
Lecture 3: Probabilistic Analysis, Randomized Quicksort

Michael Dinitz

September 3, 2024
601.433/633 Introduction to Algorithms

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 1 / 16

 



Introduction: Sorting

� Sorting: given array of comparable elements, put them in sorted order

� Popular topic to cover in Algorithms courses� This course:� I assume you know the basics (mergesort, quicksort, insertion sort, selection sort, bubble sort,
etc.) from Data Structures� Today: more advanced sorting (randomized quicksort)� Next week: Sorting lower bound and ways around it.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 2 / 16



Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

� What is the “average case”?

� Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning),
add randomization inside algorithm!

� Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 3 / 16



Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

� What is the “average case”?

� Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning),
add randomization inside algorithm!

� Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 3 / 16



Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

� What is the “average case”?

� Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning),
add randomization inside algorithm!

� Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 3 / 16



Randomized Algorithms and Probabilistic Analysis

First lecture: “Average-case” problematic.

� What is the “average case”?

� Want to design algorithms that work in all applications.

Instead of assuming random distribution over inputs (average-case analysis, machine learning),
add randomization inside algorithm!

� Still assume worst-case inputs, give bound on worst-case expected running time.

Many Fall semesters: 601.434/634 Randomized and Big Data Algorithms. Great class!

Today: adding randomness into quicksort.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 3 / 16



Quicksort Basics (Review)

Input: array A of length n.

Algorithm:

1. If n = 0 or 1, return A (already sorted)

2. Pick some element p as the pivot

3. Compare every element of A to p. Let L be the elements less than p, let G be the
elements larger than p. Create array [L,p,G]

4. Recursively sort L and G .

Not fully specified: how to choose p?
� Traditionally: some simple deterministic choice (first element, last element, etc.)

� Next lecture: better deterministic choice (not very practical)

� Now: first element

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 4 / 16



Quicksort Basics (Review)

Input: array A of length n.

Algorithm:

1. If n = 0 or 1, return A (already sorted)

2. Pick some element p as the pivot

3. Compare every element of A to p. Let L be the elements less than p, let G be the
elements larger than p. Create array [L,p,G]

4. Recursively sort L and G .

Not fully specified: how to choose p?
� Traditionally: some simple deterministic choice (first element, last element, etc.)

� Next lecture: better deterministic choice (not very practical)

� Now: first element

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 4 / 16

Dta



Quicksort Basics (Review)

Input: array A of length n.

Algorithm:

1. If n = 0 or 1, return A (already sorted)

2. Pick some element p as the pivot

3. Compare every element of A to p. Let L be the elements less than p, let G be the
elements larger than p. Create array [L,p,G]

4. Recursively sort L and G .

Not fully specified: how to choose p?
� Traditionally: some simple deterministic choice (first element, last element, etc.)

� Next lecture: better deterministic choice (not very practical)

� Now: first element

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 4 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3

�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)

�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)

Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.

�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element

�⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]

�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1

�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn

�⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Quicksort Analysis

Upper bound:
If p picked as pivot in step 2, then in correct place after step 3�⇒ step 2 and 3 executed at most n times.

Step 3 takes time O(n) (compare every element to pivot)�⇒ total time at most O(n2)
Lower Bound:
Suppose A already sorted.�⇒ p = A[0] is smallest element �⇒ L = � and G = A[1..n − 1]�⇒ in one call to quicksort, do ⌦(n) work to compare everything to p, then recurse on
array of size n − 1�⇒ running time is T(n) = T(n − 1) + cn �⇒ T(n) =⇥(n2)

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 5 / 16



Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(n logn) for every input A.

� Better than an average-case bound: holds for every single input!

� Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!

� Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 6 / 16

T a in 2T Olak a



Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(n logn) for every input A.

� Better than an average-case bound: holds for every single input!

� Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!

� Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 6 / 16



Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(n logn) for every input A.

