{0,1\}$ "). A concept is a boolean function h **∶** X **→ {**0, 1**}** (e.g., a decision list), and a concept class **H** is a collection of concepts (e.g., all DLs).

Formalization

Definition: Let X be a collection of instances / data points (e.g., X = $\{0,1\}$ "). A concept is a boolean function $h: X \rightarrow \{0,1\}$ (e.g., a decision list), and a *concept class* H is a collection of concepts (e.g., all DLs).

Definition

A concept class $\mathcal H$ is PAC-learnable with sample complexity $m(\epsilon, \delta)$ if there is an algorithm A such that for all $f \in \mathcal{H}$:

- $1.$ Input of A is $0 < \epsilon < 1/2$ and $0 < \delta < 1/2$ and set $S = \{(x^1, y^1), \ldots, (x^{m(\epsilon,\delta)}, y^{m(\epsilon,\delta)})\}$ where $y^i = f(x^i)$ for all *i*
- 2. **A** outputs a concept **h** that is "probably approximately correct": for all distributions **D** over data points,

$$
\Pr_{S \sim D^{m(\epsilon,\delta)}}[\text{err}(h) \leq \epsilon] = \Pr_{S \sim D^{m(\epsilon,\delta)}}[\Pr_{x \sim D}[h(x) \neq f(x)] \leq \epsilon] \geq 1 - \delta
$$

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S' = S, L = \emptysetwhile(S
′ ≠ ∅) {
    Find if-then rule \alpha consistent with \boldsymbol{S}' that labels at least 1 element of \boldsymbol{S}'Add \alpha to the bottom of L
    Remove data labeled by \alpha from S'}
Add "else return 0" to bottom of L
Return L
```
Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S' = S, L = \emptysetwhile(S
′ ≠ ∅) {
    Find if-then rule \alpha consistent with \boldsymbol{S}' that labels at least 1 element of \boldsymbol{S}'Add \alpha to the bottom of L
    Remove data labeled by \alpha from S'}
Add "else return 0" to bottom of L
Return L
```
Correctness: Why can we always find such an α ?

Are decision lists PAC-learnable with low sample complexity and efficient algorithms?

```
S' = S, L = \emptysetwhile(S
′ ≠ ∅) {
    Find if-then rule \alpha consistent with \boldsymbol{S}' that labels at least 1 element of \boldsymbol{S}'Add \alpha to the bottom of L
    Remove data labeled by \alpha from S'}
Add "else return 0" to bottom of L
Return L
```
Correctness: Why can we always find such an α ?

- ▶ By assumption, there is a DL f that labels S and so S'
- **▸** Highest rule in f not added to L will work!

Number of iterations: **≤ ∣**S**∣ =** m**(**ϵ, δ**)**

Number of iterations: **≤ ∣**S**∣ =** m**(**ϵ, δ**)**

Time per iteration: check every possible rule, see if consistent with S **′** (and labels at least one point)

 \triangleright Number of possible rules ("if $x_i = 0/1$, return $0/1$ "): 4n

Number of iterations: **≤ ∣**S**∣ =** m**(**ϵ, δ**)**

Time per iteration: check every possible rule, see if consistent with S **′** (and labels at least one point)

 \triangleright Number of possible rules ("if $x_i = 0/1$, return $0/1$ "): 4n

Total time at most $O(n \cdot m(\epsilon, \delta))$: pretty good if sample complexity small.

Number of iterations: **≤ ∣**S**∣ =** m**(**ϵ, δ**)**

Time per iteration: check every possible rule, see if consistent with S **′** (and labels at least one point)

 \triangleright Number of possible rules ("if $x_i = 0/1$, return $0/1$ "): 4n

Total time at most $O(n \cdot m(\epsilon, \delta))$: pretty good if sample complexity small.

Sample Complexity: We are worried about outputting DL h with $err(h) > \epsilon$: want this to happen with probability at most δ .

- **►** But the DL **h** we output labels S correctly!
- **▸** Want to show: since h labels S correctly, with probability at least 1**−**δ has error at most ϵ
- **▸** In other words: prove that with probability at least 1 **−** δ, every DL h consistent with S has error at most ϵ

So suppose that **h** some DL with error at least ϵ (Pr_{x∼D}[$h(x) \neq f(x)$] ≥ ϵ), and let $m = m(\epsilon, \delta) = |S|$

So suppose that **h** some DL with error at least ϵ (Pr_{x∼D}[$h(x) \neq f(x)$] ≥ ϵ), and let $m = m(\epsilon, \delta) = |S|$

 \implies Pr_{S∼D}m [*h* consistent with S] ≤ $(1 - \epsilon)$ ^m

So suppose that **h** some DL with error at least ϵ (Pr_{x∼D}[$h(x) \neq f(x)$] ≥ ϵ), and let $m = m(\epsilon, \delta) = |S|$

- \implies Pr_{S∼D}m [*h* consistent with S] ≤ (1ϵ) ^m
- Let $H = #$ decision lists.

 ${\bf Pr}$ **F** ${\bf S} \sim D^m$ **E** and the state of ${\bf Pr}$ **(h)** $> \epsilon, h$ consistent with ${\bf S}$ **s** \leq **H(1** − ϵ)^m \leq **He**^{− ϵ m}

So suppose that **h** some DL with error at least ϵ (Pr_{x∼D}[$h(x) \neq f(x)$] ≥ ϵ), and let $m = m(\epsilon, \delta) = |S|$ \implies Pr_{S∼D}m [*h* consistent with S] ≤ $(1 - \epsilon)$ ^m

Let $H = #$ decision lists.

 ${\bf Pr}$ **F** ${\bf S} \sim D^m$ **E** and the state of ${\bf Pr}$ **(h)** $> \epsilon, h$ consistent with ${\bf S}$ **s** \leq **H(1** − ϵ)^m \leq **He**^{− ϵ m}

Set \boldsymbol{m} = $\frac{1}{\epsilon}$ $\frac{1}{\epsilon}$ (ln H + ln $\left(\frac{1}{\delta}\right)$ δ **))**: $=He^{-\epsilon m} \leq He^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta}\right)\right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta}\right)\right)} = H$ 1 \overline{H}) δ = δ

So suppose that **h** some DL with error at least ϵ (Pr_{x∼D}[h(x) \neq f(x)] \geq ϵ), and let $m = m(\epsilon, \delta) = |S|$ \implies Pr_{S∼D}m [*h* consistent with S] ≤ $(1 - \epsilon)$ ^m

Let $H = #$ decision lists.

 ${\bf Pr}$ **F** ${\bf S} \sim D^m$ **E** and the state of ${\bf Pr}$ **(h)** $> \epsilon, h$ consistent with ${\bf S}$ **s** \leq **H(1** − ϵ)^m \leq **He**^{− ϵ m}

Set
$$
m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)
$$
:
= $He^{-\epsilon m} \leq He^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H \left(\frac{1}{H} \right) \delta = \delta$

So with probability at least 1 **−** δ, every DL consistent with S has error at most ϵ (including the one we output)!

So suppose that **h** some DL with error at least ϵ (Pr_{x∼D}[$h(x) \neq f(x)$] ≥ ϵ), and let $m = m(\epsilon, \delta) = |S|$ \implies Pr_{S∼D}m [*h* consistent with S] ≤ $(1 - \epsilon)$ ^m

Let $H = #$ decision lists.

 ${\bf Pr}$ **F** ${\bf S} \sim D^m$ **E** and the state of ${\bf Pr}$ **(h)** $> \epsilon, h$ consistent with ${\bf S}$ **s** \leq **H(1** − ϵ)^m \leq **He**^{− ϵ m}

Set
$$
m = \frac{1}{\epsilon} \left(\ln H + \ln \left(\frac{1}{\delta} \right) \right)
$$
:
= $He^{-\epsilon m} \leq He^{-\epsilon \frac{1}{\epsilon} \left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = He^{-\left(\ln |H| + \ln \left(\frac{1}{\delta} \right) \right)} = H \left(\frac{1}{H} \right) \delta = \delta$

So with probability at least 1 **−** δ, every DL consistent with S has error at most ϵ (including the one we output)!