� Better than an average-case bound: holds for every single input!

� Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!

� Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 6 / 16



Randomized Quicksort

Randomized Quicksort: pick p uniformly at random from A.

Today: prove that expected running time at most O(n logn) for every input A.

� Better than an average-case bound: holds for every single input!

� Maybe in one application inputs tend to be pretty well-sorted: original deterministic
quicksort bad, this still good!

� Today only expectation. Can be more clever to get high probability bounds.

Before doing analysis, quick review of basic probability theory.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 6 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ =

{1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}.

Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}

Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16

x y



Probability Basics I
Only semi-formal here. Look at CLRS Chapter 5 and Appendix C, take Introduction to
Probability

⌦: Sample space. Set of all possible outcomes.

� Roll two dice. ⌦ = {1,2, . . . ,6} × {1,2, . . . ,6}. Not {2,3, . . . ,12}
Event: subset of ⌦

� “Event that first die is 3”: {(3,x) ∶ x ∈ {1,2, . . . ,6}}
� “Event that dice add up to 7 or 11”: {(x,y) ∈ ⌦ ∶ (x + y = 7) or (x + y = 11)}

Random Variable: X ∶ ⌦→ R
� X1: value of first die. X1(x,y) = x
� X2: value of second die. X2(x,y) = y
� X = X1 +X2: sum of the dice. X(x,y) = x + y = X1(x,y) +X2(x,y)

Random variables super important! Running time of randomized quicksort is a random
variable.

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 7 / 16



Probability Basics II

Want to define probabilities. Should use measure theory. Won’t.

For each e ∈ ⌦ let Pr[e] be probability of e (probability distribution)

� Pr[e] ≥ 0 for all e ∈ ⌦, and ∑e∈⌦ Pr[e] = 1
� Probability of an event A is Pr[A] = ∑e∈A Pr[e]

Conditional probability: if A and B are events:

Pr[B �A] = Pr[A�B]
Pr[A] = ∑e∈A∩B Pr[e]

∑e∈A Pr[e]

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 8 / 16



Probability Basics II

Want to define probabilities. Should use measure theory. Won’t.

For each e ∈ ⌦ let Pr[e] be probability of e (probability distribution)

� Pr[e] ≥ 0 for all e ∈ ⌦, and ∑e∈⌦ Pr[e] = 1
� Probability of an event A is Pr[A] = ∑e∈A Pr[e]

Conditional probability: if A and B are events:

Pr[B �A] = Pr[A�B]
Pr[A] = ∑e∈A∩B Pr[e]

∑e∈A Pr[e]

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 8 / 16

I



Probability Basics II

Want to define probabilities. Should use measure theory. Won’t.

For each e ∈ ⌦ let Pr[e] be probability of e (probability distribution)

� Pr[e] ≥ 0 for all e ∈ ⌦, and ∑e∈⌦ Pr[e] = 1
� Probability of an event A is Pr[A] = ∑e∈A Pr[e]

Conditional probability: if A and B are events:

Pr[B �A] = Pr[A�B]
Pr[A] = ∑e∈A∩B Pr[e]

∑e∈A Pr[e]

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 8 / 16

ET



Probability Basics III: Expectations

Expectation of a random variable:

E[X ] = �
e∈⌦

X(e)Pr[e]
“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get di↵erent equation:

E[X ] = �
e∈⌦

X(e)Pr[e] = �
y∈R �

e∈⌦∶X(e)=y
y ⋅Pr[e] = �

y∈R
y ⋅Pr[X = y]

Conditional Expectation: A an event, X a random variable.

E[X �A] = 1

Pr[A] �e∈AX(e)Pr[e]

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 9 / 16



Probability Basics III: Expectations

Expectation of a random variable:

E[X ] = �
e∈⌦

X(e)Pr[e]
“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get di↵erent equation:

E[X ] = �
e∈⌦

X(e)Pr[e] = �
y∈R �

e∈⌦∶X(e)=y
y ⋅Pr[e] = �

y∈R
y ⋅Pr[X = y]

Conditional Expectation: A an event, X a random variable.