H ≤ n!4ⁿ, since at most n! orderings of coordinates, and at most 4 rules/coordinate \implies **m** = Θ $\left(\frac{1}{\epsilon}\right)$ $\frac{1}{\epsilon}$ $(n \ln n + \ln (\frac{1}{\delta}))$ δ **)))**

Occam's Razor

"Prefer simple explanations to complicated ones"

Only thing we used about DL in sample complexity analysis: $H \le n!4^n$

"Simple" hypothesis: expressible in **≤** s bits

Occam's Razor

"Prefer simple explanations to complicated ones"

Only thing we used about DL in sample complexity analysis: H **≤** n!4ⁿ

"Simple" hypothesis: expressible in **≤** s bits **Ô⇒ ≤** 2 s simple hypotheses

"Prefer simple explanations to complicated ones"

Only thing we used about DL in sample complexity analysis: $H \le n!4^n$

"Simple" hypothesis: expressible in **≤** s bits

Ô⇒ ≤ 2 s simple hypotheses \implies after $\frac{1}{\epsilon}$ (**s** ln 2 + ln $\left(\frac{1}{\delta}\right)$ $\frac{1}{\delta}$)) samples, unlikely for us to get fooled by a simple hypothesis that's actually wrong!

Online Learning

Online Learning

Learning over time, not just one-shot

- **▸** Similar to online algorithms: see data one piece at a time
- **▸** Instead of trying to minimize competitive ratio, trying to use the data to make decisions as we go.

Learning From Expert Advice

Intuition: stock market

- **▸** n experts
- **▸** Every day:
	- **▸** Every expert predicts up/down
	- **▸** Algorithm makes prediction
	- **▸** Find out what happened

What can/should we do? Can we always make an accurate prediction?

Learning From Expert Advice

Intuition: stock market

- **▸** n experts
- **▸** Every day:
	- **▸** Every expert predicts up/down
	- **▸** Algorithm makes prediction
	- **▸** Find out what happened

What can/should we do? Can we always make an accurate prediction?

▸ No! Experts could all be essentially random, uncorrelated with market

Learning From Expert Advice

Intuition: stock market

- **▸** n experts
- **▸** Every day:
	- **▸** Every expert predicts up/down
	- **▸** Algorithm makes prediction
	- **▸** Find out what happened

What can/should we do? Can we always make an accurate prediction?

▸ No! Experts could all be essentially random, uncorrelated with market

Easier (but still interesting) goal: can we do as well as the best expert?

▸ Don't try to learn the market: learn which expert knows the market best

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $#mistakes?$

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $#mistakes?$

Each day:

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $#mistakes?$

Each day:

- **▸** Majority vote of remaining experts
- **▸** Remove incorrect experts

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $#mistakes?$

Each day:

- **▸** Majority vote of remaining experts
- **▸** Remove incorrect experts

Best expert makes 0 mistakes

We make:

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $#mistakes?$

Each day:

- **▸** Majority vote of remaining experts
- **▸** Remove incorrect experts

Best expert makes 0 mistakes

We make: O**(**log n**)** mistakes

Assume best expert makes 0 mistakes: always correctly predicts the market. How should we predict market to minimize $\#$ mistakes?