E[X �A] = 1

Pr[A] �e∈AX(e)Pr[e]

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 9 / 16



Probability Basics III: Expectations

Expectation of a random variable:

E[X ] = �
e∈⌦

X(e)Pr[e]
“Average” of the random variable according to probability distribution

Can be useful to rearrange terms to get di↵erent equation:

E[X ] = �
e∈⌦

X(e)Pr[e] = �
y∈R �

e∈⌦∶X(e)=y
y ⋅Pr[e] = �

y∈R
y ⋅Pr[X = y]

Conditional Expectation: A an event, X a random variable.

E[X �A] = 1

Pr[A] �e∈AX(e)Pr[e]

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 9 / 16



Linearity of Expectations
Amazing feature of expectations: linearity!

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]

Consider rolling two dice. Let X be sum. What is E [X ]?� E[X ] = ∑e∈⌦ X(e)Pr[e]. 36 term sum!� E[X ] = ∑y∈R y ⋅Pr[X = y]. What is Pr[X = 2], Pr[X = 3], . . . ?
Instead: X = X1 +X2. So E[X ] = E[X1 +X2] = E[X1] + E[X2]

E[X1] = E[X2] = 6�
y=1

1

6
y = 21

6
= 3.5

�⇒ E[X ] = 3.5 + 3.5 = 7

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 10 / 16



Linearity of Expectations
Amazing feature of expectations: linearity!

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Consider rolling two dice. Let X be sum. What is E[X ]?� E[X ] = ∑e∈⌦ X(e)Pr[e]. 36 term sum!� E[X ] = ∑y∈R y ⋅Pr[X = y]. What is Pr[X = 2], Pr[X = 3], . . . ?

Instead: X = X1 +X2. So E[X ] = E[X1 +X2] = E[X1] + E[X2]
E[X1] = E[X2] = 6�

y=1
1

6
y = 21

6
= 3.5

�⇒ E[X ] = 3.5 + 3.5 = 7

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 10 / 16



Linearity of Expectations
Amazing feature of expectations: linearity!

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Consider rolling two dice. Let X be sum. What is E[X ]?� E[X ] = ∑e∈⌦ X(e)Pr[e]. 36 term sum!� E[X ] = ∑y∈R y ⋅Pr[X = y]. What is Pr[X = 2], Pr[X = 3], . . . ?
Instead: X = X1 +X2. So E[X ] = E[X1 +X2] = E[X1] + E[X2]

E[X1] = E[X2] = 6�
y=1

1

6
y = 21

6
= 3.5

�⇒ E[X ] = 3.5 + 3.5 = 7

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 10 / 16



Linearity of Expectations
Amazing feature of expectations: linearity!

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Consider rolling two dice. Let X be sum. What is E[X ]?� E[X ] = ∑e∈⌦ X(e)Pr[e]. 36 term sum!� E[X ] = ∑y∈R y ⋅Pr[X = y]. What is Pr[X = 2], Pr[X = 3], . . . ?
Instead: X = X1 +X2. So E[X ] = E[X1 +X2] = E[X1] + E[X2]

E[X1] = E[X2] = 6�
y=1

1

6
y = 21

6
= 3.5

�⇒ E[X ] = 3.5 + 3.5 = 7

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 10 / 16



Linearity of Expectations
Amazing feature of expectations: linearity!

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Consider rolling two dice. Let X be sum. What is E[X ]?� E[X ] = ∑e∈⌦ X(e)Pr[e]. 36 term sum!� E[X ] = ∑y∈R y ⋅Pr[X = y]. What is Pr[X = 2], Pr[X = 3], . . . ?
Instead: X = X1 +X2. So E[X ] = E[X1 +X2] = E[X1] + E[X2]

E[X1] = E[X2] = 6�
y=1

1

6
y = 21

6
= 3.5

�⇒ E[X ] = 3.5 + 3.5 = 7
Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 10 / 16



Linearity of Expectations: Proof

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Proof.