Each day:

- **▸** Majority vote of remaining experts
- **▸** Remove incorrect experts

Best expert makes 0 mistakes

We make: O**(**log n**)** mistakes

▸ Each mistake decreases # experts by 1**/**2

Weighted Majority

- **▸** Initialize all experts to weight 1
- **▸** Predict based on weighted majority vote
- **▸** Penalize mistakes by cutting weights in half
- $M = \text{\#}$ mistakes we've made
- $m = #$ mistakes best expert has made
- $W =$ total weight

Weighted Majority

- **▸** Initialize all experts to weight 1
- **▸** Predict based on weighted majority vote
- **▸** Penalize mistakes by cutting weights in half
- $M = \text{\#}$ mistakes we've made
- $m = #$ mistakes best expert has made
- $W =$ total weight

$W \geq (1/2)^m$

▸ Best expert has weight at least **(**1**/**2**)** m

Weighted Majority

- **▸** Initialize all experts to weight 1
- **▸** Predict based on weighted majority vote
- **▸** Penalize mistakes by cutting weights in half
- $M = \text{\#}$ mistakes we've made
- $m = #$ mistakes best expert has made
- $W =$ total weight

 $W \geq (1/2)^m$

▸ Best expert has weight at least **(**1**/**2**)** m

 $W \leq n(3/4)^M$

▸ Every time we make a mistake, at least 1**/**2 the total weight gets decreased by 1**/**2, so left with at most 3**/**4 of the original total weight

Weighted Majority

- **▸** Initialize all experts to weight 1
- **▸** Predict based on weighted majority vote
- **▸** Penalize mistakes by cutting weights in half
- $M = \text{\#}$ mistakes we've made
- $m = #$ mistakes best expert has made
- $W =$ total weight

 $W \geq (1/2)^m$

▸ Best expert has weight at least **(**1**/**2**)** m

 $W \leq n(3/4)^M$

▸ Every time we make a mistake, at least 1**/**2 the total weight gets decreased by 1**/**2, so left with at most 3**/**4 of the original total weight

$$
\implies (1/2)^m \le n(3/4)^M \implies (4/3)^M \le n2^m
$$

$$
\implies M \le \log_{4/3}(n2^m) = \frac{m + \log n}{\log(4/3)} \approx 2.4(m + \log n)
$$

How to do better?

How to do better? Randomization!

How to do better? Randomization! (and change $1/2$ to $(1 - \epsilon)$)

How to do better? Randomization! (and change $1/2$ to $(1 - \epsilon)$)

Randomized Weighted Majority

- ▶ Let $W_i = 1$ be weight of expert *i*, let $W = \sum_{i=1}^{n} W_i$.
- **▶** Do what expert *i* says with probability W_i/W
- **►** If expert **i** incorrect, set $W_i \leftarrow (1 \epsilon)W_i$

How to do better? Randomization! (and change $1/2$ to $(1 - \epsilon)$)

Randomized Weighted Majority

- ▶ Let $W_i = 1$ be weight of expert *i*, let $W = \sum_{i=1}^{n} W_i$.
- **▶** Do what expert *i* says with probability W_i/W
- **►** If expert **i** incorrect, set $W_i \leftarrow (1 \epsilon)W_i$

Theorem

Let $M = \text{\#}$ mistakes we've made, let $m = \text{\#}$ mistakes best expert has made. When $\epsilon \leq 1/2$:

$$
E[M] \leq (1+\epsilon)m + \frac{1}{\epsilon}\ln n
$$

- \blacktriangleright **F**_i = fraction of weight at time **i** on experts who make mistake at time **i**
- \blacktriangleright W_i = total weight *after* time **i** (at beginning of time $i + 1$)

Let:

- \blacktriangleright **F**_i = fraction of weight at time **i** on experts who make mistake at time **i**
- \blacktriangleright W_i = total weight *after* time **i** (at beginning of time $i + 1$)

 $W_0 = n$

- \blacktriangleright **F**_i = fraction of weight at time **i** on experts who make mistake at time **i**
- \blacktriangleright W_i = total weight *after* time **i** (at beginning of time $i + 1$)

$$
W_0 = n
$$

$$
W_1 = F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n
$$

=
$$
n(F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n
$$

- \blacktriangleright **F**_i = fraction of weight at time **i** on experts who make mistake at time **i**
- \blacktriangleright W_i = total weight *after* time **i** (at beginning of time $i + 1$)

$$
W_0 = n
$$

\n
$$
W_1 = F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n
$$

\n
$$
= n(F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n
$$

\n
$$
W_2 = F_2 W_1 (1 - \epsilon) + (1 - F_2) W_1 = (1 - \epsilon F_2) W_1 = (1 - \epsilon F_2) (1 - \epsilon F_1) n
$$