E[↵X +�Y ] = �
e∈⌦

Pr[e] (↵X(e) +�Y (e))

= ↵�
e∈⌦

Pr[e]X(e) +� �
e∈⌦

Pr[e]X(e)
= ↵E [X ] +�E [Y ]

Holds no matter how correlated X and Y are!

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 11 / 16



Linearity of Expectations: Proof

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Proof.

E[↵X +�Y ] = �
e∈⌦

Pr[e] (↵X(e) +�Y (e))
= ↵�

e∈⌦
Pr[e]X(e) +� �

e∈⌦
Pr[e]X(e)

= ↵E [X ] +�E [Y ]
Holds no matter how correlated X and Y are!

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 11 / 16



Linearity of Expectations: Proof

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Proof.

E[↵X +�Y ] = �
e∈⌦

Pr[e] (↵X(e) +�Y (e))
= ↵�

e∈⌦
Pr[e]X(e) +� �

e∈⌦
Pr[e]X(e)

= ↵E[X ] +�E[Y ]

Holds no matter how correlated X and Y are!

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 11 / 16



Linearity of Expectations: Proof

Theorem
For any two random variables X and Y , and any constants ↵ and �:
E[↵X +�Y ] = ↵E[X ] +�E[Y ]
Proof.

E[↵X +�Y ] = �
e∈⌦

Pr[e] (↵X(e) +�Y (e))
= ↵�

e∈⌦
Pr[e]X(e) +� �

e∈⌦
Pr[e]X(e)

= ↵E[X ] +�E[Y ]
Holds no matter how correlated X and Y are!

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 11 / 16



Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most O(n logn).

Assume for simplicity all elements distinct. Running time = ⇥(# of comparisons)
Definitions:

� X =# of comparisons (random variable)

� ei = i ’th smallest element (for i ∈ {1, . . . ,n})
� Xij random variable for all i , j ∈ {1, . . . ,n} with i < j :

Xij =
�������
1 if algorithm compares ei and ej at any point in time

0 otherwise

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 12 / 16



Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most O(n logn).
Assume for simplicity all elements distinct. Running time = ⇥(# of comparisons)

Definitions:

� X =# of comparisons (random variable)

� ei = i ’th smallest element (for i ∈ {1, . . . ,n})
� Xij random variable for all i , j ∈ {1, . . . ,n} with i < j :

Xij =
�������
1 if algorithm compares ei and ej at any point in time

0 otherwise

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 12 / 16



Randomized Quicksort I

Theorem

The expected running time of randomized quicksort is at most O(n logn).
Assume for simplicity all elements distinct. Running time = ⇥(# of comparisons)
Definitions:

� X =# of comparisons (random variable)

� ei = i ’th smallest element (for i ∈ {1, . . . ,n})
� Xij random variable for all i , j ∈ {1, . . . ,n} with i < j :

Xij =
�������
1 if algorithm compares ei and ej at any point in time

0 otherwise

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 12 / 16



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E[Xij ]
So just need to understand E [Xij ]
Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]

So just need to understand E [Xij ]
Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16

L

linearity of expentatians



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]
So just need to understand E[Xij ]

Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16

f X O PCX c 1 p Cx 1

PrCX 1



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]
So just need to understand E[Xij ]
Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]
So just need to understand E[Xij ]
Simple cases:

� j = i + 1:

Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]
So just need to understand E[Xij ]
Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1

� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]
So just need to understand E[Xij ]
Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n:

e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16



Randomized Quicksort II

Algorithm never compares the same two elements more than once �⇒ X = ∑n−1
i=1 ∑n

j=i+1 Xij

E[X ] = E
������
n−1�
i=1

n�
j=i+1

Xij

������ =
n−1�
i=1

n�
j=i+1

E [Xij ]
So just need to understand E[Xij ]
Simple cases:

� j = i + 1: Xij = 1 no matter what, so E[Xij ] = 1� i = 1, j = n: e1 and en compared if and only if first pivot chosen is e1 or en�⇒ E[X1n] = 2
n

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 13 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej :

Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1

If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej :

Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0

If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej :

? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej :

E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16

t



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1

� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]:

still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (i < j)

If p = ei or p = ej : Xij = 1
If ei < p < ej : Xij = 0
If p < ei or p > ej : ? Both ei , ej in same recursive call.

� Condition on ei ≤ p ≤ ej : E[Xij � ei ≤ p ≤ ej ] = 2
j−i+1� Condition on p �∈ [ei ,ej ]: still undetermined

So Xij not determined until ei ≤ p ≤ ej , and when it is determined has E[Xij ] = 2
j−i+1�⇒ E[Xij ] = 2

j−i+1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 14 / 16



E [Xij ]: General Case (formally)

Let Yk be event that the k ’th pivot is in [ei ,ej ] and all previous pivots not in [ei ,ej ]

�⇒ by definition, the Yk events are disjoint and partition sample space

Showed that E[Xij �Yk] = 2
j−i+1 for all k .

E[Xij ] = n�
k=1

E[Xij �Yk]Pr[Yk] (Yk disjoint and partition ⌦)

= 2

j − i + 1
n�

k=1
Pr[Yk]

= 2

j − i + 1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 15 / 16



E [Xij ]: General Case (formally)

Let Yk be event that the k ’th pivot is in [ei ,ej ] and all previous pivots not in [ei ,ej ]�⇒ by definition, the Yk events are disjoint and partition sample space

Showed that E[Xij �Yk] = 2
j−i+1 for all k .

E[Xij ] = n�
k=1

E[Xij �Yk]Pr[Yk] (Yk disjoint and partition ⌦)

= 2

j − i + 1
n�

k=1
Pr[Yk]

= 2

j − i + 1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 15 / 16



E [Xij ]: General Case (formally)

Let Yk be event that the k ’th pivot is in [ei ,ej ] and all previous pivots not in [ei ,ej ]�⇒ by definition, the Yk events are disjoint and partition sample space

Showed that E[Xij �Yk] = 2
j−i+1 for all k .

E[Xij ] = n�
k=1

E[Xij �Yk]Pr[Yk] (Yk disjoint and partition ⌦)

= 2

j − i + 1
n�

k=1
Pr[Yk]

= 2

j − i + 1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 15 / 16



E [Xij ]: General Case (formally)

Let Yk be event that the k ’th pivot is in [ei ,ej ] and all previous pivots not in [ei ,ej ]�⇒ by definition, the Yk events are disjoint and partition sample space

Showed that E[Xij �Yk] = 2
j−i+1 for all k .

E[Xij ] = n�
k=1

E[Xij �Yk]Pr[Yk] (Yk disjoint and partition ⌦)

= 2

j − i + 1
n�

k=1
Pr[Yk]

= 2

j − i + 1

Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 15 / 16



Randomized Quicksort: Final Analysis
Expected running time of randomized quicksort:

E[X ] = n−1�
i=1

n�
j=i+1

E[Xij ] (linearity of expectations)

= n−1�
i=1

n�
j=i+1

2

j − i + 1
= 2 n−1�

i=1
�1
2
+ 1
3
+ ⋅ ⋅ ⋅ + 1

n − i + 1�
≤ 2 n−1�

i=1
Hn

�
�Hn = n�

j=1
1

j
�
�

≤ 2nHn≤ O(n logn)
Michael Dinitz Lecture 3: Probability, Randomized Quicksort September 3, 2024 16 / 16