- \blacktriangleright **F**_i = fraction of weight at time **i** on experts who make mistake at time **i**
- \blacktriangleright W_i = total weight *after* time **i** (at beginning of time $i + 1$)

$$
W_0 = n
$$

\n
$$
W_1 = F_1 W_0 (1 - \epsilon) + (1 - F_1) W_0 = F_1 n (1 - \epsilon) + (1 - F_1) n
$$

\n
$$
= n(F_1 - \epsilon F_1 + 1 - F_1) = (1 - \epsilon F_1) n
$$

\n
$$
W_2 = F_2 W_1 (1 - \epsilon) + (1 - F_2) W_1 = (1 - \epsilon F_2) W_1 = (1 - \epsilon F_2) (1 - \epsilon F_1) n
$$

\n
$$
\vdots
$$

\n
$$
W_t = n \prod_{i=1}^t (1 - \epsilon F_i) \le n \prod_{i=1}^t e^{-\epsilon F_i} = n e^{-\epsilon \sum_{i=1}^t F_i}
$$

Note: probability we make mistake at time \bm{i} is exactly $\bm{F_i} \implies \bm{E}[\bm{M}] = \bm{\Sigma_i^t}$ $\sum_{i=1}^{\mathfrak{r}}$ F_i

Note: probability we make mistake at time \bm{i} is exactly $\bm{F_i} \implies \bm{E}[\bm{M}] = \bm{\Sigma_i^t}$ $\sum_{i=1}^{\mathfrak{r}}$ F_i

$$
\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]
$$

Note: probability we make mistake at time \bm{i} is exactly $\bm{F_i} \implies \bm{E}[\bm{M}] = \bm{\Sigma_i^t}$ $\sum_{i=1}^{\mathfrak{r}}$ F_i

$$
\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]
$$

But best expert makes m mistakes

$$
\implies W_t \ge (1-\epsilon)^m \implies \ln W_t \ge m \ln(1-\epsilon)
$$

Note: probability we make mistake at time \bm{i} is exactly $\bm{F_i} \implies \bm{E}[\bm{M}] = \bm{\Sigma_i^t}$ $\sum_{i=1}^{\mathfrak{r}}$ F_i

$$
\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]
$$

But best expert makes m mistakes

$$
\implies W_t \ge (1-\epsilon)^m \implies \ln W_t \ge m \ln(1-\epsilon)
$$

 $\text{So } m \ln(1 - \epsilon) \leq \ln n - \epsilon E[M]$

Note: probability we make mistake at time \bm{i} is exactly $\bm{F_i} \implies \bm{E}[\bm{M}] = \bm{\Sigma_i^t}$ $\sum_{i=1}^{\mathfrak{r}}$ F_i

$$
\implies \ln W_t \leq \ln \left(n e^{-\epsilon \sum_{i=1}^t F_i} \right) = \ln n - \epsilon \sum_{i=1}^t F_i = \ln n - \epsilon E[M]
$$

But best expert makes m mistakes

$$
\implies W_t \ge (1-\epsilon)^m \implies \ln W_t \ge m \ln(1-\epsilon)
$$

 $\text{So } m \ln(1 - \epsilon) \leq \ln n - \epsilon E[M]$

$$
\implies E[M] \leq \frac{1}{\epsilon} \left(\ln n - m \ln(1 - \epsilon) \right) \leq (1 + \epsilon) m + \frac{1}{\epsilon} \ln n
$$

 $\left(\text{using fact that } \frac{-\ln(1-\epsilon)}{\epsilon} \leq 1 + \epsilon \text{ for all } 0 < \epsilon \leq 1/2\right)$